
Design Space Exploration of Accelerators and
End-to-End DNN Evaluation with TFLITE-SOC

Nicolas Bohm Agostini†, Shi Dong†, Elmira Karimi†, Marti Torrents Lapuerta∗,
José Cano‡, José L. Abellán§, David Kaeli†

†Northeastern University, Boston, MA, USA ∗Barcelona Supercomputing Center, Barcelona, Spain
‡University of Glasgow, Glasgow, UK §Universidad Católica San Antonio de Murcia, Murcia, Spain

Abstract—Recently there has been a rapidly growing demand
for faster machine learning (ML) processing in data centers and
migration of ML inference applications to edge devices. These
developments have prompted both industry and academia to
explore custom accelerators to optimize ML executions for per-
formance and power. However, identifying which accelerator is
best equipped for performing a particular ML task is challenging,
especially given the growing range of ML tasks, the number
of target environments, and the limited number of integrated
modeling tools. To tackle this issue, it is of paramount importance
to provide the computer architecture research community with
a common framework capable of performing a comprehensive,
uniform, and fair comparison across different accelerator designs
targeting a particular ML task.

To this aim, we propose a new framework named TFLITE-
SOC (System On Chip) that integrates a lightweight system
modeling library (SystemC) for fast design space exploration of
custom ML accelerators into the build/execution environment of
Tensorflow Lite (TFLite), a highly popular ML framework for
ML inference. Using this approach, we are able to model and
evaluate new accelerators developed in SystemC by leveraging
the language’s hierarchical design capabilities, resulting in faster
design prototyping. Furthermore, any accelerator designed using
TFLITE-SOC can be benchmarked for inference with any
DNN model compatible with TFLite, which enables end-to-end
DNN processing and detailed (i.e., per DNN layer) performance
analysis. In addition to providing rapid prototyping, integrated
benchmarking, and a range of platform configurations, TFLITE-
SOC offers comprehensive performance analysis of accelerator
occupancy and execution time breakdown as well as a rich set
of modules that can be used by new accelerators to implement
scaling up studies and optimized memory transfer protocols.

We present our framework and demonstrate its utility by
considering the design space of a TPU-like systolic array and de-
scribing possible directions for optimization. Using a compression
technique, we implement an optimization targeting reducing the
memory traffic between DRAM and on-device buffers. Compared
to the baseline accelerator, our optimized design shows up
to 1.26× speedup on accelerated operations and up to 1.19×
speedup on end-to-end DNN execution.

Index Terms—DNN accelerator framework, Systolic array,
Memory compression, Hardware-software co-design

I. INTRODUCTION

A rapidly growing number of domain-specific accelera-
tors [1]–[6] were delivered to the market in recent years.
Specifically, the growth of Machine Learning (ML) accel-
erators has been fueled by the demonstrated benefits of
sophisticated deep learning (DL) applications. Enabled by
hardware acceleration, optimized DL algorithms are able to

reduce the time required to produce accurate inference results.
Accelerating these computations has been the focus of many
hardware and software innovations. In terms of ML hardware,
vendors have designed and deployed ML accelerators for a
range of systems [1], [2], [7], [8]. Some of these accelerators
can be easily benchmarked and compared, but problems arise
when attempting to do the same with new accelerators due
to lack of support in ML frameworks [9]–[11] and associated
benchmark suites [12].

Recent work has proposed a number of microarchitectural
improvements on existing spatial accelerator designs [13]–
[16], including the use of optimized systolic arrays and other
customized solutions [17]–[19]. It is challenging to decide
which architectural features are most beneficial for a given
application or how new features compare to existing designs.
In many of these studies, runtime performance is reported
using simulation models or by building implementations in
a particular technology node.

There is a real need for an end-to-end framework that
enables prototyping and fair comparison of new accelerator
designs. Currently, new designs are compared based on their
potential compute throughput, estimated power consumption
and operating frequency, as shown in Table I. However, such
approach is not fair since each design is evaluated in a unique
environment, as described in Table II. We can see that each
design is evaluated using different technology nodes, number
of cores, precision and, sometimes, different workloads. This
makes direct comparisons challenging and limits our ability to
measure the impact of the proposed architectural enhancement.

Modeling and quantitatively evaluating the benefits of differ-
ent DNN accelerator designs should be the first step before in-
vesting additional time and money on a production prototype.
Recent work [23]–[26], discussed in detail in Section V, high-
lights how design space exploration and end-to-end evaluation
of DNNs can be implemented at different levels of abstraction
and integrated with custom made [24]–[26] or production [23]
frameworks. These contributions effectively provide a path for
fair comparison of accelerator enhancements. However, we
observe that no recent work has yet enabled system modeling
at all levels of a Hardware-Software (HW/SW) co-design
project [27], [28]. Instead, they usually provide analytical
modelling (the highest level of abstraction) or cycle-based
modelling (the lowest level of abstraction before RTL). To
address this gap, we propose TFLITE-SOC (System On Chip)



TABLE I: Performance numbers of DNN accelerators proposed by academia or industry. GOPS/W and GOPS/MHz were calculated based on the numbers
on the left side of the table. Missing values are due to unreported metrics or could not be inferred from the orignal work.

Platform Year GOPS Power [W] Clock [MHz] GOPS/W GOPS/MHz

TPU V1 [1] 2017 92,000.0 75.00 700.0 1,226.7 131.43
TPU V2 [20] 2017 184,000.0 1120.00 700.0 164.3 262.85
TPU V3 [20] 2018 492,000.0 1800.00 940.0 273.3 523.40
Edge TPU [21] 2018 4,000.0 2.00 500.0 2,000.0 80.00
EIE [22] 2016 102.0 0.59 800.0 172.9 0.12
SCNN [13] 2017 2,000.0 - 1,000.0 - 2.00
MAERI [17] 2018 33.6 4.20 200.0 8.0 0.17
Eyeriss V2 [18] 2018 - - 200.0 - -
OuterSPACE [14] 2018 2.9 23.99 1,500.0 0.1 0.00
SIGMA [19] 2020 10,880.0 22.33 500.0 487.2 21.76
V100 Tensor Cores [2] 2017 130,000.0 75.00 - 1,733.3 -
V100 GPU [2] 2017 15,700.0 300.00 1,246.0 52.3 12.60

TABLE II: Environments on which different accelerators have been benchmarked. The observation column points out how Table I metrics were obtained.
Missing values are due to unreported metrics or could not be inferred from the orignal work.

