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Abstract—Reconfigurable accelerators for deep neural net-
works (DNNs) promise to improve performance such as in-
ference latency. STONNE is the first cycle-accurate simulator
for reconfigurable DNN inference accelerators which allows
for the exploration of accelerator designs and configuration
space. However, preparing models for evaluation and exploring
configuration space in STONNE is a manual developer-time-
consuming process, which is a barrier for research.

This paper introduces Bifrost, an end-to-end framework for
the evaluation and optimization of reconfigurable DNN inference
accelerators. Bifrost operates as a frontend for STONNE and
leverages the TVM deep learning compiler stack to parse models
and automate offloading of accelerated computations. We discuss
Bifrost’s advantages over STONNE and other tools, and evaluate
the MAERI and SIGMA architectures using Bifrost. Additionally,
Bifrost introduces a module leveraging AutoTVM to efficiently
explore accelerator designs and dataflow mapping space to
optimize performance. This is demonstrated by tuning the
MAERI architecture and generating efficient dataflow mappings
for AlexNet, obtaining an average speedup of 50× for the
convolutional layers and 11× for the fully connected layers. Our
code is available at www.github.com/gicLAB/bifrost.

Index Terms—Hardware Accelerators, TVM, Hardware Sim-
ulators, Auto-Tuning, Reconfigurable DNN Accelerators.

I. INTRODUCTION

Deploying deep neural networks (DNNs), e.g. when target-
ing constrained devices, can be prohibitive due to steep com-
putational requirements of state-of-the-art DNN models. To
address this issue, an across-stack approach is needed [1], with
algorithmic improvements giving better accuracy with fewer
operations [2] and novel compression techniques reducing
model size further [3]. DNN inference accelerators can bring
improvements for the hardware layer of the systems stack, with
reconfigurable accelerators such as MAERI [4] and Eyeriss
v2 [5] promising improved performance by adjusting logic
paths for a given DNN model architecture. However, finding
optimal hardware configurations is still an active area of re-
search [6]. STONNE [7], a cycle-accurate simulator for DNN
accelerators with reconfigurable dataflow patterns, allows re-
searchers to explore the design space of flexible accelerator
architectures. However, it currently requires significant manual
effort to use, such as the requirement to rewrite the PyTorch
model definition so it can be parsed by the system, as well
as being limited to PyTorch support only. Additionally, the
mappping tools to generate optimized dataflow configurations
are not directly integrated in STONNE, such as mRNA for
MAERI [8], and thus require further manual steps.

To address these usability issues of STONNE this paper
proposes Bifrost, a new tool that enables accessible end-to-end

evaluation and optimization of reconfigurable DNN inference
accelerators. As well as automating many of the more tedious
manual steps of using STONNE, Bifrost also allows more
DNN models to be run, adds a module for automatically gen-
erating optimized mappings for reconfigurable accelerators, as
well as the ability to leverage existing mapping tools.

Bifrost is built on STONNE and Apache TVM [9], a state-
of-the-art machine learning compiler framework that enables
researchers to transparently execute any of the wide-range of
DNN models compatible with TVM (from frameworks such
as PyTorch [10], TensorFlow [11], and ONNX [12]) using
STONNE. DNN layers not accelerated by the chosen hardware
accelerator in STONNE are executed using an implementation
from TVM, which allows end-to-end evaluation and easy
verification of correctness. Bifrost also extends the auto-
tuning module of TVM, AutoTVM [13], for design space
and dataflow exploration, for example varying tile sizes to
reduce clock cycle counts. Additionally, Bifrost can integrate
specialized mapping tools such as mRNA [8] for MAERI,
which may provide more optimal mappings in less time
assuming that a specialized mapping tool is available for the
target hardware architecture. Note that Bifrost can be easily
extended to support new accelerator architectures in STONNE
including those with additional layer types. The STONNE
project is integrating power and area metrics, which Bifrost
will support when they are available.

The main contributions of this paper include the following:
• We motivate the need for Bifrost and its value for

exploring reconfigurable DNN accelerators comparing it
against a range of related DNN accelerator simulators.

• We describe in detail the features and implementation
of Bifrost, such as how it integrates into TVM and the
configuration options available.

• We describe how we automate many of the most tedious
steps of the STONNE workflow, allowing models from
more frameworks to be evaluated and opening the door
to further compiler-hardware co-design exploration.

• We enable a new way to optimize mappings for re-
configurable STONNE accelerators by exposing tunable
hardware parameters to AutoTVM. In addition, we show
how Bifrost can integrate specialized mapping tools such
as mRNA, which can provide more efficient mappings.

• We evaluate the layers of AlexNet [14] using the SIGMA
and MAERI architectures with varying levels of sparsity
and approaches to mapping configuration respectively, to
highlight the key functionality of Bifrost.
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www.github.com/gicLAB/bifrost


II. BACKGROUND

The energy efficiency and performance of an DNN accel-
erator is determined by its dataflow [4], [15], [16]. Unlike
server class GPUs and TPUs, edge accelerators devices do
not have the hardware resources to process a DNN layer in
a single step1. Instead the computation has to be divided up
by grouping neurons into tiles which defines how a group
of neurons’ inputs, weights, and intermediate outputs (psums)
are delivered and reused within the accelerator. This pattern
is known as the dataflow of the accelerator, which can vary
among accelerator architectures.

The first generation of DNN accelerators have fixed
dataflows tailored specifically for one type of workloads, e.g.
systolic arrays (TPUs). The next generation of DNN accel-
erators are reconfigurable, which means that aspects of their
dataflow can be changed by software to increase efficiency
(e.g., in terms of clock cycles, or energy consumption). A
mapping is a specific instance of a dataflow [17] for reconfig-
urable accelerator architectures.

