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Abstract

Image recognition tasks typically use deep learning and re-
quire enormous processing power, thus relying on hardware
accelerators like GPUs and FPGAs for fast, timely process-
ing. Failure in real-time image recognition tasks can occur
due to incorrect mapping on hardware accelerators, which
may lead to timing uncertainty and incorrect behavior. Ow-
ing to the increased use of image recognition tasks in safety-
critical applications like autonomous driving and medical
imaging, it is imperative to assess their robustness to changes
in the computational environment as parameters like deep
learning frameworks, compiler optimizations for code gen-
eration, and hardware devices are not regulated with varying
impact on model performance and correctness. In this paper
we conduct robustness analysis of four popular image recog-
nition models (MobileNetV2, ResNet101V2, DenseNet121
and InceptionV3) with the ImageNet dataset, assessing the
impact of the following parameters in the model’s computa-
tional environment: (1) deep learning frameworks; (2) com-
piler optimizations; and (3) hardware devices.
We report sensitivity of model performance in terms of output
label and inference time for changes in each of these environ-
ment parameters. We find that output label predictions for all
four models are sensitive to choice of deep learning frame-
work (by up to 57%) and insensitive to other parameters. On
the other hand, model inference time was affected by all envi-
ronment parameters with changes in hardware device having
the most effect. The extent of effect was not uniform across
models.

Introduction
The first step in achieving environmental perception in au-
tonomous vehicles (AV) is to detect objects using object de-
tection algorithms that is central for recognizing and local-
izing objects such as pedestrians, traffic lights/signs, other
vehicles, and barriers in the AV vicinity. Typically object
detection algorithms use Deep Neural Networks (DNNs) for
image recognition and localisation, as they can learn and ex-
tract more complex features.

Much of the existing literature for assessing robustness
and safety of image recognition has focused on testing the
DNN structure and addressing bias in the training dataset
through adversarial testing and data augmentation (Zhang

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

PyTorch PyTorch GPU 1 Cyclist 80ms

PyTorch TensorFlow GPU 1 Cat 75ms

PyTorch PyTorch GPU 2 Cyclist 150ms

True label: Cyclist
Ref. inf. time: 80ms 

TensorFlow TensorFlow GPU 1 Cyclist 85ms

TensorFlow PyTorch GPU 1 Cyclist 90ms

TensorFlow TensorFlow GPU 2 Cyclist 130ms

Framework Model Source Device Classification Inf. time

Figure 1: Example showing how varying factors can impact
the classification accuracy of an image recognition model.

et al. 2018; Tian et al. 2018; Guo et al. 2021). Existing tech-
niques have failed to consider safety violations caused by
interactions of the DNN with the underlying computational
environment: both software and hardware. This can include
the Deep Learning (DL) frameworks (e.g., TensorFlow, Py-
Torch, etc), compiler optimizations for device code genera-
tion (e.g., operator fusion, loop unrolling), and the hardware
accelerators they run on (e.g.GPUs). As an illustrative ex-
ample, consider an image recognition model to classify the
image in Figure 1 with a true label “Cyclist” and reference
inference times of 80ms with PyTorch and 85ms with Ten-
sorFlow. The figure illustrates how changing the DL frame-
work or device (italicized in the table) can impact the output
label and/or model inference time.

In this paper, we conduct an empirical study to evaluate
the robustness of image recognition models in the presence
of changes in the computational environment. We consider
the following parameters in the computational environment:
(1) Source DL framework for the DNN model; (2) Compiler
optimizations; and finally (3) GPU accelerator devices. We
assess the robustness of four widely used image recognition
models with respect to the output label and inference time
when changing each of these environment parameters. It is
important to check changes in the output label, as it directly
affects model correctness. On the other hand, inference time
is an important consideration for timing safety in real-time
perception systems within applications like self-driving cars
where there is a performance requirement for object detec-
tion models to return results within a fixed time (Dreossi
et al. 2019).

