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ABSTRACT

Grouped convolutions are a drop-in replacement for standard convolutional layers in neural net-
works. With an adjustable scaling parameter - the number of groups g - they reduce the num-
ber of parameters and multiply-accumulate operations (MACs) at the expense of representational
power. However, current implementations of grouped convolutions do not perform optimally.In
this paper we discuss Grouped Spatial Packed Convolutions (GSPC), a new approach to grouped
convolutions, implemented in TVM'’s tensor compute language. We analyse a set of networks
leveraging the full range of the g parameter, and evaluate their performance in terms of inference
time. We observe that GSPC achives the best performance in all settings, improving the existing
implementations of grouped convolutions in TVM, PyTorch and TensorFlow Lite by 3.4x, 8 x and
4x on average respectively. Code is available at https://github.com/gecLAB/tvm—-GSPC/
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1 Introduction

Deploying deep neural networks onto mobile and embedded edge devices (e.g. smartphones,
wearables, [oT boards, robots, drones, etc) faces barriers due to the resource constraints un-
der which these devices operate. Large, memory intensive neural networks typically per-
form poorly on edge devices. Thus, there are a wealth of techniques to compress these
networks, while attempting to maintain their learning task performance. However, novel
approaches from the machine learning community, who have a preference for maintaining
accuracy, may have non-trivial implications for hardware efficiency. That is, many neural ar-
chitecture compression techniques may not work as expected at the system level where one
of the main metrics considered is the inference time. Turner et al. [TCR"18] demonstrated
that compression at the neural architecture level may have negative effects further down the
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Deep Learning Inference Stack, depending on the choices of algorithmic transformation, code
generation and optimisation techniques, and the target hardware device.

In this paper we evaluate the performance of grouped convolutions, a network cheapen-
ing technique which reduces the number of parameters and multiply-accumulate operations
in the convolutional layers. We propose a new implementation of grouped convolutions,
that we call Grouped Spatial Pack Convolutions (GSPC), which outperforms all previous im-
plementations of grouped convolutions present in current deep learning frameworks.

2 Grouped Convolutions

The pertinent parameter in grouped convolutions is the number of groups g. For example,
at g = 2 the number of parameters and operations are halved compared to an equivalent
standard convolutional layer. If g = N, this means the number of groups is equal to the
number of input channels to each layer - the maximum number of groups. This special case
is also known as depthwise convolutions. It is conventional practice to follow grouped convo-
lutional layers with a low-cost pointwise convolution. We denote a network using standard
convolution as S, and the same architecture using grouped convolution with g groups G(g).

3 Grouped Spatial Pack Convolutions

We expect a 4D input volume in the standard NCHW data layout, 4D kernels, and return a 4D
output volume in the same NCHW layout. At a high level, GSPC is comprised of four stages:

Reshape 4D kernels into a new 7D volume.

Reshape 4D padded input data into a 6D volume.

Perform the grouped convolution, output to a 6D volume.

Reshape the 6D output volume to the desired 4D output.

GSPC reshapes the data to improve memory locality, thus reducing the potential cost of
loads. Similarly, accumulating the convolution on a 6D intermediate array, and reshaping to
4D output is preferable to accumulating directly onto 4D as improved locality can improve
cache behaviour. The input and kernels data are reshaped, maintaining the independence
of data between groups, divided across an outer dimension for groups. The reshape maps
data onto tiles, with the tile size being an option for which the optimal value may vary for
different data shapes and hardware environments. Tiling is performed to enable further op-
timisations such as vectorization, so that multiple data can be computed on simultaneously.
The kernel reshaping stage can be computed ahead of time and stored on disk in lieu of the
default NCHW-compatible layout, since it does not depend on the input data. A small exam-
ple of the first two stages is shown in Figure [1, with values representing original indices.

The TVM deep learning compiler stack is well suited for these types of layer-specific
optimisations. TVM uses ahead-of-time compilation for a given network, allowing a suite
of potential workload specific optimisations. Additionally, it features an auto-tuning frame-
work autoTVM [CZY"18] for exploring configuration space of these optimisations to im-
prove performance further. Hence we implement GSPC as an extension to TVM, and present
auto-tuned results. Figure 2| gives an overview of the relevant parts of the TVM stack.
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Figure 1: Example of GSPC input reshaping Figure 2: Overview of the relevant parts of
for small input and kernels, and two groups. TVM'’s compilation stack.

4 Evaluation

4.1 Experimental Setup

We consider two datasets widely adopted for image classification tasks, CIFAR-10 and Ima-
geNet, and we use the f1oat 32 type to represent data values. We evaluate two deep neural
network models: WideResNet-40-2 and ResNet-34.

e WRN-40-2: we use a Wide Residual Network (WRN) with 40 layers, width-multiplier
2, and with 2.2 million parameters. We use the CIFAR-10 definition of the network.

o ResNet-34: we use a Residual Network with 34 layers that requires 21.8 million param-
eters. We use the network as defined for ImageNet classification.

We consider the following grouped convolutions: G(g) V g € {2,4,8,16, N}, where N is the
number of input channels to each convolutional layer.
We evaluate the two networks on a single Cortex-A73@2.4 GHz core of a Hikey 970.

4.2 Frameworks comparison

Figure 3| shows the inference time of GSPC and other implementations of grouped convolu-
tions in current deep learning frameworks for all the G models of the two networks under
study when running on the CPU of the Hikey board. The figure also shows the times for
the S models. We consider the tuned version of both GSPC and unmodified TVM. The other
frameworks analysed are PyTorch and TensorFlow Lite (TF-Lite).

As we can see, GSPC provides the best results for all the G models of the two networks,
clearly outperforming the unmodified TVM and the other two frameworks, up to 8x and 4 x
better than PyTorch and TensorFlow Lite respectively. To the best of our knowledge, GSPC
is the most efficient implementation, in terms of inference time, of grouped convolutions
available. We also observe that TensorFlow Lite performs much better than PyTorch for all
the G models of WRN-40-2 and for the G(2)-G(16) models of ResNet-34, whereas PyTorch is
better for G(IV) of ResNet-34. However, none of these frameworks scales as expected for the
G models according to the number of MAC operations.
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Figure 3: Inference time for networks with standard (S) and grouped (G) convolutions. We
compare the tuned versions of GSPC and unmodified TVM against PyTorch and TF-Lite.

5 Conclusion

In this paper we have presented Grouped Spatial Pack Convolutions (GSPC) as a new and
more efficient implementation of grouped convolutions. We have implemented GSPC in
TVM, evaluating two network models implementing grouped convolutions for two datasets
on a single big core of the Hikey 970. A more in-depth analysis of GSPC and its performance
can be found in [GCT™20]. We have compared our implementation against existing solutions
in current deep learning frameworks, outperforming them in all settings.
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