Platform Tech node # of PEs Precision Observation

TPU V1 28nm 256x256 PEs INT8 TOPS reported for theoretical maximum throughput.

TPU V2 >12nm 4x2x128x128 PEs BF16
TOPS reported for theoretical maximum throughput per board.
BF16 stands for brain floating format. A board has 4 chips, with 2 cores,
with 1 matrix multiply units of 128x128 PEs.

TPU V3 >12nm 4x2x2x128x128 PEs BF16 TOPS reported for theoretical maximum throughput per board.
A board has 4 chips, with 2 cores, with 2 matrix multiply units.

Edge TPU - INT8 TOPS reported for theoretical maximum throughput.

EIE 45nm 64 PEs FP32 TFLOPS reported from evaluation of the FC7 layer of AlexNet.
It considers specific weight and actiavation sparsity.

SCNN 16nm 32x32 PEs INT8 TOPS reported for theoretical maximum throughput.

MAERI 28nm 168 PEs INT16
TOPS estimated from 100% utilization of all PEs.
Power extrapolated based on 16 PEs implementation. Experiments
performed using individual convolution layers of VGG16 and AlexNet.

Eyeriss V2 65nm 32x32 PEs FixedP16
TOPS could not be calculated due to missing information.
Paper reports 8x-256x speedup over Eyeriss v1. But Eyeriss v1 paper
does not report TOPS or provide a proxy for calculation.

OuterSPACE 32nm 256 PEs FP32 TFLOPS reported for average compute throughput on
Florida SuiteSparse and Stanford Network Analysis Project matrices.

SIGMA 28nm 128x128 PEs FloatingP TFLOPS reported by multiplying the base dense TFLOPS
with average efficiency computed across different sized GEMMs.

V100 Tensor Cores 12nm 640 Tensor cores FP16 With support for higher precision at the cost of compute
throughput.

V100 GPU 12nm 5376 CUDA cores FP32 With support for FP64 at half the compute throughput

as an open-source project (available at https://github.com/
tflite-soc/tflite-soc) that uses the SystemC [29] library for
rapid system modeling and simulation within the TFLite [30]
framework. The contributions of this paper are the following:

• We present TFLITE-SOC, a new framework that inte-
grates an event-driven simulator (SystemC) in the TFLite
ML framework, providing a path for HW/SW co-design
of accelerators at different levels of modelling abstraction.
It enables fast prototyping and possible path to synthesis
of modeled designs by leveraging the SystemC’s hierar-
chical design capabilities and high-level synthesis.

• TFLITE-SOC enables benchmarking and comparison of
new accelerators while leveraging an incremental speci-
fication/architecture/communication refinement approach.
As an use case of TFLITE-SOC, we implement a TPU-
like [1] accelerator that can be used as baseline in the
future.

• The framework incorporates the development of useful
parameterized SystemC modules that can be used by new

accelerators to evaluate scalability or enhanced commu-
nication protocols such as data compression of DRAM-
accelerator traffic. TFLITE-SOC can model different sys-
tem organizations (peripheral and embedded) and plat-
form configurations (high performance, low power, and
custom specification).

• We provide end-to-end evaluation of our simulated TPU-
like accelerator and report performance results, i.e. la-
tency breakdown and Processing Element (PE) utiliza-
tion, for the execution of three state-of-the-art DNN
models (ResNet101, MobileNet V1 and MobileNet V2).
Our experiments uncovered insights for future accelerator
design directions. In particular, latency related to memory
traffic between DRAM and on-device buffers was high
for specific platform configurations. We implemented a
compression scheme that aimed to mitigate this per-
formance bottleneck. This optimization provided up to
1.19× speedup on end-to-end DNN execution over the
baseline accelerator.

https://github.com/tflite-soc/tflite-soc
https://github.com/tflite-soc/tflite-soc


The rest of the paper is organized as follows. Section II
presents our target ML framework and overall runtime break-
down of the DNN models under study. In Section III we
expose our TFLITE-SOC system, and we present its use cases
in Section IV. The related work is presented in Section V.
Finally, in Section VI we summarize our contributions and
discuss directions for future work.

II. TARGET ML FRAMEWORK AND DNN MODELS

Many ML frameworks have emerged to enable training
and/or inference of DNN models and this work integrates
with one of them, namely TensorFlow Lite (TFLite). Next,
we justify our choice for the ML framework and present the
runtime breakdown of different contemporary DNN models
highlighting the importance of the 2D convolution (CONV2D)
for acceleration.

A. TensorFlow Lite Framework

TFLite [30] is Google’s official ML framework to run
inference with TensorFlow models on mobile/embedded edge
devices. As of 2020, TFLite has been deployed on more than
4 billion devices worldwide [31]. These platforms include An-
droid, iOS, Linux IoT-enabled devices, and microcontrollers.
TFLite also provides multi-threaded execution, GPU optimized
kernels, and can be compiled to x86 platforms.

TFLite is simpler than other ML frameworks (e.g., Ten-
sorFlow, PyTorch, or Caffe) in many ways. TFLite focuses
only on inference. It currently supports only a subset of
the operations provided by TensorFlow. It is programmed
primarily in C++, relying on the Bazel build system [32],
compiler of choice, and optimized third party libraries to
generate binaries for different target platforms.

Additionally, there are two key features in TFLite that
helped us select it over other frameworks. First, to execute a
DNN model, the only requirements to perform an inference are
the TFLite runtime and the model.tflite file. The model.tflite file
can be easily generated by TensorFlow using any pre-trained
DNN model (a set of pretrained models can be downloaded
from Google [33]). The second key feature is that TFLite has
a built-in benchmarking infrastructure, which enables compre-
hensive per-layer analysis as well as the performance of the
overall DNN execution. Overall, the framework’s simplicity,
wide deployment, and the key features discussed were primary
factors in its selection.

TABLE III: Models used in this work and their inference latencies.