Overall, we find that varying DL frameworks significantly
impacts output label and inference time of the model. Vary-
ing hardware accelerators and compiler optimization do not
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affect model output but have a significant effect on inference
time. In summary, we make the following contributions:
1. Assess robustness of image recognition model outputs

with respect to changes in the computational environ-
ment: DL frameworks, compiler optimizations, and hard-
ware accelerators;

2. Assess robustness of model inference time with respect
to changes in the computational environment: DL frame-
works, compiler optimizations, and hardware accelera-
tors;

Background
Figure 2 gives an overview of the typical layers in the deep
learning systems stack (Turner et al. 2018). Much of the ex-
isting work has focused on testing and robustness with re-
spect to the top two layers, Datasets and Models. In this pa-
per, we consider robustness with respect to the bottom three
layers that make up the computational environment required
for executing a given DL model, that includes the deep learn-
ing framework, related systems software, and the underly-
ing hardware. We describe the relevant parts of the compu-
tational environment in the sections below. In addition, we
provide a brief overview of image recognition models that is
the focus of this study.

Deep Learning Frameworks
Deep Learning Frameworks, shown as the third layer in Fig-
ure 2, provide utilities such as model declaration, training
and inference to machine learning engineers. For our study,
we use four DL frameworks that are widely used in the com-
munity: Keras, PyTorch, TensorFlow (TF), and TensorFlow
Lite (also known as TFLite). We use these frameworks as
sources for the image recognition models, as each has its
own native definition for the models. We briefly describe
each of the four frameworks below.

Keras (Chollet et al. 2015) is a high-level DL framework,
providing APIs for effective deep learning usage. Keras acts
as an interface for TensorFlow, and we aim to observe po-
tential overheads and bug introductions from the extra layer
of complexity.

PyTorch (Paszke et al. 2019) is an open source machine
learning framework based on the Torch library and devel-
oped by Meta AI team. It supports hardware acceleration for
tensor computing operations.

TensorFlow (TF) (Abadi et al. 2015) is an open-source
DL framework, developed by Google, and widely used for
training and inference of DNNs.

TensorFlow Lite (TFLite) (Abadi et al. 2015) is a
lightweight version of TensorFlow and part of the original
TensorFlow library, providing framework focused only on
the inference of neural networks on mobile and lightweight
devices.

Framework Conversion Conversion of models between
DL frameworks can be a complex task, and thus many
frameworks redefine common DNN architectures natively,
and often training said model from scratch. We refer to such
models as a “native model”, and models that have been con-
verted to another DL framework as a “converted model”.

Figure 2: Relevant layers in the deep learning systems stack.

Systems such as ONNX (onn 2022) and MMdnn (Liu et al.
2020) attempt to provide common intermediate formats for
translation between DL frameworks, however these pro-
cesses can still be error prone, and have issues around sup-
port for bespoke operators. Note that the DL framework used
to design and train a model may not be the same as that used
to deploy the model. Hence, it is worth exploring potential
errors that may be introduced during framework translation.
We only consider two framework translations in our experi-
ments: (1) TF to TFLite; and (2) PyTorch to TFLite. This is
because TFLite is a deployment-only framework and thus is
more likely to be the final software environment that devel-
opers convert their models to.

We will explore other framework conversions in our fu-
ture work.

Systems Software: Apache TVM

Apache TVM (Chen et al. 2018a) is an end-to-end machine
learning compiler framework for CPUs, GPUs, and accel-
erators. It generates optimized code for specific DNN mod-
els and hardware backends, allows us to import DNN mod-
els from a range of DL frameworks, and provides profil-
ing utilities such as per-layer inference times. A simplified
representation of Apache TVM can be seen in Figure 3.
TVM’s support of several DL frameworks, optimization set-
tings, and hardware accelerators made it a suitable choice
explore varying different environment parameters in our ex-
periments. TVM provides direct importers for models from
most popular DL frameworks, which load said models as a
TVM computation graph.