Reconfigurable accelerators can be configured to map differ-
ent dataflows and adjusting logic paths for a given DNN model
architecture. Being able to reconfigure the dataflow of the
accelerator is especially useful in edge devices where the re-
quirements to optimize inference time or performance per watt
are more critical. MAERI [4], SIGMA [18], MAGMA [19],
and Eyeriss V2 [6] are different examples of DNN accelerators
with reconfigurable accelerator fabrics. Reconfigurable accel-
erators are also more complex than fixed accelerators which
results in a large mapping space. Finding optimal hardware
configurations for said accelerators is still an active area of
research and the most common approach is to use analytical
solutions. This has been explored by Yu et al. for arbitrary
accelerator designs [6]. Zhao et al. created a tool called mRNA
to find optimal dataflow configurations for MAERI [8].

A. STONNE
STONNE [7] is the first cycle-accurate simulator for DNN

accelerators with reconfigurable dataflow patterns that allows
researchers to explore the design space of reconfigurable accel-
erator architectures. As Krishna et al. point out, the mapping
space has to be separated from the architecture design space
when dealing with flexible DNN accelerators [17]. For a given
workload executed using a fixed DNN accelerator design, the
performance and energy efficiency are solely determined by
the physical features of the architecture (such as the number of
processing elements). However, when a given workload is exe-
cuted using a reconfigurable DNN accelerator the performance
and energy efficiency will vary depending on the data flow as
well the physical properties of the architecture. A mapping is
a characterization of the scheduling and data orchestration of
a reconfigurable DNN which determines the data flow.

To date STONNE is able to simulate the reconfigurable
accelerators MAERI, SIGMA, MAGMA, and a fixed sys-
tolic array (TPU). Architectural simulators are common when

1Except for trivially small layers, which are not common in most production
DNN models today.

Fig. 1: A simplified view of the main components of a typical
reconfigurable DNN accelerator design [17].

Fig. 2: Overview of STONNE, adapted from [7].

developing and researching GPUs and CPUs, but for DNN
accelerators STONNE is the first of its kind as it is able to
efficiently simulate multiple fixed and reconfigurable accel-
erator designs. STONNE allows researchers to explore the
performance and energy efficiency for different architecture
design and mapping combinations. However, preparing models
for evaluation and exploring configuration space in STONNE
is a manual developer-time-consuming process, which is a
barrier for research.

The DNN accelerator architectures simulated in STONNE
all have the same basic components and these are illustrated
in Figure 1. The general structure of a DNN accelerator
comprises of a spatial array of processing elements (PEs).
Each PE contains a multiply-accumulate unit (MAC). The PEs
receive their inputs and weights from the distribution network
and write outputs back to the buffer using the reduction
network. A MAC operation involves the computation of the
product of two numbers b and c and adding the product to
an accumulator a, that is: a← a+ (b× c). The intermediate
outputs which are computed through a MAC operation are
called partial sums or psums.

B. TVM

Apache TVM [9] is an end-to-end machine learning com-
piler framework for CPUs, GPUs, and accelerators. TVM calls
these different runtime backends targets. TVM is compatible
with models from a variety of deep learning frameworks
such as PyTorch [10], TensorFlow [11], TensorFlow Lite, and
ONNX [12]. In general, deep learning frameworks use com-
putational graphs as their intermediate representation, which
are directed acyclic graphs (DAGs) representing each step in
the computation process. TVM can parse models from deep
learning frameworks and translate it to its own intermediary



Fig. 3: Simplified overview of TVM. Models can be loaded
for a variety of sources, and compiled to a binary. Optionally,
auto-tuning can occur, or external libraries can be leveraged.

representation, Relay IR [20] A simplified overview of TVM
is shown in Figure 3.

Each node in the Relay IR requires a corresponding oper-
ator (called compute and schedule functions) to execute the
computation in the node. These operators are stored in the
TVM Operator Inventory (TOPI) and are specialized for each
target. Operators can also be provided by external libraries
where TVM will transparently offload computations to the
library. Often there are several different algorithms and imple-
mentations available for any given operator, and TVM uses a
Relay Operator Strategy function to select which operator to
use. For example, different memory layouts for convolutions
require different operators. The strategy then calls operators
from the TOPI or from an external library. The operators from
TOPI are implemented in TVM’s internal Tensor Expression
Language. These expressions are then used to select schedule
primitives which are used to generate the low level code. To
further optimize the schedule, parameters such as tile size, loop
ordering, and re-ordering can be explored using the AutoTVM
auto-tuning module [9]. AutoTVM automatically optimizes the
schedule using the latency of the computation and developers
are able to declare tunable parameters called tuning knobs in
the schedule space.

III. MOTIVATION

As shown in Figure 2, STONNE can provide information
on the performance of the accelerator (cycle count), and in
future the energy and area used. However, using STONNE for
research is a time consuming process with many manual steps.
Figure 4 demonstrates the typical workflow using STONNE,
which we discuss in more detail in Section III-A. Section III-B
highlights some valuable features that a simulator for re-
configurable DNN inference accelerators should have, and
provides a table comparing some existing tools and systems.
Section III-B highlights some valuable features that a sim-
ulator for reconfigurable DNN inference accelerators should
have, discusses previous works/systems, and summarizes the
differences according to the features in a table.