Model Layers* Size †Latency ‡Latency

ResNet101 FP32 [34] 101 178.3MB 526.0ms 103.9ms
MobileNetV1 FP32 [35] 30 14.0MB 17.5ms 8.6ms
MobileNetV2 FP32 [36] 53 16.9MB 24.0ms 9.0ms
MobileNetV1 INT8 30 4.3MB 13.0ms 12.3ms
MobileNetV2 INT8 53 3.4MB 12.0ms 13.8ms

† Previously reported latency on Pixel 3 CPU with 4 threads [33].
‡ Measured latency on i7-8700 CPU with 4 threads.

* Number of CONV2D and/or DEPTHWISE CONV2D layers.

Fig. 1: Overall time spent during DNN inference per layer-type reported for
the different DNN models of Table III.

B. DNN Models and Runtime Breakdown

Any model that can be converted into a model.tflite file can
be executed with the TFLite runtime. In the DNN characteriza-
tion experiments presented in this section and the accelerator
evaluation presented in Section IV, our framework uses main-
stream and publicly available Image Classification models with
floating-point (FP32) and quantized (INT8) weights. The list
of models is shown in Table III and were extracted from [33].

To identify which DNN operations are most time con-
suming, we used the TFLite benchmarking tool to execute
the models in Table III. We ran this analysis on a sys-
tem with an Intel i7-8700 6/12 cores/threads, and 64GB of
DDR4@2666MHz memory. TFLite was compiled with the
gcc-5.4.0 compiler and -march=native optimizations enabled,
which include SSE4 and AVX2 extensions. These special x86
instructions only work with floating point datatypes (FP32)
and, as observed in Table III, can help floating point models
execute faster than their quantized (INT8) counterparts. Upon
workload analysis, we observe that the CONV2D layers – as
well as DEPTHWISE CONV2D layers from MobileNet V1
and V2 models – are the most frequently executed and most
time consuming layers. Figure 1 shows that, regardless of the
network, the majority of the inference time is spent in the ex-
ecution of these layers, which consume more than 82% of the
total execution time in all five profiled models. In DNN models
using FP32 precision, CONV2D and DEPTHWISE CONV2D
layers are at least one order of magnitude more expensive than
other operations.

To improve the execution of the convolutional layers, most
prior studies on ML acceleration have focused on optimizing
individual kernels (i.e., the underlying algorithm used to
implement each layer’s operation) [37]–[41]. Since TFLite
uses Multiple Channel Multiple Kernel (MCMK) convolu-
tional algorithms that are implemented with General Matrix
Multiplication (GEMM) kernels [37], [42], we design our
accelerator around the execution of these GEMM calls. For
instance, if we consider a simple matrix multiplication kernel
(C = A × B), the filter input for the convolution operation



becomes matrix A, and the input activations of the convolution
operation are expanded into a matrix composed of column-
transformed windows (im2col), which becomes matrix B.
TFLite automatically transposes matrix B in memory as a
data layout optimization, resulting in a more efficient memory
access pattern during the GEMM call.

III. TFLITE-SOC

To enable accelerator prototyping and benchmarking, we
have extended TFLite [30] by modifying specific kernels,
building the environment in which SystemC simulation ex-
ecutes. Figure 2 presents a high-level diagram of our frame-
work. TFLITE-SOC is comprised of the SystemC modules and
bi-directional interfaces displayed inside the dashed box. Our
framework required small modifications to Bazel build files
to support SystemC, and minor additions to TFLite methods.
These additions include the Stimulus module, responsible for
intercepting the data that will be sent to the accelerator and to
initiate simulation; and the Monitor module, responsible for
sending results back to TFLite and producing/managing simu-
lation reports. These modules are connected to the Device Un-
der Test (DUT), i.e. the accelerator, using selected interfaces.
We can model different types of interface timing specifications,
such as PCI-Express when modeling an external/peripheral
accelerator, or an AXI/HyperTransport bus for an embedded
accelerator. The DUT module can also be used outside of this
framework – this module is developed independently of any
of TFLite’s classes or methods. This design decision can be
useful if the user wants to synthesize the design implemented
by the DUT.

In a typical DNN execution, the TF Operations of Interest
that make use of the underlying GEMM calls (e.g., CONV 2D
or MUL) are “intercepted” and executed by the modeled
accelerator. Currently, TFLITE-SOC only intercepts GEMM
calls, but future work could also accelerate other types of
calls/DNN operations.

Finally, TFLITE-SOC reports simulated accelerator perfor-
mance results for the layers/kernels offloaded to the DUT
in isolation. It can also account for x86 latency results of
layers executed outside of the DUT, which enables end-to-end
inference runtime evaluation. TFLITE-SOC is an open source
project available to the community.

Fig. 2: TFLITE-SOC - Integration of SystemC with TFLite. Arrows in
SystemC modules represent initiators or targets of TLM transactions.

Fig. 3: SystemC incremental modeling in TFLITE-SOC. The labels on the
right side specify the system refinements required to achieve the accuracy
of different layers of abstraction. Currently, TFLITE-SOC uses abstractions
based on the first four layers.

A. SystemC

SystemC is an ANSI C++ class library that has been
developed to support system-level design [29]. The SystemC
library provides a set of classes and macros to facilitate seam-
less HW/SW co-simulation of different stages of a HW/SW
project. SystemC also offers many features, including a set of
abstractions that facilitate system modeling:

• Modules are C++ classes containing processes or other
modules as part of a hierarchy. They are used to describe
the structural connection of the design’s components.

• Processes are class methods that describe functionali-
ty/behaviour of a module. They model independent func-
tionality that can happen currently with other processes.

• Events enable synchronization between processes, allow-
ing for cycle/timing-based abstractions. Events at a given
simulation step can trigger the execution of processes in
different modules.

• Interfaces, Channels and Signals convey communi-
cation between different modules. Interface classes are
used to declare the access methods that a channel imple-
ments. Channels provide a concrete implementation of
the access methods declared by one or more interfaces.
This implementation can be time annotated during the
communication refinement step. Signals model ”wires”
with instantaneous propagation.

These features are part of the SystemC IEEE standard and
are designed to separate the details of communication be-
tween modules and their specific implementation. This design
approach is further enabled by Transaction Level Modeling
(TLM) [43] and is used at the different levels of abstraction, as
shown in Figure 3. With TLM, modules communicate through
transactions using the access methods of a connected channel.
In a TLM system, the interfaces and channels are what separate
communication from computation.