The first level of optimization available in TVM is graph-
level optimizations, which is the focus of this study. These
optimizations impact the full model and include operator fu-
sion (e.g., batch normalization, activation functions), elim-
ination of common subexpressions, and potentially unsafe
optimizations such as fast math.

TVM also supports optimizations for a given operation
type (e.g., convolutional layers, matrix-multiplications) such
as loop tiling, loop re-ordering, unrolling, vectorization,
auto-tuning (Chen et al. 2018b), and auto-scheduling (Zheng
et al. 2020), among others.

TVM also supports third-party libraries such as
cuDNN (Chetlur et al. 2014) and the Arm Compute
Library (Com 2022).
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Figure 3: Overview of DNN compilation in Apache TVM.

The Perception AI Models
A common benchmark for Perception AI models is the
ImageNet image classification dataset (Russakovsky et al.
2015), which requires assigning one of a possible 1000
class labels to RGB images of size 224 × 224 pixels.
For solving Perception AI problems, such as classification
and semantic segmentation, convolutional neural networks
(CNNs) are commonly used, which are DNNs character-
ized by convolutional layers. Transformers-based architec-
tures (Vaswani et al. 2017) have begun to provide compet-
itive results in the past two years (Dai et al. 2021; Zhai
et al. 2022), however are still maturing. Thus for our eval-
uation we explore four widely used CNN models: Mo-
bileNetV2 (Sandler et al. 2018), ResNet101V2 (He et al.
2015), DenseNet121 (Huang, Liu, and Weinberger 2016),
and InceptionV3 (Szegedy et al. 2015). These models are
widely known and extensively used for classification and se-
mantic segmentation operations, as well as being the “back-
bone network” for other tasks such as object detection (Chiu
et al. 2020).

All four models have native definitions within the DL
frameworks under study.

Related Work
Existing work has primarily focused on robustness of the
dataset and model architecture layers (top two layers),
shown in Figure 2. DeepXPlore (Pei et al. 2017) applies
whitebox testing, by measuring neuron coverage, identify-
ing similar DNNs for cross-reference and generating ad-
versarial inputs to detect faults. This work has been ex-
tended by DLFuzz that attempts to minutely mutate in-
puts to improve neuron coverage (Guo et al. 2021). Dee-
pHunter (Xie et al. 2019) applies fuzzing (i.e., generation
of random, invalid and unexpected inputs) to DNNs, aim-
ing to maximize coverage of the system and potentially dis-
cover faults. DeepTest (Tian et al. 2018), a tool that modifies
images using linear & affine transformations, generates in-
puts simulating different weather conditions and real-world
phenomena to test the robustness and validity of DNNs to
changing weather conditions in autonomous driving. Deep-
Road (Zhang et al. 2018) uses GAN-based metamorphic
testing to generate inputs that simulate extreme weather con-
ditions, such as heavy rain and snow. DeepBillboard (Zhou
et al. 2020) explores the potential of physical world adver-
sarial testing utilizing Billboard inputs. For a more compre-
hensive overview of adverarial examples for images, we re-
fer the readers to a survey (Shorten and Khoshgoftaar 2019).

Robustness with respect to layers in the computational en-
vironment, seen in Figure 2, has received little attention.

With respect to the DL Frameworks layer, some attempts
have been made to explore the effect of DL frameworks to-
wards model performance. In particular, some benchmark-
ing analysis has been conducted towards training and in-
ference time analysis and performance (Shi et al. 2016;
Liu et al. 2018; Mahmoud et al. 2019). In addition, a sur-
vey (Wu et al. 2022) explores various parameters and their
effect towards model accuracy and execution time. How-
ever, both contributions utilize experiment sets of limited of
model numbers, DL frameworks, input dataset and variety
of hardware acceleration devices, providing useful results
but in a small scale. Our contribution aims to extend this
work against real-world, challenging conditions and scenar-
ios, exploring the effects of a challenging dataset, plus a
wide variety of models and hardware acceleration devices
capabilities, a setup much closer to real-world environments
of safety-critical systems.