A. STONNE workflow

The different steps shown in Figure 4 are explained in detail:
1) Choose a DNN model: The first step is to choose a

model to explore. Currently, accelerator architectures in
STONNE support models containing 2D convolutional
and/or fully connected layers.

Fig. 4: Flowchart of the typical operation of STONNE. Note
the manual steps, and the requirement for both PyTorch and
TensorFlow versions of the model if exploring the mapping.

2) Explore mapping configuration: While STONNE is
able to simulate reconfigurable accelerators, the onus is
still on the user to find an optimal dataflow mapping.
Some accelerator designs have tools available to find
optimal mappings, such as mRNA [8] for the MAERI
accelerator architecture. However these external tools
are not necessarily compatible with PyTorch, the only
deep learning framework which is fully compatible with
STONNE. For example, mRNA only supports Tensor-
Flow models which are not supported by STONNE,
meaning two versions of the model are needed to gen-
erate a mapping. Thus, users must either convert the
models (which is not necessarily an easy process, even
with interchange formats like ONNX being available),
or find/create native definitions for the model in both
frameworks.

3) Create tile (mapping) config files: Each mapping re-
quires a corresponding test file to be manually created.

4) Create hardware config files: The user defines the
hardware resources they want to give to their chosen
accelerator (e.g., number of PEs). Using STONNE to
explore the performance of different hardware parameter
configurations is possible, but requires the user to create
a configuration file for every hardware variation and then
to run STONNE manually with each hardware configu-
ration.

5) Get/create a PyTorch version of model: STONNE
currently only supports PyTorch, with some limited (dep-
recated) support for Caffe.

6) Manually modify PyTorch model to use mapping and
hardware configuration files: STONNE is prepackaged
with a forked version of PyTorch which contains extra
operators to run a layer using STONNE.

7) Run a model on STONNE: with the mapping and
hardware config files, the modified PyTorch model can
be executed on STONNE, which will provide metrics on
the simulated inference.

Observing this workflow, we conclude that research using
STONNE is possible but it requires significant manual effort.
STONNE itself may be a valuable platform for developing new



reconfigurable deep learning inference accelerators, however
there are a number of ways in which its workflow could be
improved. The main limitations of STONNE is the lack of
support for running models from deep learning frameworks
beyond PyTorch and the need for external tools to find optimal
hardware configurations. In addition, for MAERI’s mapping
tool mRNA we require a TensorFlow version of the model.
Integrating STONNE and a deep learning compiler such as
TVM into a unified framework would open the door to further
research into DNN model/hardware co-design. This could
bring performance improvements and reduce mapping costs,
as well as enable more complex reconfigurable accelerator
designs. We address these problems with our new tool Bifrost,
which achieves a significantly improved developer workflow
by integrating STONNE together with Apache TVM.

B. Comparison against related works/systems

There is a variety of DNN accelerator simulators available,
some with support for reconfigurable architectures, others
with fixed accelerators. To compare them and highlight the
contribution of Bifrost as a tool, we identify 6 valuable features
for reconfigurable DNN hardware accelerator simulators and
compare several other works against these features:

i) Model support: the ease of using DNN models from a
wide range of DNN frameworks (e.g., PyTorch, Tensor-
Flow, ONNX, etc).

ii) Easy mapping exploration: if the system provides tuning
support for reconfigurable accelerator architectures.

iii) Multiple accelerator architectures available: if more than
one DNN accelerator architecture is available in the
system.

iv) Sparsity support: if sparse inference is available for DNN
models, i.e. reducing inference costs by skipping MAC
operations involving zeros.

v) Mainstream DNN framework integration: if the system
is well integrated within a mainstream DNN framework
(such as PyTorch, TensorFlow, TVM, etc), which brings
the advantages of a large community, frequent updates,
and troubleshooting.

vi) Cycle-accurate Simulation Available: if the system pro-
vides cycle-accurate simulation.

Table I compares various related tools and systems to
Bifrost, using the above features. Next, we discuss the details
of each of the tools and systems from the table.

SMAUG [21] provides a full simulation-based system that
uses gem5-Aladdin [22] to perform full system simulation
of the host system, the off-chip memory accesses, and the
accelerator itself. SMAUG does not integrate with existing
DNN frameworks, instead models must be redefined using
SMAUG’s Python API. It can also support accelerators with
sparse inference.

SCALE-Sim [23] is a cycle-accurate simulator framework
which provides configurable systolic array designs, with users
defining a config file describing their chosen architecture. It
does not integrate with existing DNN frameworks, nor provide
end-to-end model evaluation. Instead the user must define their

TABLE I: Comparison of Bifrost against other tools and
systems for DNN accelerator evaluation.
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Model support 6 6 6 4 6 4
Easy mapping exploration 6 6 6 6 6 4
Multiple accelerators 4 4 4 6 4 4
Sparsity support 4 6 6 6 4 4
DNN framework integration 6 6 4 4 6 4
Cycle-accurate simulation 4 4 6 6 4 4

network configuration as a DNN topology file to be parsed by
the tool.

SECDA [24] is a DNN accelerator design methodol-
ogy leveraging SystemC. It uses transaction-level simulation
(rather than cycle accurate), synthesizing designs on real
hardware to get more accurate system performance metrics.
The authors provide 2 case studies integrated into the TFLite
DNN inference framework, neither of which provide sparse
inference.

VTA [25] is a DNN accelerator architecture officially in-
tegrated into TVM. This integration provides the advantages
of TVM, such as support for models from most DNN frame-
works. The accelerator design uses an ISA, which means that
the compiler generates instructions for a given layer to run
on the accelerator. This means that the compiler can generate
more or less optimal instructions, however this does not fit the
definition of a dataflow mapping.

STONNE [7] is a DNN accelerator tool designed for use
with reconfigurable DNN accelerator designs such as MAERI.
To date, it supports 3 reconfigurable accelerator architectures
(MAERI, SIGMA, and MAGMA) and 1 fixed accelerator
architecture (a TPU), with one of the architectures (SIGMA)
supporting sparse inference. Exploring mapping space and
running models is not a straightforward process, as discussed
in Section II-A.

Bifrost combines the advantages of STONNE, within the
TVM framework. It extends the AutoTVM auto-tuning module
to provide automatic accelerator configuration search, whereas
STONNE must rely on external tools (which Bifrost also
integrates). Bifrost’s value is for users who want to explore
the potential of reconfigurable accelerators (as provided by
STONNE), however want increased productivity by automat-
ing many of the more tedious steps. Since STONNE is an open
source tool, Bifrost has the potential to improve the ease of
testing and improving new accelerator designs in STONNE.
This is due to its AutoTVM module, which can search for
optimized mappings even when no specialized mapping tool
is available, although these specialized mapping tools can
be integrated. Note that in the future, the integration with
TVM opens the door to further compiler-hardware co-design
exploration, something that we leave for future work.



IV. BIFROST OVERVIEW

Bifrost is our proposed solution to connect the STONNE
hardware accelerator simulator to the TVM compiler frame-
work. Our goal is to make the STONNE tool for evaluating
simulated hardware accelerators for DNNs as simple to use
as possible, while enabling additional functionality such as an
accelerator architecture agnostic mapping generator leveraging
TVM. Figure 5 gives a high-level overview of Bifrost. First, the
user provides a DNN model from any deep learning framework
supported by TVM (such as PyTorch, TensorFlow, MXNet,
Keras, TFLite, Caffe2, or ONNX). This improves significantly
on STONNE, which only has support for PyTorch models.
Then TVM parses the model, translating the computation
graph into its own intermediate representation, applies some
graph-level optimizations (e.g., fusion of batch normalization
layers), and chooses the backend for each operation using its
TOPI library. For operations supported by Bifrost, which are
currently 2D convolutional layers (conv2d) and dense (fully
connected) layers, TVM TOPI offloads operations with calls
to the STONNE-Bifrost API (discussed in Section V) as an
external library, which sends all relevant layer information to
STONNE while TVM uses its own code generation for non-
accelerated layers. This limitation in operations is inherited by
the accelerators designs currently available in STONNE, and
it is straightforward to add support to new operations when a
new STONNE accelerator requires them.

Since STONNE can simulate a wide range of accelerator
architectures, the user is able to specify the architecture
and mapping used for running the DNN model, although
these steps require more manual configuration which Bifrost
automates. STONNE can simulate a variety of inference accel-
erators, and to-date Bifrost supports MAERI [4], SIGMA [18],
and a systolic array (i.e., a TPU [26]), with more accelerators
to be added as the STONNE community develops them. For
reconfigurable accelerators (such as MAERI) Bifrost imple-
ments a mapping tool to find configurations for the hardware
given a DNN model. This mapping tool leverages AutoTVM
to find a mapping for any accelerator which exposes tunable
parameters. In addition, Bifrost also supports and integrates
existing mapping tools such as mRNA for MAERI.

The key components of Bifrost (Figure 5) are listed below:

1) STONNE-Bifrost API A C++ library which processes
layer information from the custom TOPI strategies and
uses it to configure STONNE.

2) Bifrost TOPI strategies Act as the bridge between TVM
and STONNE by passing all relevant layer information
to the STONNE-Bifrost API.

3) Simulator Configurator Allows users to programmat-
ically specify the simulated architecture on STONNE
and ensures that only valid hardware configurations for
simulation are specified. Hardware configurations can be
tuned using the AutoTVM module.

4) Mapping Configurator Specifies the dataflow of each
layer. Mappings can be provided manually, or a default
configuration can be automatically generated, or the map-

Fig. 5: High-level overview of Bifrost design.

Fig. 6: Flowchart of the operation of STONNE using Bifrost.

ping can be tuned with the AutoTVM module, or another
specialized tool such as mRNA.

5) Bifrost AutoTVM Module Explores hardware configura-
tion space for a given DNN model, adjusting the hardware
configuration parameters exposed to it via the API.

Figure 6 demonstrates the Bifrost workflow for hardware
design space exploration. Executing a module in Bifrost is
demonstrated in Listing 1. Note how the full DNN model is
transparently executed without any modification, in compari-
son to STONNE’s standard workflow in Figure 4.

In principle, Bifrost can also work with physical hardware
as long as it exposes the same API as the STONNE accelerator
version of the same hardware. However, since most of these
reconfigurable accelerators are not yet available for evaluation
in real hardware and do not have mature toolchains (e.g.,
drivers), for now we cannot evaluate them. Reconfigurable
DNN accelerators are a burgeoning area of hardware design,
with STONNE positioning itself as a tool to enable the design
and implementation of new designs. Bifrost complements this
by automating more tedious steps of evaluation and providing
a hardware configuration exploration tool which can bring
value when no specialized tool (like mRNA) is available.



import bifrost
from bifrost.simulator import architecture

// Set the amount of mulitpliers
architecture.ms_size = 128
architecture.create_config_file()

from bifrost.runner import run_torch_stonne
from neuralnet import model, input_batch

out = run_torch_stonne(model, input_batch)

Listing 1: Running an arbitrary PyTorch model using Bifrost.

V. THE STONNE-Bifrost API
The STONNE-Bifrost API is where layer information such

as height, width, strides, and padding are processed by TVM
together with the architecture and dataflow mapping. This
information is then used to execute the layer in STONNE and
the output is passed back to the TVM Python frontend. The
API contains a set of packed functions, which is the unified
function type of TVM. These type erased functions are made
available in TVM’s global function registry. When registered,
a given function is automatically exposed to the TVM Python
frontend when the API is loaded using Python ctypes (a foreign
function library).

For example, the function to execute NCHW convolutions
using STONNE is registered as tvm.contrib.stonne.
conv2d.nchw. When the TVM frontend is executing a
model, tvm.contrib.stonne.conv2d.nchw can be
called to execute a convolutional layer using STONNE. The
execution workflow for all functions in the API follow the
same general pattern:

1) Parse layer information.
2) Transform layer information and input data into a format

compatible with STONNE.
3) Create a new instance of STONNE.
4) Configure STONNE with the new architecture and

dataflow mapping.
5) Load the layer into STONNE and run.
6) Transform output into a format compatible with TVM.
7) Record the simulated cycle count and/or partial sums.
Bifrost currently supports 2D convolutional and fully con-

nected layers, the two main operations supported by STONNE.
Given that these two operations have been chosen as they are
very computationally expensive layers and are commonly used
in many DNNs, it makes sense that they are the target for hard-
ware accelerators. For example, when executing AlexNet [14]
(a popular convolutional neural network) on a GPU 95% of
the time is spent on the convolutional and fully connected
layers [27], the other layers such as the pooling and activation
functions only account for 5% of the execution time.

A. Fully Connected Layers (Dense)

Fully connected layers are divided into two steps in TVM’s
computational graph, first a dense operator which applies

Fig. 7: An NCHW convolution. Each channel is stored con-
tiguously in memory and the kernel is stored in the RSCK
format [28].

Fig. 8: An NHWC convolution. The height and width are
interleaved with the channels in memory and the kernel is
stored in the KCRS format.

a linear transformation followed by an optional non-linear
activation function. Only the dense operator is executed on
Bifrost while the non-linear activation function is handled by
the code generated by TVM for the CPU. MAERI, SIGMA,
and the TPU all implement the dense operator using a general
matrix multiplication (GEMM).

In hardware architectures simulated using STONNE the
execution will depend on the type of architecture and the (tile)
mapping. For example, in MAERI architectures the tile pattern
has to be provided as a parameter; in SIGMA architectures the
memory controller automatically tiles the matrix depending
on the level of sparsity [18]; and since the TPU has a fixed
dataflow architecture, the tiling can not be changed.

B. Convolutional layers (Conv2d)

The parameters that govern convolutions are listed in Ta-
ble II. Bifrost supports NCHW and NHWC 2D convolutions with
KCRS and RSCK kernel layouts respectively.

An input tensor for a conv2d layer always consists of
the same components: a number of batches (N ), a number
of channels C, height (H), and width (W ). However, these
tensors can be stored in memory in a number of different ways,
and deep learning frameworks have adopted different default
layouts. NCHW and NHWC are the data layouts used by default
in PyTorch and TensorFlow respectively. For tensors ordered
using the NCHW layout each channel is stored contiguously in
memory, while in the NHWC layout the height and width are
interleaved with the channels.



TABLE II: Standard parameters defining convolutional layers
(Nvidia taxonomy) [28].

Parameter Description
N Batch size (STONNE only supports N=1)
R Number of filter rows
S Number of filter columns
C Number of input channels
K Number of output channels
G Number of groups
H Number of input rows
W Number of input columns
P Number of output rows
Q Number of output columns

PadH Height of zero-padding
PadW Width of zero-padding

Depending on the algorithmic primitive used, each input
data layout format has a complementary kernel data layout for-
mat. Changing either requires adjusting the algorithmic prim-
itive used, and there are common data-layout/kernel-layout
pairs used by deep learning libraries. A kernel tensor consists
of a number of input (C) and output (K) channels, height
(R), and width (S). For an NCHW input the kernel is typically
stored as KCRS while for NHWC inputs the kernel is typically
stored as RSCK. Figure 7 illustrates how a convolutional layer
is executed with the NCHW layout, and Figure 8 illustrates
how the same layer would be executed with the NHWC layout.
TVM has support for both common layouts, and internally
can use other layouts for more optimized inference such as
spatial pack convolution [29]. Thus, the STONNE-Bifrost API
supports both formats and implements these through the tvm.
contrib.stonne.conv2d.nchw and tvm.contrib.
stonne.conv2d.nhwc functions.

1) MAERI Convolutions: The MAERI architecture on
STONNE only supports NHWC convolutions with RSCK kernel
layouts. If the input dimensions are NHWC the layer can be
executed with minimal change to the data provided by TVM,
as the input tensor only requires some padding to be added for
STONNE compatibility. When the input dimensions are of the
form NCHW and KCRS, the dimensions have to be transposed to
be compatible with MAERI. This conversion is implemented
in C++ and executed in the CPU, therefore the performance
penalty of the conversion is not counted in the total cycle
count for execution on STONNE. The execution path for NCHW
convolutions is as follows:

i The NCHW input is transposed to NHCW.
ii The KCRS kernel is transposed to RSCK.

iii A new instance of STONNE is created and configured
with the chosen architecture and dataflow mapping. The
NHWC and RSCK inputs are then fed into STONNE.

iv The NPQK output is transformed to NKPQ.
2) SIGMA Convolutions: The SIGMA architecture does not

support convolutional layers. SIGMA is a sparse accelerator
architecture which only supports GEMM [18]. However, it is
possible to effectively convert the convolutions to a GEMM
operation using an algorithmic primitive commonly known
as GEMM convolution. The input and weight tensors are

converted from four dimensional tensors to 2D matrices. NCHW
input tensors with KCRS kernels are multiplied together as
weight × data while NHWC input tensors with RSCK kernels
are multiplied together in the reverse data × weight order.

3) TPU Convolutions: Like SIGMA, the TPU does not
support convolutional layers directly. Convolutional layers are
instead executed using a GEMM operation. The TPU only
supports NCHW convolutions and the execution steps for a
conv2d workload is as follows:

i Transform the input and weight tensors into 2D matrices.
ii Perform a GEMM operation and multiply the data and the

weight matrices where the order of the operation depends
on the input dimensions.

iii Transform the 2D output data into the required 4D tensor.

VI. BIFROST HARDWARE CONFIGURATION

As illustrated in Figure 2, STONNE’s configuration unit
uses configuration files to determine how the simulator should
be configured. In Bifrost this is handled by the simulator
configurator module. All the hardware configuration options
in STONNE and their possible values, which are currently
available for use in Bifrost, are listed in Table III. Note
that these options are supported by STONNE but the rules
are enforced by Bifrost. By enforcing these rules, Bifrost
eliminates undefined behavior from occurring in STONNE
by preventing developers from providing invalid hardware
configurations. Note that not all configuration options are
available for all accelerator architectures, however the simula-
tor configurator will reject any invalid configurations. Below
is a brief description of each hardware parameter and their
associated restrictions:

1) controller type is the architecture type such as MAERI,
SIGMA, and TPU.

2) ms network type. MAERI and SIGMA must use the
LINEAR option while the TPU must use the OS_MESH
option, which means PEs are organized as a grid sending
and receiving data using a weight-stationary dataflow.

3) ms size is the number of multipliers (PEs) in the archi-
tecture. Each multiplier performs a MAC operation. More
multipliers result in higher parallelism and performance.
This parameter is used when the ms network type has
been set to the LINEAR option.

4) ms row If ms network type is OS_MESH the PEs are
organized into rows and columns and this parameter is
used together with ms col instead of ms size.

5) ms col If ms network type is OS_MESH the PEs are
organized into rows and columns and this parameter is
used together with ms row instead of ms size.

6) dn bw and rn bw are the distribution and reduction
bandwidth respectively as illustrated by Figure 1. These
parameters define the number of elements that can be dis-
tributed and reduced in a single cycle. If using the TPU,
these must be specified as dn bw = ms rows+ms cols
and rn bw = ms rows ∗ ms cols. Bifrost enforces the
TPU restriction and will correct improperly configured
distribution and reduction networks.



TABLE III: Bifrost’s supported hardware configuration options
for DNN accelerators in STONNE.

Name Values

controller_type
MAERI_DENSE_WORKLOAD,
SIGMA_SPARSE_GEMM,

or TPU_OS_DENSE

ms_network_type OS_MESH or LINEAR

ms_size {x | x ≥ 8 ∧
logx

log2
∈ Z}

ms_row {x |
logx

log2
∈ Z}

ms_col {x |
logx

log2
∈ Z}

dn_bw {x |
logx

log2
∈ Z}

rn_bw {x |
logx

log2
∈ Z}

reduce_network_type
ASNETWORK, FENETWORK,

or TEMPORALRN

sparsity_ratio {x | x ∈ Z ∧ 0 ≤ x100}
accumulation_buffer True or False

7) reduce network type is the type of reduction network.
ASNETWORK refers to the ART reduction network pro-
posed in MAERI [4], FENETWORK is an implementation
of the STIFT reduction network [30]. The TPU architec-
ture must use the TEMPORALRN option.

8) sparsity ratio. This parameter defines the sparsity of the
model. It is only used for the SIGMA architecture.

9) accumulation buffer. Sets the accumulation buffer re-
quired to be enabled for rigid architectures like the TPU.

VII. BIFROST MAPPING OPTIMIZATION

The AutoTVM module finds optimal hardware configura-
tions and mappings for DNN models based on the cycle count
or the count of partial sums required (psums). This module
leverages the tuners available in TVM such as grid search,
GATuner [31] (genetic algorithms), and XGBoost [32] (a tree
boosting system).

A. Differences with standard AutoTVM

In typical usage of AutoTVM, the user searches the con-
figuration space of a predefined schedule2 for a given op-
eration. For example, when running a conv2d layer on a
CPU, TVM may define a schedule for the operation with
loop reorderings and vectorization. AutoTVM can search for
parameters defining additional transformations which may
improve performance, for instance the tile size to use and
whether or not to unroll a given loop. With this schedule and
tuned parameters, TVM can then generate more efficient code
used to run this operation.

This is in comparison to Bifrost’s AutoTVM module, where
the “default schedule” can be considered to be hardware
accelerator design and AutoTVM searches for configuration

2A description of transformations and optimizations to be applied to a given
algorithm on a target platform such as a CPU or GPU.

parameters for the hardware accelerator. An example of these
parameters for MAERI is described in Section VII-C.

A recent alternative to AutoTVM is Ansor [33], which
searches for optimized schedules for CPUs and GPUs without
the need for a default schedule constraining the search space.
This approach is called auto-scheduling and can significantly
reduce the search time and potential performance improvement
when compared to AutoTVM. However auto-scheduling is
not relevant to Bifrost, since we need to search for tuning
parameters rather than schedules. Ansor’s dynamically trained
predictive cost model may be valuable in reducing search
costs, however we leave this exploration for future work.

B. Optimization targets

The standard version of AutoTVM tunes schedules based
on latency, i.e. the execution time of a layer. As the latency
will vary depending on many factors such as other system
processes which may interfere with the result, the execution
repeats several times per layer to find the average. Latency
is however not an appropriate optimization cost function
when using STONNE. The latency of a layer executed on
a simulated accelerator architecture using STONNE is not
correlated with either the performance in terms of cycles nor
other measurements of efficiency such as the simulated energy
consumption. For example, a simulated hardware architecture
using more PEs will have a lower cycle count because of
higher parallelism during execution but a higher latency, as
PEs are not simulated in parallel in STONNE. In other words,
a faster simulation time does not mean that the simulated
execution was faster. Therefore, a custom cost function based
on metrics reported from STONNE simulation is used instead.

Bifrost can optimize performance targeting cycles or psums
(partial sums). As STONNE is cycle-accurate both of these
metrics are deterministic and multiple measurements are not
needed. Support for energy usage and area will be made
available in Bifrost once STONNE has fully integrated them.
When focused on reducing inference time, using cycle counts
is the most accurate metric to optimize for, as the cost function
is based on the reported cycles for a layer given a hardware
configuration and mapping. However, optimizing using cycles
can be prohibitively slow for large models as the execution
of a single layer can take many hours, and AutoTVM would
need to run each layer many times with varying mappings. To
demonstrate how this could be problematic, the search space
to generate an optimal mapping for a convolution simulated
on the MAERI architecture where each tile has 10 options
would have 108 (or 100 million) possible combinations in the
mapping space. Exploring just 0.1% of this mapping space
would take around 347 days if running the tuning process on
a 12 thread Intel Core i7 CPU in parallel and if each cycle
count took 1 hour to calculate. A cheaper alternative is to
use psums when tuning. In this case, STONNE calculates the
required amount of partial sums to execute the whole layer, a
process that takes less than a second. The psum count can be
used as a tuning value, which means that the layer does not
have to be executed.



The intuition behind using psums instead of cycles is that
when fewer psums are required the execution should be more
efficient. The amount of cycles to calculate each psum does
however vary, which means that using psums for tuning is
unlikely to generate the most optimal mapping. The trade-off
is that exploring the same search space as in the previous
example will take around 2 hours when tuning using psums
instead of a year.

Note that this relationship is not necessarily linear, as the
execution time will depend on many factors such as the
configuration of the distribution network (i.e., bandwidth), the
number of multipliers which affect the parallelism, and even
the tile configuration which defines what partial sums are run
in parallel. Thus the relationship between psums and clock
cycles is merely a correlation rather than strictly proportional.
Exploring the relationship between all of these factors is an
ongoing area of research for reconfigurable DNN accelerators,
which tools such as Bifrost will make easier to explore.

C. MAERI dataflow configuration

This section is primarily concerned with MAERI, as this is
currently the only manually reconfigurable hardware architec-
ture supported by Bifrost. SIGMA is also a flexible architec-
ture, but the data flow mapping is automatically generated by
the memory controller depending on the sparsity ratio. While
only MAERI can use this module, support can be added when
new architectures are added to STONNE.

If the user does not provide a mapping (tile pattern) a basic
one will be generated. This means setting all tiles in Table IV
and V to 1. Execution using this mapping will be inefficient,
but it makes it possible for researchers to quickly evaluate an
architecture. Section VII demonstrates how AutoTVM can be
used to find optimal mappings.

TABLE IV: Mapping (tile) options for convolutions on
MAERI [4], [7].

Tile Description
T R Number of filter rows mapped at a time
T S Number of filter columns mapped at a time
T C Number of filter & input channels per group mapped at a time
T K Number of filter & output channels per group mapped at a time
T G Number of groups mapped at a time
T N Number of inputs mapped at a time (STONNE supports only 1)
T X Number of output rows mapped at a time
T Y Number of input columns mapped a time

TABLE V: Mapping (tile) for fully connected layers on
MAERI [4], [7].

Tile Description
T S Number of output neurons mapped at a time
T N Number of batches mapped at a time
T K Number of input neurons mapped at a time

D. Specialized Mapping Tools

Bifrost’s AutoTVM module represents a valuable contri-
bution in providing a simple accelerator architecture-agnostic
tool that searches for optimized configuration parameters. Our

evaluation in Section VIII-B shows that it can generate com-
petitive mappings. However, since it assumes no knowledge
of the underlying hardware, relying on metrics generated from
STONNE can mean that its search strategies are suboptimal.
Specialized mapping tools that encode the features of the
reconfigurable accelerator architecture may be able to find
more optimal mappings in less time. However, these tools must
be created often with a high engineering cost.

Nevertheless, when these tools are available Bifrost has a
mechanism to integrate and exploit them. In the case of the
MAERI architecture, the mRNA tool [8] achieves this goal
and Bifrost can use it to generate mappings. Thus, Bifrost
can automatically produce optimized mappings both in settings
where a specialized mapping tool is not available and where
one is available. In comparison, STONNE only works in the
latter case, otherwise the mapping must be generated by hand.

VIII. EVALUATION

The evaluation of Bifrost is divided into two parts. The
first part illustrates how Bifrost can be used to evaluate the
performance of a given DNN model on different accelerator
architecture configurations. The second part discusses how
Bifrost’s AutoTVM module can be used to generate an op-
timized mapping and how this mapping compares to other
expert tools (such as mRNA) also integrated into Bifrost.
Throughout this evaluation AlexNet [14], a canonical con-
volutional neural network (CNN), is used to provide layers
for benchmarking. Only 2D convolutional and fully connected
layers are evaluated, as these are the only layer types currently
supported by STONNE. However, extensions to STONNE can
be easily supported by Bifrost, such as adding support for new
layers, and power and area metrics.

Hardware optimizations are not evaluated (i.e., varying the
amount of hardware resources available rather than their con-
figuration). The hardware configuration options which dictate
the amount of available resources to a simulated accelerator
correlate strongly with the clock cycles, and thus we do not
need to use the optimization module to confirm that more
powerful (simulated) hardware is indeed faster, our experiment
shown in Figure 10 shows this implicitly. However, evaluat-
ing the impact of optimizing hardware parameters becomes
relevant if the target is investigating the trade-off between
performance and energy consumption, or area. STONNE’s
extension to support energy and area metrics is still under
development. When available Bifrost will be able to add them
as optimization targets, thus making this evaluation relevant.

A. Comparing architecture configurations

Bifrost can be used for quickly evaluating the inference
performance at different architecture configurations. For exam-
ple, when evaluating the SIGMA architecture the dataflow or-
chestration is automatically handled by the memory controller
depending on the sparsity setting. Therefore the performance
in terms of cycles is dependent on the sparsity setting. Figure 9
shows AlexNet executed using SIGMA simulated on STONNE
with different levels of pruning. The results are roughly in line



(a) Convolutional layers (b) Fully connected layers

Fig. 9: Clock cycles for 0% and 50% sparsity for the convo-
lutional (a) and fully connected (b) layers in AlexNet running
on simulated SIGMA architecture.

Fig. 10: An NCHW convolution in MAERI with 1×2×10×
10 input dimensions, executed with optimal and suboptimal
mappings. The scale of the y-axis is logarithmic.

with what would be expected. On average, the convolutional
layers require 44% fewer cycles and the fully connected layers
require 54% fewer cycles when running using sparsity set at
50%. While outside the scope of this evaluation, this kind
of architecture comparison can be used to find the trade-
off between the accuracy of the model at different levels of
sparsity to the performance when executed using SIGMA.

The example above demonstrates how Bifrost can be used
to evaluate the performance of different architecture configu-
rations for a given DNN model and how these results can be
incorporated into further research. Using Bifrost, researchers
can effortlessly evaluate any hardware parameter configuration
and find how tweaking them affects the performance.

B. Mapping optimization

Finding an optimal dataflow mapping is crucial for reconfig-
urable accelerators such as MAERI. Figure 10 demonstrates
the impact of dataflow mappings by running a small NCHW
convolution (1× 2× 10× 10 input tensor with random data)
simulated on MAERI. The same convolution was executed us-
ing an increasing number of multipliers (i.e., PEs or multiply-
accumulate units), thus increased hardware resources. For each
multiplier setting, mappings were generated using Bifrost’s
AutoTVM module optimizing for cycles using an exhaustive
grid-search over the whole mapping space. From this mapping
space the suboptimal (worst) and optimal (best) mappings
have been selected for evaluation. This exhaustive grid search
ensures that we find the globally optimal and suboptimal
mappings, however in reality this is too expensive, thus we
should use tuners like XGBoost [32] to more efficiently search
a subset of mapping space.

(a) Convolutional layers (b) Fully connected layers

Fig. 11: Performance speedup for the convolutional (a) and
fully connected (b) layers in AlexNet running on simulated
MAERI with 128 multipliers. An optimized dataflow mapping
for each layer has been generated with Bifrost.

This experiment clearly shows the impact of dataflow or-
chestration. The whole mapping space is searched for each
multiplier setting. For small accelerator architectures (i.e., few
PEs), the clock cycle count for the suboptimal mapping and the
optimal mapping differ by a factor of around 4. As expected,
when using an optimal mapping the amount of multipliers is
inversely correlated with the amount of clock cycles required
to execute the workload. When using optimal dataflow map-
pings, 8 multipliers require about 12 times more clock cycles
to compute the same workload as 128 multipliers. However,
the suboptimal mappings perform increasingly worse with
the amount of multipliers, which demonstrates the impact
and importance of dataflow orchestration for larger and more
complex architectures. When executing the convolution with
128 multipliers, the required clock cycles for the optimal and
suboptimal mappings differ by a factor of 76. Reconfigurable
accelerators like MAERI are able to efficiently execute DNN
workloads, but only if provided with efficient mappings from
a tool like Bifrost’s AutoTVM module.

To demonstrate the mapping optimization process on a
wider range of layer sizes and types, we evaluate the 5 conv2d
and 3 fully-connected layers of AlexNet using the MAERI
architecture. MAERI requires a mapping to be provided when
executing a workload and Bifrost will automatically generate
an unoptimized default mapping if none is provided. Rather
than use the exhaustive grid search described above, we take
the default mapping as our baseline, and compare against an
optimized mapping (which may not be the global optimum).
We use psums as the metric to optimize for (as tuning based
on cycles would take weeks), with XGBoost as the tuner,
stopping once we reach convergence. This is achieved using
AutoTVM’s “early stopping” utility.

Figure 11a illustrates the performance speedup of the
convolutional layers when using the efficient mapping for
each layer generated by AutoTVM, compared to the basic
mappings. On average a 51× speedup is demonstrated, with a
maximum speedup of 77×. