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Abstract
Image recognition tasks typically use deep learning and require enormous process-
ing power, thus relying on hardware accelerators like GPUs and TPUs for fast,
timely processing. Failure in real-time image recognition tasks can occur due to
incorrect mapping on hardware accelerators, which may lead to timing uncertainty
and incorrect behavior. In addition, the increasing demand for optimal performance
has led to progress towards the optimization of different neural network operations,
such as operator fusion. Owing to the increased use of image recognition tasks
in safety-critical applications like autonomous driving and medical imaging, it is
imperative to assess the performance and impact of such optimizations, and explore
their effectiveness.
In this paper we conduct robustness analysis of four popular image recognition mod-
els with the ImageNet dataset, assessing the impact of the compiler optimizations
applied, utilizing different Deep Learning frameworks and executing on hardware
devices of varying capabilities. Our results indicate output label discrepancies of up
to 37% across deep learning framework conversions, and up to 81.8% unexpected
performance degradation upon application of compiler optimizations.

1 Introduction
Much of the existing literature for assessing robustness and safety of image recognition has focused
on testing the Deep Neural Network (DNN) structure and addressing bias in the training dataset
through adversarial testing and data augmentation [35, 28, 12]. Existing techniques failed to consider
safety violations caused by interactions of the DNN with the underlying computational environment:
both software and hardware. This can include the Deep Learning (DL) frameworks (e.g., TensorFlow,
PyTorch, etc), compiler optimizations for device code generation (e.g., operator fusion, loop unrolling,
etc), and the hardware platforms they run on (e.g., CPUs, GPUs, etc).

In this paper, we conduct an empirical study to evaluate the robustness of image recognition models
in the presence of changes in specific aspects of the computational environment. We consider
the following two parameters in the computational environment: (1) Conversions between DL
frameworks, i.e. transforming a model defined in one DL framework to the model format of another
framework; (2) Compiler optimizations, considering different levels of optimizations when generating
device code. We utilize a range of GPU accelerator devices for that purpose. We assess the robustness
of four widely used image recognition models with respect to the output label classification and
inference time when changing each of the two environment parameters. In total, we observe up to
37% discrepancies across DL framework conversions, and up to 81.8% unexpected performance
degradation when utilizing compiler optimizations.
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Figure 1: Deep learning systems stack showing layers in the computational environment.

2 Related Work
Existing work on DNN reliability has primarily focused on the robustness of the dataset and model
architecture layers (first two layers) of the deep learning systems stack (Figure 1), but also in the
effect of using different DL frameworks (third layer) for training and executing DNNs. Works like
DeepHunter [33], DeepTest [28], DeepRoad [35], and DeepBillboard [37] focus on adversarial testing,
while DeepXPlore [20] applies whitebox testing. For a more comprehensive overview of adversarial
examples for images, we refer the readers to a survey [26]. In addition, there have been explorations
of fault detection in the level of DL frameworks, such as CRADLE [21] and LEMON [31]. Several
works have also explored benchmarking DL Frameworks with respect to model accuracy and training
time [25, 17, 18, 32].

We consider conversions between DL frameworks as a parameter which has not been adequately
explored in existing work. We believe this is relevant, as the rise of DL frameworks such as TFLite
and TensorRT have shown that the developer community is looking at deployment specific DL
frameworks, which may be different from more training focused frameworks such as TensorFlow
and PyTorch. Thus, studying the impact of conversion between frameworks reflects a real risk that
application developers may face.

In addition, an existing study [24] analyzes already discovered bugs, introduced by different deep
learning compilers and uses them as the base to propose new mutation operators, supporting that
optimization code logic is accounted for 9% of the bugs introduced by compilers. We also examine
the effect of changing compiler optimizations within a specific deep learning compiler (Apache
TVM [5]) on model performance. However, we do not focus on bugs already detected; our aim is to
comprehensively explore the effects of these optimizations under realistic conditions, by executing
models under different optimization settings utilizing a challenging dataset.

3 Experiments
We consider four different DNN (image recognition) models: MobileNetV2 [23],
ResNet101V2 [13] [14], DenseNet121 [15], and InceptionV3 [27]. We use models pre-
trained on ImageNet [11], using official model definitions and weights sourced from 4 different
Deep Learning framework repositories : Keras [9], PyTorch [19], TensorFlow [3], and TFLite [3].
Each model is evaluated in the Apache TVM compiler framework (v0.8.0), imported via ONNX [2]
(a format utilized for machine learning model representation) with all possible combinations of
values for each of the following environment parameters.