In addition, CRADLE (Pham et al. 2019) attempts to de-
tect and localise inconsistencies between models sourced
from different DL frameworks by comparing their outputs
and analysing model execution. LEMON (Wang et al. 2020)
is a framework that generates model mutations to detect
discrepancies in DL frameworks used in Neural Networks.
Both CRADLE and LEMON aim to detect faults in DL
frameworks by comparing it to other frameworks. Impact of
changing DL framework on model performance is not con-
sidered in these paper and that is the focus in our work.

For the systems software layer in Figure 2, a recent
study (Shen et al. 2021) examined bugs introduced by dif-
ferent deep learning compilers. Incorrect optimization code
logic accounted for 9% of the bugs introduced by compil-
ers. Other compiler bugs presented in the study include mis-
configuration, type problem, API misuse, incorrect excep-
tion handling, incompatibility. In our study, we examine the
effect of changing compiler optimisations on model perfor-
mance. We will examine the effect of other compiler bugs in
our future work.

Finally, for the hardware layer in Figure 2, (Humbatova
et al. 2020) created a taxonomy of faults encountered in
DNNs used in object Detection. The authors surveyed com-
mits, issues and pull requests from 564 GitHub projects and
9,935 posts from Stack Overflow and interviewed 20 re-
searchers and practitioners. The study revealed GPU related
bugs to be one of the five main categories faults in deep
learning tasks like object detection. The study, however, did
not explore the impact of these bugs on model performance.
The other four categories of faults were API, Model, Tensors
and Inputs and Training that relate to the top two layers in
Figure 2. In this paper, we are primarily interested in the ef-
fect of changes in the bottom three layers of the stack that
make up the computational environment on model perfor-
mance, in terms of output and model inference time. This
has not been systematically explored in the literature.

Experiments
We consider four different CNN (image recognition) mod-
els: MobileNetV2, ResNet101V2, DenseNet121, and In-
ceptionV3. Each model is evaluated in the TVM compiler
framework (v0.8.0), imported via ONNX (onn 2022), with



Table 1: Accuracy of native models on the ImageNet dataset.

DNN Model
Framework
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ResNet101 81.9 76.4 77.0 77.0
InceptionV3 77.3 77.9 78.0 78.0
MobileNetV2 72.2 71.3 71.9 71.9
DenseNet121 74.4 75.0 N/A N/A

all possible combinations of values for each of the following
environment parameters:

DL Frameworks: We consider Keras, TF, TFLite, and Py-
Torch as sources for our models. We selected these
frameworks as they are widely used in the deep learning
community (Khan et al. 2019). The accuracy of the na-
tive version of each model is shown in Table 1. We verify
that each model in correctly imported into TVM by com-
paring the output labels with the source framework.

Framework Conversion: We examine the effect of frame-
work conversion on model robustness. In particular, we
convert native models from PyTorch and TF to TFLite
models, and examine labelling differences introduced by
the conversion.

Compiler Optimizations: We explored the impact of dif-
ferent levels of TVM graph-level compiler optimization:
basic, default, and extended variants.
Basic (o0) applies only “inference simplification”,
which generates simplified expressions with the same se-
mantic equivalence as the original DNN.
Default (o2) applies all optimizations of o0, and in ad-
dition fusion of operators such as ReLU activation func-
tions, as well as constant folding.
Extended (o4) applies all optimizations from Default
and a number of additional ones. For example: enabling
“fast math” (which allows the compiler to break strict
IEEE standard compliance for float operations if it could
improve performance), allowing modification of data
layouts, and eliminating subexpressions with multiple
occurrences.