Another feature of our framework is that SystemC is based
on an event-driven simulation engine. Working at higher levels
of abstraction (above RTL), event-driven simulation is faster
than cycle-based simulation [29], [44], [45].

https://github.com/tflite-soc/tflite-soc


B. Developing with TFLITE-SOC

With SystemC, TFLITE-SOC supports incremental design
refinement at different system scales for the modeled accelera-
tor. This is highly efficient, as the HW/SW designer can focus
on the desired functionality at scale (e.g., processing element
array, scratchpad module, control unit, etc.) without impacting
other modules expressed at different levels of abstraction.
Incremental refinement is supported within TFLITE-SOC as
shown in Figure 3. This approach enables us to evaluate a new
accelerator architecture by using the following steps:

1) Identify the set of modules that we can leverage from
existing TFLITE-SOC accelerators and the modules
that need to be developed to implement new micro-
architectural modifications.

2) Create the Algorithmic and Untimed Functional models
for the new modules.

3) Time-annotate the new modules to make them operate
in the Timed Functional Model abstraction.

4) Select the proper underlying implementations (i.e. bus
type and specifications) for channels/interfaces to make
them operate in the Bus Cycle Accurate abstraction.

Existing TFLITE-SOC modules are configurable by modify-
ing module/accelerator parameters. These parameters control
the architecture topology, memory and compute dimensions,
and timing behaviour. Some of the available configurations
will be discussed later in Section IV-C.

IV. CASE STUDIES AND ANALYSIS

To demonstrate the utility of TFLITE-SOC’s modeling capa-
bilities and explore the range of analysis available, we consider
the design space of an accelerator and evaluate different design
specifications leveraging TFLITE-SOC’s parameterized mod-
ules. We validated the functional correctness of the simulations
of the accelerator with its different configurations. We match
accelerator outputs with those produced by standard TFLite
execution. Functional verification was performed on both FP32
and INT8 data types.

A. Baseline Accelerator Model

Similar to other accelerator studies [13], [15], [16], we
select a TPU-like accelerator [1] as a baseline model and
implement it in TFLITE-SOC. Our baseline accelerator uses
a weight stationary [46] systolic array architecture that, de-
pending on the DNN model, uses either FP32 or INT8 data
types. Using our framework, this accelerator can be modeled
as a peripheral device, connected to the host system over
a peripheral interface (similar to PCIe), or as an embedded
device, connected to the CPU using a standard bus interface
(similar to AXI, or HyperTransport). Figures 4a and 4b high-
light the key structural differences between these two system
organizations, which are representative of different use cases
of DNN accelerators [1], [21].

Figure 5 shows the module-based implementation of the
devices shown in Figures 4a and 4b. It provides details of the

(a) Baseline TPU-like accelerator as a peripheral device.

(b) Baseline TPU-like accelerator as an embedded device.

Fig. 4: Block diagram for the different system organizations of the baseline
accelerator. Dashed modules are not implemented and their high-level func-
tionality is abstracted in the first parent module (i.e., the Stimulus and Monitor
module).

Fig. 5: Details of the baseline accelerator. The arrows represent the FIFO
channels.

architecture of the Systolic Array block of Fused Multiply-
Add (FMA) elements (i.e., Processing Elements or PEs) as
well as key buffers and other modules present in the TPU
design. Similar to [1], systolic execution expects the data
to arrive for processing at regular time intervals. CISC-like
instructions are sent to the TPU to be decoded and then the
control unit guides the TPU’s execution. Since we lack a driver
API for this accelerator, our control unit, implemented as an
Untimed Functional Model, receives the target operation and
input data dimensions and generates the correct signals and
events to carry out computation. Aside from the control unit,
the other modules displayed in Figure 5 have undergone time
annotation and communication refinements (see Figure 3). The
modules shown in Figures 4 and 5 are parameterized and allow
to select the number of PEs for the Systolic Array block.
Note that proper tiling is performed to execute operations
using data with dimensions larger than the PE array or the



TABLE IV: Pattern Encoding for FPC algorithm. Courtesey of [47].

Prefix Pattern# Encoded Pattern Original Data Compressed Data Total Data Size
(data + metadata)

001 1 Zero word Z32 - 0 + 3 bits
010 2 Word with repeated bytes N8N8N8N8 N8 8 + 3 bits
011 3 4-bit sign-extended X28N4 N4 4 + 3 bits
100 4 One byte sign-extended X24N8 N8 8 + 3 bits
101 5 Halfword sign-extended X16N16 N16 16 + 3 bits
110 6 Halfword padded with zero halfword N16Z16 N16 16 + 3 bits
111 7 Two halfword, each a byte sign-extended X8N8X8N8 N8N8 16 + 3 bits
N/A 8 Uncompressed N32 N32 32 + 0 bits

Z: Zero bits, X: All ones or all zeros bits, N: No any specific pattern,
The subscripts show the number of bits each symbol represents. Total Data size shows the size of the compressed data.

on-device memory (IFMAP, FFMAP, OFMAP buffers). The
architecture of the baseline accelerator uses two levels of
tiling. The first level tries to best utilize on-device buffers
and minimize DRAM reads. The second level focuses on
improving utilization of the PE array, while minimizing reads
to the on-device buffers. Tile sizes are selected based on
on-device buffer sizes and PE array sizes. Additionally the
weight stationary nature of the modeled accelerator is taken
into consideration to try to minimize reads from on-device
buffers.

B. Enhancing the Baseline Accelerator

In this work, we explore a number of modifications to
the baseline platform. The modifications were selected to
showcase TFLITE-SOC’s modeling flexibility and to evaluate
the impact of Frequent Pattern Compression [48] applied to
On-Device Bus communication, a feature not seen in previous
DNN accelerator work. Later, in Section V, we summarize
other architectural features proposed in the literature that
could be implemented within TFLITE-SOC. Here we consider
changes to the number of PEs, different platform specifications
(e.g. interface bandwidth), and compression/decompression of
input and output data transfers to reduce the time spent during
DRAM-accelerator communication over the On-Device Bus.