DL Framework Conversions: We consider TensorFlow and PyTorch as sources for our models and
we convert each of these models to TFLite.
Compiler Optimizations: We explored the impact of different levels of TVM graph-level compiler
optimizations: basic, default, and extended variants. Basic (o0) applies only “inference simplifica-
tion”, which generates simplified expressions with the same semantic equivalence as the original
DNN. Default (o2) applies all optimizations of o0, as well as operator fusion for operations such as
ReLU activation functions, constant and scale axis folding. Extended optimization (o4) applies all
optimizations from Default, as well as additional ones such as eliminating common subexpressions,
applying canonicalization of operations, combining parallel convolutions, dense matrix and batch
matrix multiplication operations, and enabling “fast math” (which allows the compiler to break strict
IEEE standard compliance for float operations if it could improve performance). We examine all
models sourced from the 4 different DL frameworks .
Devices: We used four different hardware devices, featuring high-end to low-end GPU accelerators:
an Intel-based server featuring an Nvidia Tesla K40c (GK11BGL) GPU (Server), a Nvidia AGX
Xavier featuring an Nvidia Volta GPU (Xavier), a Laptop featuring an Intel(R) GEN9 HD Graphics

2



NEO (Local) and a mobile-class Hikey 970 board featuring an Arm Mali-G72 GPU (Hikey). For the
Xavier device we use TVM to generate CUDA code, while for the rest we utilize OpenCL code.

In total, we evaluate 96 model variants, as a combination of 4 models, 2 DL framework conversions,
4 devices, and 3 optimization levels. We discuss the challenges faced in compiling and executing
certain configurations in Section 3.3.

3.1 Dataset
We use the ImageNet object detection test dataset [22] in our experiments, consisting of 5500 RGB

images of 224× 224 pixels, performing classification of 1000 possible labels and measure inference
time on each image.

3.2 Robustness Measurements
Our experiments are aimed at evaluating: (1) Robustness of Model Output, by recording the top-
ranked output label for every combination of environment parameters and performing pairwise
comparisons; and (2) Robustness of Model Execution Time, by measuring average inference times
across executions in our dataset and comparing across different configurations. We perform pairwise
comparison of configurations for each image in the dataset.

3.3 Execution Issues
All environment parameter combinations could not be executed with all models due to the following
incompatibility issues. First, TF and TFLite versions of the DenseNet121 model resulted in incorrect
output labels for most images. We believe the used model has been deprecated, as it no longer appears
in the list of pre-trained models within the TensorFlow repository2. Second, for ResNet101 sourced
from PyTorch, we selected the V1 version the model instead of V2 as the V2 version was not provided
in the official PyTorch repository. The version difference may have a larger effect on model inference
time when we compare across DL frameworks. Third, Regarding MobileNetV2, we experienced
problems when executing it on the Xavier device, as we received a CUDA_ERROR_INVALID_PTX
error. We do not consider this device configuration for MobileNetV2 in our experiments.

4 Results
4.1 Robustness of Output Label Prediction
Impact of DL Framework Conversions We explore the impact of framework conversion on the
model output by converting models from PyTorch and TF to TFLite, and evaluating the converted
TFLite models in TVM. For TF-to-TFLite, we were able to convert the model directly. However, for
PyTorch-to-TFLite, we had to first convert to ONNX, followed by a conversion to TensorFlow (TF)
and finally to TFLite. We compare output the labels given by the native and converted models for
each image to check if any errors were introduced by model conversion. We also compare labels
of TF-to-TFLite and PyTorch-to-TFLite against the native TFLite model provided by the official
TensorFlow repository.

The results are presented in Figure 2. We observe 37% discrepancy in the output labels when
converting the ResNet101 model from PyTorch to TFLite (Figure 2a bottom row). In addition, we
observe significant dissimilarities when comparing the converted models with the native TFLite
model from TensorFlow repository, with PyTorch to TFLite version of MobileNetV2 exhibiting the
largest discrepancy (57% as seen in Figure 2b). Each DL framework implements crucial operations
and functionality (such as convolution and batch normalization) differently from the other frameworks
and this can cause dissimilarities. In addition, intermediate formats used in conversions (such as
ONNX) can give rise to small differences owing to a change in graph representation and supported
operations in these formats. There are also considerable differences in the implementation of parallel
operations due to the utilization of hardware acceleration libraries (such as CUDA and OpenCL).

Varying Compiler Optimizations We conducted experiments across all framework and device
combinations described in section 3. On each experiment setup, we kept a framework and a device
constant, while we varied the optimization level within the TVM framework between Basic, Default,
and Extended.