Devices: We used four different hardware devices, fea-
turing GPU accelerators of varying capabilities. More
specifically, we used:

Server: Intel-based server featuring an Nvidia Tesla
K40c (GK11BGL) GPU;

Xavier: Nvidia AGX Xavier featuring an Nvidia Volta
GPU;

Local: Laptop featuring an Intel(R) GEN9 HD Graphics
NEO;

Hikey: Hikey 970 board featuring an Arm Mali-G72
GPU;

Note that Server represents a high-end Nvidia GPU,
Xavier a mid-end Nvidia GPU, Local a low-end Intel
GPU, and Hikey a mobile-class Arm GPU. For the Nvidia
devices we use TVM to generate CUDA code, and for the
Hikey and Intel GPUs we generate OpenCL code.

In total, we evaluate 276 model variants from 4 Models
∗ (4 DL Frameworks + 2 DL Framework Conversions) ∗ 4
Devices ∗ 3 Optimizations − (12 Keras native models)). We
subtract 12 Keras native models, since we were unable to
compile the InceptionV3 model on any device or under any
optimization setting. We discuss challenges faced in com-
piling and executing certain configurations in the Execution
Issues Section .

Dataset We use the ImageNet Large Scale Visual Recog-
nition Challenge 2017 (ILSVRC2017) (Russakovsky et al.
2015) image classification test dataset for our experiments,
consisting of 5500 RGB images, of size 224 × 224 pixels.
The task is to produce an output label classifying the image,
out of 1000 possible labels (all our models were pre-trained
on the ImageNet dataset, see Table 1 for their accuracy).

Robustness Measurements
Our experiments are aimed at evaluating (1) Robustness
of Model Output, and (2) Robustness of Model Execution
Time. We describe these measurements below.

1. Robustness of Model Output For every image input
in the ImageNet (Russakovsky et al. 2015) test dataset, we
record the top-ranked output label for every combination of
environment parameters. We then conduct pairwise compar-
ison of the labels for the same image input while varying
each environment parameter in turn. For instance, over a
single image, we would compare the output label from In-
ceptionV3 from Keras against that of PyTorch while keep-
ing the device and compiler optimization constant. We then
compute total dissimilarity in labels across all images in the
dataset for every pairwise environment parameter variation.

2. Robustness of Model Execution Time We use the term
model execution time to mean model inference time which
is the processing time of the network model without includ-
ing the time to load images and any pre-processing that may
be needed. We record model execution time for every im-
age in the dataset and with every model configuration. We
repeated executions 10 times and recorded average time per
image. We compare execution times for model configura-
tions across all images in the dataset using box plots and
mean execution time.

Execution Issues
All environment parameter combinations could not be exe-
cuted with all models due to the following incompatibility
issues:
1. The DenseNet121 model from TF and TFLite resulted
in incorrect output labels for most images. The output la-
bels remained constant regardless of image, even when run-
ning within TensorFlow itself. Although we sourced the
model from the TensorFlow website, we believe that the
model has been deprecated, and thus does not behave as ex-
pected. This is because it no longer appears in the list of
pre-trained models within the TensoFlow repository1. 2. In-
ceptionV3 sourced from Keras was problematic, in the sense

1https://github.com/tensorflow/models/tree/master/research/
slim#pre-trained-models



that we were unable to succesfully import it into TVM. We
attempted using TVM’s Keras model importer, as well as
importing the model via ONNX, however in both cases the
import failed. We did not experience this issue with any
other version of InceptionV3.
3. For ResNet101 sourced from PyTorch, we selected the
V1 version the model instead of V2 as the V2 version was
not provided in the official PyTorch repository. The version
difference may have a larger effect on model inference time
when we compare across DL frameworks. We therefore ask
the readers to take this into consideration for results involv-
ing ResNet101 sensitivity to DL framework.
4. Regarding MobileNetV2, we experienced problems when
executing it on the Xavier device, as we received a
CUDA ERROR INVALID PTX error. We do not consider
this device configuration for MobileNetV2 in our experi-
ments.

Results
For each image recognition model, we discuss robustness
of (1) output label prediction and (2) model inference time
in the presence of changes in the the DL framework from
which models are sourced, compiler optimizations, and
hardware devices.