Typically, compression techniques exploit common data
patterns to reduce the effective number of bytes stored and/or
transferred. Patterns are regularities in data that can arise from
the intrinsic properties of what is stored in the data or are
generated as a result of specific data transformations. Next,
we describe some well-known sources that lead to predictable
patterns in DNN weights and input activations:

• In order to prevent many output activations from satu-
rating due to using a large single weight value, DNN
training techniques can induce weights to converge to
smaller values. This can result in weights with a limited
dynamic range.

• ReLu operations transform negative numbers into zeros.
• Since the data sent to the accelerator was generated by

an im2col transformation, the final representation requires
repeated values and zero values.

• Many DNN applications present input data with spatial
correlation (e.g., images or text) or temporal correlation
(e.g., sound and video). Regions in these inputs may vary
a little when compared to their neighbours.

Frequent Pattern Compression (FPC) [48] encodes multiple
common data patterns that are observed in scientific appli-
cations. It uses a smaller number of bits that are pattern
dependent to represent the input value. Zero words, repeated
words, and narrow words encoding examples are shown in
Table IV. For instance, for Pattern#1, blocks of 32 zero bits
can be represented by 3 bits of metadata; with Pattern#2, four
repeated words of 8 bits (32 bits total) can be represented by
11 bits (8 bits of data + 3 bits of metadata).

According to Almadeen and Wood [48], FPC can compress
and decompress 16-bit, 32-bit, 512-bit data (depending on the
pattern) with a compression latency of 3 cycles and a decom-
pression latency of 5 cycles. Given this order of magnitude,
FPC may not be ideal when compressing data transfers from
first-level caches, but represents negligible latency when con-
sidering transfers from DRAM which typically take hundreds
of cycles to complete. Therefore, we leverage FPC to optimize
streamed data transfers over the On-Device Bus shown in
Figures 4a and 4b. These transfers occur whenever an input,
filter or output feature map (IFMAP, FFMAP, OFMAP) is
read from or written to DRAM memory. We later evaluate this
optimization by accounting for the impact of FPC compression
and decompression on streamed transactions sent across the
On-Device Bus. During modeling, for simplicity, we focused
on 32-bit windows. This optimization was implemented as an
alternative communication refinement.

C. Experiments
To explore the features available in TFLITE-SOC, we

present two use-case studies that evaluate the accelerator
and the associated system organizations previously described
in Section IV-A. In our simulations, we model technology
parameters based on recent TPU implementations [1], [21] and
the specifications found for low power devices, such as FPGAs
made for small embedded applications [49]. These parameters
are shown in Table V. They are used as simulation config-
urations that dictate timing behaviour of the time-annotated
SystemC modules. For end-to-end evaluation, we consider the
DNN models listed in Table III.

In the following experiments, we modify the accelerator
using the TFLITE-SOC framework in order to identify bottle-
necks during end-to-end DNN execution. The TFLITE-SOC
output also provides the total latency of the DNN layers that
are not executed on the accelerator. This information has been
obtained using the x86 host system described in Section II.



TABLE V: Specifications of DNN accelerators modeled with TFLITE-SOC.

Configuration PER MOB LPW

Topology (Figure 4) Peripheral Embedded Embedded
Host-Device Bus BW 14 GiB/s N/A N/A
On-Device Bus BW 14 GiB/s 14 GiB/s 0.6 GiB/s
FMAP buf. to PE BW 167 GiB/s 167 GiB/s 2 GiB/s
FMAP buf. size (total) 12 MiB 6 MiB 0.5 MiB
DRAM size 8 GiB 1 GiB 0.5 GiB
PE latency 1 Cycle 1 Cycle 1 Cycle
Accelerator frequency 700 MHz 200 MHz 200 MHz
Example device TPU Smartphone FPGA (Low Power)

The systolic array uses PEs that support the same basic
data-type assumed in the DNN model (i.e., FP32 and INT8).
This impacts DRAM/FMAP tiling, chip area and energy con-
sumption. Tiling is modeled accordingly, but area and energy
consumption analysis are not yet supported by TFLITE-SOC.

During the experiments, we explore three different config-
urations which are explained below. The specifications details
are provided in Table V.

• PER - representing a peripheral device similar to a
TPUv1.

• MOB - representing an embedded device that would
be part of a mobile SoC device chipset, such as a
smartphone.

• LPW - representing an embedded device that has pow-
er/frequency limitations, such as an FPGA or small
microcontroller.

Scaling up experiment - We use parameterized SystemC
modules implemented in TFLITE-SOC to change the number
of PEs in the Systolic Array block. We model blocks of
256×256, 128×128 and 64×64 PEs, often used in production
designs. We report on the performance of different system
organizations of Figure 4 and configurations of Table V.
Finally we discuss how scaling-up impacts total latency and
PE utilization.

On-Device Bus trafic with FPC experiment - Here, we
analyze the impact of using FPC compression of DRAM
memory transfers streamed over the On-Device Bus. In this
scenario, our baseline implementation is a systolic array ac-
celerator with 256×256 PEs (similar to TPUv1 [1]) using
an embedded system organization (refer to Figure 4b). The
baseline implementation is compared to an accelerator design
enhanced with an On-Device Bus. We focus on specific
configurations/DNN models that present high DRAM latency,
and so stand to benefit greatly from this optimization.

D. Results

Figures 6 and 7 present stacked bars to break down per-
module latency contributions for end-to-end DNN inference.
The bars are grouped by network model, datatype, and ac-
celerator configuration, with the baseline (256×256 PEs) on
the left of each group of bars. Note that the absolute runtime
contributions of the “Other (x86)” segments are the same for
the same DNN model/Datatype, but different across different
DNN models/Datatypes combinations.

In Figures 6 and 7 we can see how the per-module latency
is affected by the PE array size/configuration and modeled
enhancements. The average PE array utilization (percent of
active PEs) is also shown on the y-axis (e.g., the PE utilization
of the simulated baseline for the configuration M1-FP32-LPW
is 8%) and end-to-end latency is annotated on top of each
bar. All of the metrics in these figures are generated by
TFLITE-SOC. These figures showcase the wealth of informa-
tion generated by our framework. After simulation completes,
similar information is generated on a per-layer basis. In the
discussion below, we attempt to highlight insights derived from
the observed trends.

We first analyze the scale-up results in Figure 6. They show
that when we use larger systolic arrays (approaching the base-
line size) the average PE array utilization always decreases.
This behaviour has been documented in prior studies [20],
[24] and occurs due to difficulties when mapping GEMM
operations with irregular shapes. Input matrices fall into this
category, when they have a dimension smaller than the width
of the PE array. This is common in the first convolutional
layers of a DNN because of the small dimensions of the
IFMAPs (or FFMAPs). Increasing the size of the systolic array
increases the number of idle PEs during these stages of DNN
execution. However, this is not the case for the entire run as
input dimensions increase beyond PE array dimensions after
the first (10%-25%) convolutional layers.

Even though utilization is lower for the baseline configura-
tion, (B) 256×256 PEs, it always achieves the lowest latency
thanks to higher compute throughput. However, at ~1.6×
better PE utilization on average, a 128×128 array presents
as a great candidate for a scaled-out (multiple PE arrays)
accelerator design. Supporting scale-out experiments will be
integrated in TFLITE-SOC in a future release. All of these
example accelerator configurations are available in TFLITE-
SOC to jumpstart future design exploration.

Next, we discuss the effects of the FPC compression feature
applied to configurations that presented high DRAM R/W
latency. The benefits of this technique are shown in Figure 7.
First, we observe that the largest performance gains happen
on the LPW configuration executing floating-point models.
While we can achieve a speedup of up to 1.19× on DNN
inference, LPW is a configuration more commonly used for
quantized models. In more common use cases, such as the
MOB configuration executing a floating-point model, or the
LWP configuration executing quantized models, the end-to-
end latency speedup is smaller and ranges from 1.02-1.05×.
However, not all layers are executed on the accelerator and
will be computed by the CPU. The latency associated with
CPU layers is represented by the “Other (x86)” segment. If we
ignore this latency, we observe a peak speedup of 1.26× with
the MOB configuration running ResNet101. In ResNet101, if
we compare our mobile configuration execution (R101-FP32-
MOB) to the Pixel3 execution, we observe a speedup of 25×.

This speedup is achieved thanks to a significant reduction of
On-Device Bus traffic. Reducing memory traffic also helps to
increase PE utilization across different model configurations.



Fig. 6: Scale-up results and breakdown of inference time spent in each accelerator module during DNN execution. The line plots show the average PE
utilization. The end-to-end latency in ms is provided atop each bar. M1: MobileNetV1, M2: MobileNetV2, R101: ResNet101, FP32: Floating-point model,
INT8: Quantized model, PER: peripheral configuration, MOB: mobile configuration, LPW: low power configuration, (B): baseline to which other bars are
normalized, ∗: CPU latencies as reported in Table III.

Upon deeper investigation, we observed that this increase is
more evident for accelerator calls operating on large IFMAP
and FFMAP inputs, which were previously staling because
needed tiles were not readily available in their respective on-
device-buffers.

In order to better understand how FPC compression of the
bus data provides performance benefits, Figure 8 shows a
comparison between using uncompressed data (our baseline)
versus compressed data. Each bar plots the sum of each
individual feature map’s size required by the DNN compu-
tations in the accelerator. Values are normalized to the size
of the uncompressed data, with the effective size shown in
GB above each bar. The presented patterns were described
in Table IV. We observe that in floating-point DNN models,
the most frequent pattern is zero words (Pattern 1) which
can be significantly compressed, resulting in a 30% savings
in terms of communication traffic during inference. The 8-
bit quantized DNNs use feature maps with more complex
patterns, including sign extensions (Patterns 4, 5 and 7) and

Fig. 7: FPC enhancement results and breakdown of inference time spent
in each accelerator module during DNN execution. All experiments use a
256×256 systolic array in the embedded system organization. The line plots
show the average PE utilization. The end-to-end latency is shown atop each
bar.

zero padding (Pattern 6). The effective savings for the quan-
tized networks is around 10%. The presence of dynamically
changing patterns in each network highlights the importance
of a dynamic compression scheme such as FPC. However, our
analysis shows that accelerators specialized to run DNNs with
floating-point values should focus primarily on zero words
pattern (i.e., 32 consecutive zero bits).

Figure 8 shows the aggregated contributions, but does not
show the contributions of individual feature maps across
different kernel calls. Looking deeper into this question, we
observed that the most prevalent pattern types remain consis-
tent over the same DNN model/data type combinations, but
exhibit some variation in pattern frequencies across different
layers. Because the benchmarking tool uses a random input to
feed the DNNs, most of the observed patterns are present in the
weights (FFMAP) and outputs (OFMAP). We believe that this
is the worst case scenario, i.e. inputs that are not random would
present more compressible patterns in the IFMAPs, possibly
providing even higher speedups with our technique.

Fig. 8: Size of the uncompressed and compressed feature maps for each
individual DNN model. Note that the y-axis begins at 50%. Values atop of
each bar indicate the total data size represented by the bar in MB.



V. RELATED WORK

Recent work has explored enhancements to systolic array
accelerators. Chen et al. [18] proposed a network of PEs to per-
form spatial tiling of input data, across all dimensions, to better
utilize the accelerators when executing convolutional kernels.
Parashar et al. [13] describe a data flow that maintains sparse
weights and activations using a sparse encoding, eliminating
unnecessary data transfers, and reducing storage requirements.
Kung et al. [15] improve sparse convolutional neural networks
by combining sparse columns of a convolutional filter into
a dense column, effectively improving utilization efficiency.
Other studies [50], [51] explore optimizing the mapping and
scheduling of computations, either statically or dynamically.
These features can be implemented in our baseline accelerator
by modifying the control logic and module interconnections.

In the field of DNN accelerator frameworks, Xi et al. [25]
proposed SMAUG, the first DNN framework for end-to-
end DNN model simulation based on gem5-Aladdin, a SoC
pre-RTL simulator. SMAUG consists of a custom Python
API that describes the DNN model and includes a complete
software stack that finds optimized tiling strategies to best
utilize the modeled accelerator in gem5-Aladdin. Instead of
using a custom DNN framework, TFLITE-SOC integrates with
Tensorflow Lite, which already has wide deployment and will
be supported for the foreseeable future. SCALE-SIM is a
Python-based cycle-accurate and configurable systolic array
accelerator simulator proposed by Samajdar et al. [24]. They
use SCALE-SIM to provide analytical modeling to estimate
the runtime of individual DNN operations on a systolic
array. This information is used to determine the best size,
aspect ratio, and number of partitions to achieve the best
performance for a given operation. STONNE [23] is also
a cycle-accurate simulation framework written in C++ that
enables end-to-end evaluation of accelerator architectures. It
provides a path to build DNN accelerators based on gen-
eral building blocks that feature flexibility. STONNE is the
first simulator framework integrated with a commercial DNN
framework (Caffe). Unfortunately, SCALE-SIM and STONNE
only target simulation. Future accelerator synthesis would
require translation or re-implementation of the architecture
with a language that enables high-level-synthesis, such as
SystemC, or with hardware description languages, such as
Verilog, SystemVerilog or VHDL.

MAESTRO [26] is an analytical model that describes the
behavior of DNN accelerators. It can estimate execution time,
energy efficiency, and hardware costs of a design without
requiring explicit RTL/cycle-level simulation. Unlike other
frameworks that are based on compute-centric notations,
MAESTRO uses data-centric notation to represent dataflows.
Similar to MAESTRO, Timeloop [51] uses a data-centric
model and can aid in the search for optimal dataflow configu-
rations in accelerators with different architectures. We believe
that MAESTRO or Timeloop, which only provide analytical
models, could be used along with TFLITE-SOC for the first
step of the design space exploration.

VI. CONCLUSION

In this paper we present the design and use-cases for
TFLITE-SOC. TFLITE-SOC is fully integrated in TensorFlow
Lite, an industry-leading ML framework, enabling end-to-end
DNN inference evaluation of new accelerators. Under the hood
our framework uses SystemC to provide hierarchical modeling,
simulation capabilities and rapid design prototyping. Testing
out new architectural features can be done with minimal effort
given TFLITE-SOC’s incremental design refinement model.
We support the simulation of a TPU-like systolic array acceler-
ator with different PE array dimensions, system organizations
(peripheral and embedded) and platform configurations (high
performance, low power, and custom specification). To demon-
strate TFLITE-SOC’s utility and flexibility, we investigate our
accelerator’s design space, identifying bottlenecks and sug-
gesting improvements. In a case study, we implemented and
evaluated an optimization focusing on reducing the increased
latency associated with streamed memory transfers. In future
work we plan to improve TFLITE-SOC by providing energy
estimation reports using Accelergy [52], the capability of
performing scale-out studies, enabling a streamlined path for
design synthesis, and implementing baselines for new DNN
accelerator architectures.

REFERENCES

[1] N. P. Jouppi et al., “In-Datacenter Performance Analysis of a Tensor
Processing Unit,” in Proceedings of the 44th Annual International
Symposium on Computer Architecture - ISCA ’17, 2017, pp. 1–12.

[2] NVIDIA Corporation, “Nvidia Tesla V100 GPU Architecture,” White
Paper, no. v1.1, p. 53, 2017.

[3] S. Murray, W. Floyd-Jones, Y. Qi, G. Konidaris, and D. J. Sorin, “The
microarchitecture of a real-time robot motion planning accelerator,” in
2016 49th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), 2016, pp. 1–12.

[4] J. D. Davis, Z. Tan, F. Yu, and L. Zhang, “A practical reconfigurable
hardware accelerator for Boolean satisfiability solvers,” Design Automa-
tion Conference (DAC), p. 780, 2008.

[5] Y. Turakhia, G. Bejerano, and W. J. Dally, “Darwin: A Genomics Co-
processor Provides up to 15,000× acceleration on long read assembly
Yatish,” Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS), vol. 5, no. 3, pp. 226–233, 2018.

[6] S. Mookherjee, L. Debrunner, and V. Debrunner, “A low power radix-2
FFT accelerator for FPGA,” Conference Record - Asilomar Conference
on Signals, Systems and Computers, pp. 447–451, 2016.

[7] D. Schor, “Inside Tesla’s Neural Processor In The FSD Chip,” 2019.
[8] Qualcomm, “SNPE: Snapdragon Neural Processing Engine,” 2016.
[9] M. Abadi et al., “TensorFlow: A System for Large-Scale Machine

Learning,” USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2016.

[10] Facebook, “PyTorch: tensors and dynamic neural networks in Python
with strong GPU acceleration,” 2017.

[11] Xiaomi, “MACE is a deep learning inference framework optimized for
mobile heterogeneous computing platforms,” 2019.

[12] P. Mattson et al., “MLPerf: An industry standard benchmark suite for
machine learning performance,” IEEE Micro, vol. 40, no. 2, pp. 8–16,
2020.

[13] A. Parashar et al., “SCNN: An Accelerator for Compressed-sparse
Convolutional Neural Networks,” IEEE International Symposium on
Computer Architecture (ISCA), may 2017.

[14] S. Pal et al., “OuterSPACE: An Outer Product Based Sparse Matrix
Multiplication Accelerator,” in 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA), 2018, pp. 724–736.



[15] H. T. Kung, B. McDanel, and S. Q. Zhang, “Packing Sparse Convo-
lutional Neural Networks for Efficient Systolic Array Implementations:
Column Combining under Joint Optimization,” International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pp. 821–834, 2019.

[16] N. K. Jha, S. Ravishankar, S. Mittal, A. Kaushik, D. Mandal, and
M. Chandra, “DRACO : Co-Optimizing Hardware Utilization , and
Performance of DNNs on Systolic Accelerator,” IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), 2020.

[17] H. Kwon, A. Samajdar, and T. Krishna, “MAERI: Enabling Flexible
Dataflow Mapping over DNN Accelerators via Reconfigurable Intercon-
nects,” Architectural Support for Programming Languages (ASPLOS),
vol. 53, no. 2, pp. 461–475, 2018.

[18] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A Flexible
Accelerator for Emerging Deep Neural Networks on Mobile Devices,”
IEEE JOURNAL OF SOLID-STATE CIRCUITS, jul 2018.

[19] E. Qin et al., “SIGMA: A Sparse and Irregular GEMM Accelerator
with Flexible Interconnects for DNN Training,” IEEE International
Symposium on High-Performance Computer Architecture (HPCA), pp.
58–70, 2020.

[20] N. P. Jouppi et al., “A domain-specific supercomputer for training deep
neural networks,” Communications of the ACM, vol. 63, no. 7, pp. 67–
78, 2020.

[21] CORAL-AI, “CORAL System-on-Module datasheet,” 2019.
[22] S. Han et al., “EIE: Efficient Inference Engine on Compressed Deep

Neural Network,” ACM SIGARCH Computer Architecture News, 2016.
[23] F. Munoz-Martınez, M. E. Acacio, J. L. Abellán, and T. Krishna,

“STONNE : A Detailed Architectural Simulator for Flexible Neural
Network Accelerators,” ArXiv, pp. 1–8, 2020.

[24] A. Samajdar, J. Moritz, J. Yuhao, Z. Paul, W. Matthew, and M. Tushar,
“A Systematic Methodology for Characterizing Scalability of DNN
Accelerators using SCALE-Sim,” IEEE International Symposium on
Performance Analysis of Systems and Software, 2020.

[25] S. L. Xi, Y. Yao, K. Bhardwaj, P. Whatmough, G.-Y. Wei, and D. Brooks,
“SMAUG: End-to-End Full-Stack Simulation Infrastructure for Deep
Learning Workloads,” ArXiv, pp. 1–14, 2019.

[26] H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar, V. Sarkar, and T. Kr-
ishna, “Understanding Reuse, Performance, and Hardware Cost of DNN
Dataflows: A Data-Centric Approach Using MAESTRO,” Proceedings
of the Annual International Symposium on Microarchitecture, MICRO,
pp. 754–768, 2019.

[27] J. Turner, J. Cano, V. Radu, E. J. Crowley, M. O’Boyle, and A. Storkey,
“Characterising across-stack optimisations for deep convolutional neural
networks,” in 2018 IEEE International Symposium on Workload Char-
acterization (IISWC), September 2018, pp. 101–110.

[28] X. Wang, Y. Han, V. C. Leung, D. Niyato, X. Yan, and X. Chen, “Con-
vergence of Edge Computing and Deep Learning: A Comprehensive
Survey,” IEEE Communications Surveys & Tutorials, pp. 1–1, 2020.

[29] J. Aynsley, “OSCI TLM-2.0 language reference manual,” Open SystemC
Initiative (OSCI), Tech. Rep, no. July, p. 194, 2009.

[30] Google, “Deploy machine learning models on mobile and IoT devices,”
2018.

[31] K. LeViet, “How TensorFlow Lite helps you from prototype to product,”
2020.

[32] Bazel, “Build and test software of any size, quickly and reliably,” 2020.
[33] Google, “TFLite Hosted models - Image Classification,” 2020.
[34] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual

networks,” European conference on computer vision, pp. 630–645, 2016.
[35] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural

Networks for Mobile Vision Applications,” ArXiv, 2017.
[36] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,

“MobileNetV2: Inverted Residuals and Linear Bottlenecks,” IEEE Con-
ference on Computer Vision and Pattern Recognition, jan 2018.

[37] Google, “gemmlowp: a small self-contained low-precision GEMM li-
brary,” 2018.

[38] NVIDIA, “NVIDIA cuDNN,” 2017.
[39] L. Cavigelli, M. Magno, and L. Benini, “Accelerating real-time embed-

ded scene labeling with convolutional networks,” Proceedings - Design
Automation Conference, vol. 2015-July, 2015.

[40] Z. Ji, “ILP-M Conv: Optimize Convolution Algorithm for Single-Image
Convolution Neural Network Inference on Mobile GPUs,” ArXiv, 2019.

[41] A. Anderson, A. Vasudevan, C. Keane, and D. Gregg, “Low-memory
GEMM-based convolution algorithms for deep neural networks,” ArXiv,
2017.

[42] G. Guennebaud, B. Jacob et al., “Eigen v3,” http://eigen.tuxfamily.org,
2010.

[43] IEEE, “IEEE Standard for Standard SystemC Language Reference
Manual,” IEEE Std 1666-2011, vol. 2002, no. March, pp. 1–638, 2012.

[44] Y. Sun et al., “MGPUSim: enabling multi-GPU performance modeling
and optimization,” in Proceedings of the 46th International Symposium
on Computer Architecture, 2019, pp. 197–209.

[45] R. Dömer and D. D. Gajski, “Comparison of the Scenic Design
Environment and the SpecC System,” 1998.

[46] V. Sze, S. Member, Y.-H. Chen, S. Member, T.-J. Yang, and J. Emer,
“Efficient Processing of Deep Neural Networks: A Tutorial and Survey,”
Tech. Rep., 2017.

[47] M. K. Tavana, Y. Sun, N. Bohm Agostini, and D. Kaeli, “Exploiting
adaptive data compression to improve performance and energy-efficiency
of compute workloads in multi-GPU systems,” Proceedings - 2019 IEEE
33rd International Parallel and Distributed Processing Symposium,
IPDPS 2019, no. February, pp. 664–674, 2019.

[48] A. R. Alameldeen and D. A. Wood, “Frequent pattern compression:
A significance-based compression scheme for l2 caches,” Dept. Comp.
Scie., Univ. Wisconsin-Madison, Tech. Rep, vol. 1500, 2004.

[49] Xilinx Inc., “Zynq-7000 SoC Data Sheet,” vol. 190, pp. 1–21, 2018.
[50] B. Liu et al., “Addressing the issue of processing element under-

utilization in general-purpose systolic deep learning accelerators,” Pro-
ceedings of the Asia and South Pacific Design Automation Conference,
ASP-DAC, pp. 733–738, 2019.

[51] A. Parashar et al., “Timeloop: A Systematic Approach to DNN Accel-
erator Evaluation,” Proceedings - 2019 IEEE International Symposium
on Performance Analysis of Systems and Software, ISPASS 2019, pp.
304–315, 2019.

[52] Y. N. Wu, J. S. Emer, and V. Sze, “Accelergy: An architecture-level
energy estimation methodology for accelerator designs,” IEEE/ACM In-
ternational Conference on Computer-Aided Design, Digest of Technical
Papers, ICCAD, vol. 2019 Novem, 2019.