We found that varying compiler optimization levels causes no discrepancies in output labels for all
four models. The lack of discrepancies/sensitivity is notable, since the Extended (-o4) level enables

2https://github.com/tensorflow/models/tree/master/research/slim#
pre-trained-models
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(a) Comparison with base DL framework model. (b) Comparison with official TFLite model.

Figure 2: Pairwise comparison of output label dissimilarities

unsafe math optimizations that allow code violating IEEE float conventions to be generated. The
conclusion is that these potential unsafe perturbations were small enough that all four models were
resilient to them. It is however worth considering robustness checks with respect to optimization
levels in safety-critical domains, in case unsafe optimizations result in undesirable model outputs.

4.2 Robustness of Model Inference Time
We conducted a pairwise comparison of model inference times for each image in the dataset across
two configurations. We varied frameworks through conversion and compiler optimizations in the
configurations.

Varying DL Framework Conversions Between TF and the converted TF-to-TFLite models,
we observed up to 15% difference in inference times using the InceptionV3 model, Extended
optimization, Hikey device, with the TFLite model being faster. Similarly, we observed up to 10%
difference between PyTorch and the PyTorch-to-TFLite converted model (MobileNetV2 model,
Extended optimization, Hikey device). We also observed a 96% discrepancy for ResNet101, however
we use v1.5 instead of v2 used in TensorFlow or other frameworks utilized, as ResNet101V2 is not
provided by the official PyTorch distribution.

Varying Compiler Optimizations We typically observed a speedup in inference time with in-
creasing optimization levels, with a maximum speedup of 114%. However, there were instances
where increased optimization led to a slowdown in inference time. For instance, on MobileNetV2
with Keras DL framework, Extended optimization was 81.8% slower than Basic. Considering
that Extended optimization applies a variety of strategies, such as constant and scale axis folding,
canonicalization of operations, elimination of subexpressions and combination of parallel operations
related to tensor manipulations, we hypothesize that one or more of these strategies fails to operate as
intended, therefore hindering the performance. Figure 3 shows percentage difference in inference
times for Basic versus Extended optimization on different devices and models with the PyTorch
DL framework. For each device, we find times generally improved with increased optimization, in
the range of 3.8− 8.4% for Server, and 17− 54% for Local. Increased optimizations on Hikey,
however, had a 81% slowdown. The Xavier device also had a 36% slowdown when increasing
optimization level from Basic to Extended on InceptionV3 model.

For low to mid range devices, Xavier and Hikey, that experienced a slowdown with increased
optimization, we believe the limited GPU memory poses a problem for the optimizations with parallel
operations in the Extended optimization setting, leading to additional wait times, context switches
and GPU data transfer time, that result in a slowdown. We will investigate each optimization pass,
cache behavior, data transfer times between CPU–GPU and processor idle times in the future to
confirm our hypothesis.

5 Conclusion
We explored the impact of DL framework conversions (e.g. PyTorch to TFLite and TF to TFLite)
and varying compiler optimization levels on output label classification and inference times on four
common image recognition models. We found that DL framework conversion can result in significant
discrepancies in output labels (up to 37%) and also affects inference times (up to 15%). Changing
compiler optimization levels does not affect classification labels but impacts inference times. Higher
optimization levels typically imply faster inference times but there are outliers with some devices
and models. Based on the significant discrepancies observed in our experiments, we believe it would
be beneficial to benchmark the performance of DNN models for variations in these computational
environment parameters that are currently not rigorously evaluated.
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Figure 3: Execution time differences (%) for between Basic and Extended optimization across devices,
utilizing PyTorch DL framework.

6 Appendix

6.1 Background

Figure 1 gives an overview of the typical layers in the deep learning systems stack [29]. Much
of the existing work has focused on testing and robustness with respect to the top two layers,
Datasets and Models, while DL Frameworks have also been explored to an extent. In this paper,
we consider robustness with respect to the bottom three layers that make up the computational
environment, required for executing a given DL model, that includes the DL framework (focusing on
DL framework conversions), related systems software, and the underlying hardware.

6.2 Deep Learning Frameworks

Deep Learning Frameworks, shown as the third layer in Figure 1, provide utilities such as model
declaration, training and inference to machine learning engineers. For our study, we use four
DL frameworks that are widely used in the community: Keras, PyTorch, TensorFlow (TF), and
TensorFlow Lite (also known as TFLite). We use these frameworks as sources for the image
recognition models, as each has its own native definition for the models, and we consider a subset of
them for our conversion experiments, as well as all of them for our optimization measurements. We
briefly describe each of the four frameworks below.