Robustness of Model Output (1)
We vary one environment parameter at a time (while fix-
ing the others) – the DL framework, compiler optimization
level, GPU device – and examine their impact on output la-
bel prediction. Table 1 shows the accuracy of native mod-
els on the ImageNet test dataset. To take InceptionV3 as an
example, all frameworks get approximately 78% accuracy,
however this does not mean that thy will be correct for the
same 78%. Thus in the worst case, we would expect two
frameworks would only agree on 56% of labels (i.e., 44%
dissimilarity).

Varying Deep Learning framework We present results
for the four models under study in Figure 4, with the TVM
compiler optimization level set to Default (-o2), and the
hardware acceleration device set to Server.

We then vary the DL frameworks one at a time to com-
pute sensitivity of model output label to that framework. Fig-
ures 4a–4d show that models are acutely sensitive to the DL
framework they are sourced from. Changes in the framework
has a significant impact on output label, with MobileNetV2
exhibiting most discrepancy in output labels, in the range of
49 − 57% for different DL frameworks. We analyse each
model below:
InceptionV3 (Figure 4a) we observe a 33% discrepancy be-

tween PyTorch versus both TF and TFLite. No discrep-
ancies were observed for TF versus TFLite; the same was
true with other models.

MobileNetV2 (Figure 4b) we observe a 49% dissimilarity
between Keras versus the other three frameworks and
a 57% dissimilarity for PyTorch versus TF and TFLite.
We hypothesize that lower complexity and size of Mo-
bileNetV2 makes it less robust to changes in the frame-
work.

ResNet101V2 (Figure 4c) Keras has a 19% dissimilarity
against TF and TFLite. PyTorch resulted in a 40% dis-
similarity against all the other frameworks.

DenseNet121 (Figure 4d) we find a 26% dissimilarity for
PyTorch versus Keras. Owing to the execution issues
with TF/TFLite (discussed in Execution Issues section),
we do not report dissimilarities when changing to these
frameworks.

Overall, TF and TFLite models always produce the same
output, which suggests that the official TFLite models are
successfully converted TF models, and contain the same pa-
rameters. This is further confirmed by their achieving the
same accuracy as seen in Table 1. However, when com-
paring against Keras and PyTorch, we observe significant
differences. The extent of difference varies widely among
the models, with MobileNetV2 being most sensitive to DL
framework changes (see Figures 4b).

Impact of DL Framework Conversion We explore the
impact of framework conversion on model output by con-
verting models from PyTorch and TF to TFLite, and eval-
uating the converted models in TVM. For TF-to-TFLite,
we were able to convert directly, whereas for PyTorch we
had to convert to ONNX, then to TF, then to TFLite. We
then compare the output labels between the native and con-
verted models, i.e. if any errors were introduced by convert-
ing the model. The results are presented in Figure 5. We
observed 37% discrepancies in output label when convert-
ing the ResNet101 model from PyTorch to TFLite, meaning
that, for models converted from TF to TFLite, discrepancies
are fewer and are in the range of 2% (ResNet101) to 10%
(MobileNetV2).

Analysis of Output Label Sensitivity Small changes in
output labels when varying DL frameworks might be ex-
pected, since each framework has a specific implementation
of the model and has been trained independently.

However, the extent of change in output labels (0-57%)
across images in the test dataset observed in all 4 models
when changing DL frameworks is surprising. To gain a bet-
ter insight, for 10 images from the test dataset producing
different labels, we took a closer look at the convolutional
layers within one of the models, DenseNet121, sourced from
different frameworks. We compared layer activation tensors
between the models to identify the layers involved in the la-
bel discrepancy. We use an error threshold for comparing
elements within the tensors.

Figures 6a and 6b show the number of tensor elements
that are different between corresponding layer activations2

in DenseNet121 sourced from Keras, versus PyTorch for two
images that produce different labels on them. We also show
the effect of choosing different error threshold values. We
find for both images with label discrepancies, layers 3 and
11, followed by layers 8, 6, and 10 have the highest number
of differing tensor elements between the DenseNet121 vari-
ants. A similar trend was found in the other 8 images with
discrepancies that we investigated. For the DenseNet121

2We show a subset of 12 convolutional layers from the model.



(a) InceptionV3 (b) MobileNetV2 (c) ResNet101 (d) DenseNet121

Figure 4: Pairwise comparison of output label dissimilarities (%) between DL frameworks for our 4 models, running on
Server, with Default optimization level.

Figure 5: DL Framework Conversions Dissimilarities (%).

(a) ImageNet 00002315 (b) ImageNet 00004726

Figure 6: Convolution activations comparison for
DenseNet121.

model, Keras versus PyTorch, we find the aforementioned
layers are worth investigating further for identifying source
of model output sensitivity.

Varying Compiler Optimizations We varied the opti-
mization level within the TVM framework between Basic,
Default, and Extended. We kept the framework and device
constant for assessing sensitivity to optimization level.

We found that varying compiler optimization levels
causes no discrepancies in output labels for all four models.

The lack of discrepancies/sensitivity is notable, since the
Extended (-o4) level enables unsafe math optimization that
allows code violating IEEE float conventions to be gener-
ated. Note that these potential unsafe perturbations were mi-
nor enough that all four models were resilient to them. It is,
however, worth considering robustness checks with respect
to optimization levels in safety-critical domains, in case un-
safe optimizations result in undesirable model outputs.

Varying Hardware Accelerator With a fixed DL frame-
work and compiler optimization (-o2), we compiled each
of the four image recognition models on the four hardware
devices: Server, Xavier, Hikey, and Local.

We found output label prediction for all four models
with the ImageNet dataset was unaffected by changes in
the hardware device and programming paradigm (OpenCL
for Intel/Arm devices, and CUDA for Nvidia devices). This
demonstrates that label predictions in our experiment are ro-
bust to device changes, at least when using Apache TVM
as the code generator. In our future work, we plan to ex-
plore the impact of varying the backend library, for exam-
ple cuDNN (Chetlur et al. 2014) and the Arm Compute Li-
brary (Com 2022).

2. Robustness of Model Inference Time
We vary one environment parameter at a time while fixing
the others to check their impact on model inference time.

Varying Deep Learning Framework We fixed the opti-
mization setting to Default and device to Server and
examined deviation in model inference times across mod-
els sourced from different DL frameworks. Results for Mo-
bileNetV2 are presented in Figure 7.

It is worth noting that we observe considerable differences
in inference times across model configurations. The extent
of difference depends on the model. We find MobileNetV2
is most sensitive to DL framework changes (similar to output
label), with inference times varying by 4−16%. InceptionV3
was most robust to DL framework changes with an average
difference of 8% for changes between PyTorch and TF/T-
FLite. Finally, it is worth noting that a large difference of
upto 5× was observed onResNet101 between PyTorch and
other frameworks. This is because ResNet101 uses PyTorch
version1, unlike other frameworks using version 2.

Varying Compiler Optimization With device fixed to
Server and framework to Keras, we vary optimization lev-
els between Basic, Default, and Extended, examining the ef-
fect on model inference times. We find changing optimiza-
tion levels has a sizeable effect on inference times.

Execution times generally improved with increased op-
timization as we moved from Basic to Extended, up
to 121.4% across optimizations in all models. There are,



Figure 7: Comparison of inference times (%) across DL
Frameworks for MobileNetV2 on Server with Default op-
timization.

Figure 8: Device execution times difference (%) on Incep-
tionV3, TensorFlow, Default Optimization.

however, some exceptions. For instance, MobileNetV2 us-
ing PyTorch was 11% slower on Hikey device when us-
ing Default versus the Basic optimization. This sug-
gests that increased optimization does not always result in
speedup and in some cases can degrade performance.

Varying Hardware Accelerator We measured model in-
ference on different hardware devices while fixing the DL
framework and optimization level. Figure 8 shows the re-
sults when evaluating InceptionV3 model sourced from Ten-
sorFlow with Default optimization. We compute average
inference time across all images in the test set and use
this in comparing between devices. As expected, model
inference times vary considerably with devices, based on
their processing power and memory. Maximum execu-
tion time difference was observed between Server and
Hikey (62782%) on InceptionV3 and the minimum dif-
ference was 41%, between Xavier and Local devices
in ResNet101V2, utilizing Default optimization. Inference
time difference with device change is most significant on In-
ceptionV3 (upto 627×) owing to its larger size and memory
requirements. When running on low-end device like Hikey
as opposed to Server, we believe the smaller memory can
cause cache misses resulting in significant inference time
penalty.

Threats To Validity
There are five threats to validity in our experiments based on
the dataset, models, model pre-processing, compiler frame-
work and inference time.

First, we only evaluate robustness using four image recog-
nition models that are widely used. Results are model depen-
dent as seen in our experiments and will likely vary on other
models. We plan on conducting a more extensive evaluation
in the future.

Second, we use the ImageNet (Russakovsky et al. 2015)
image classification test dataset for our experiments. This
widely used dataset is a common benchmark which we be-
lieve adequately stresses the different model configurations
in terms of both output label and inference time. Other
datasets may yield different robustness results on the models
considered.

Third, model pre-processing is crucial for model perfor-
mance (Camacho-Collados and Pilehvar 2017). In our ex-
periments, we use the recommended pre-processing for each
model and DL framework. Results may vary for other pre-
processing settings.

The fourth threat is introduced by the use of the TVM
compiler framework and importing models into it. To en-
sure that errors are not introduced in this process, for each
model we validated the output labels for 100 random image
samples from their source framework against the output la-
bel given by the model after importing into TVM.

The final threat is in inference time measurement. To en-
sure time deviations (especially in the first or “cold” run) are
taken into account, we repeat inferences for each image 10
times and use the average inference time across 10 runs.

Discussion
We make the following observations based on our results:

Sensitivity to DL framework Changing the DL frame-
work used to generate the model can have a consider-
able effect on both the output label, and surprisingly, the
model inference time. The extent of this impact depends on
other environment parameters. Among the four models, Mo-
bileNetV2 had 57% dissimilarity in output labels when Py-
Torch source is changed to TF/TFLite. Other models also
had significant sensitivity to DL framework, up to 57%.

Inference time impact varied from 1−16% (not including
ResNet101 PyTorch version).

Sensitivity to Framework Conversion Framework con-
version between TF or PyTorch to TFLite can have an effect
on output labels for some models. ResNet101V2 was most
sensitive to conversion from PyTorch to TFLite with 37%
disssimilarity in output labels. InceptionV3 was the most ro-
bust to framework conversion with respect to output labels,
with a change between 0 and 4%.

Sensitivity to Compiler Optimization Compiler opti-
mizations had no effect on output labels, but as expected
have a considerable effect on model inference time, rang-
ing from 1% to 16% across models. This is not surprising as
different optimization settings have a direct effect on code
efficiency.



Sensitivity to Hardware Devices Changing hardware de-
vices had no impact on output labels from all four models
but had a considerable effect on inference time, ranging from
1.2 to 628× and owing to the wide range in device capabili-
ties used in our experiments. The device change impact was
most seen on InceptionV3, with Default optimization. For
instance, when we change from Server to Hikey device, we
find inference time is 87× slower on MobileNetV2, 227×
slower on ResNet101, 285× slower on DenseNet121 and
628× slower on InceptionV3.

In safety-critical applications, the consequences of the
above sensitivities can be crucial. Therefore it is essential
that framework, compiler, and hardware communities, along
with the developers of DNN models are aware of these
sources of error, and test their systems for robustness to
computational environment changes. Currently, there is no
regulation or benchmarking of DNN model performance for
environment parameter configurations. The results from our
experiments indicate that assessing sensitivity to environ-
ment parameters is an important consideration during model
development and use.
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