Keras [9] is a high-level DL framework, providing APIs for effective deep learning usage. Keras
acts as an interface for TensorFlow, and we aim to observe potential overheads and bug introductions
from the extra layer of complexity.

PyTorch [19] is an open source machine learning framework based on the Torch library and developed
by Meta AI team. It supports hardware acceleration for tensor computing operations.

TensorFlow (TF) [3] is an open-source DL framework, developed by Google, and widely used for
training and inference of DNNs.

TensorFlow Lite (TFLite) [3] is a lightweight version of TensorFlow and part of the original
TensorFlow library, providing framework focused only on the inference of neural networks on mobile
and lightweight devices.

6.3 Systems Software: Apache TVM

Apache TVM [5] is an end-to-end machine learning compiler framework for CPUs, GPUs, and
accelerators. It generates optimized code for specific DNN models and hardware backends, allows
us to import DNN models from a range of DL frameworks, and provides profiling utilities such
as per-layer inference times. A simplified representation of Apache TVM can be seen in Figure 4.
TVM’s support of several DL frameworks, optimization settings, and hardware accelerators made it a
suitable choice explore varying different environment parameters in our experiments. TVM provides
direct importers for models from most popular DL frameworks, which load said models as a TVM
computation graph.

The first level of optimization available in TVM is graph-level optimizations, which is the focus
of this study. These optimizations impact the full model and include operator fusion (e.g., batch
normalization, activation functions), elimination of common subexpressions, and potentially unsafe
optimizations such as fast math.

5



Graph-Level
Optimization

Kernel Level
Optimization

Strategy to
Optimize IR

Object Code

Autotuning  
Search  

TVM Model
Importer

External libraries
Source Model

Optional

Figure 4: Overview of DNN compilation in Apache TVM.
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ResNet101 81.9 76.4 77.0 77.0
InceptionV3 77.3 77.9 78.0 78.0
MobileNetV2 72.2 71.3 71.9 71.9
DenseNet121 74.4 75.0 N/A N/A

Table 1: Accuracy of native models on the ImageNet dataset.

TVM also supports optimizations for a given operation type (e.g., convolutional layers, matrix-
multiplications) such as loop tiling, loop re-ordering, unrolling, vectorization, auto-tuning [6], and
auto-scheduling [36], among others.

TVM also supports third-party libraries such as cuDNN [7] and the Arm Compute Library [1].

6.4 The Perception AI Models

A common benchmark for Perception AI models is the ImageNet image object detection test
dataset [22], performing classification for one of a possible 1000 class labels to RGB images of size
224× 224 pixels. For solving Perception AI problems, such as classification and semantic segmenta-
tion, convolutional neural networks (CNNs) are commonly used, which are DNNs characterized by
convolutional layers. Transformer-based architectures [30] have begun to provide competitive results
in the past two years [10, 34], however are still maturing. Thus for our evaluation we explore four
widely used CNN models: MobileNetV2 [23], ResNet101V2 [13], DenseNet121 [15], and Incep-
tionV3 [27]. These models are widely known and extensively used for classification and semantic
segmentation operations, as well as being the “backbone network” for other tasks such as object
detection [8].

All four models have native definitions within the DL frameworks under study.

6.5 Model Selection

We selected the models aforementioned as they are widely used in the deep learning community [16].
The accuracy of the native version of each model is shown in Table 1. We verify that each model in
correctly imported into TVM by comparing the output labels with the source framework.

7 Threats To Validity
There are five threats to validity in our experiments. First, we only evaluate robustness using
four image recognition models that are widely used. Results are model dependent as seen in our
experiments and will likely vary on other models. Second, we use the ImageNet [22] image object
detection test dataset for our experiments, which believe adequately stresses configurations. Other
datasets may yield different robustness results on the models considered. Third, model pre-processing
is crucial for model performance [4]. We use the recommended pre-processing for each model and
DL framework from the official repositories extracted. Fourth, we utilize TVM compiler framework
and importing models into it, which can be an error-prone process. To ensure that errors are not
introduced, for each model we validated the output labels for an indicative number of random image
samples from their source framework against the output label given by the model after importing into
TVM. The final threat is in inference time measurement. To ensure that time deviations are taken into
account, we repeat inferences for each image 10 times and use the average inference time across 10
runs in a small-scale test dataset, verifying that no deviations happen on scaling.
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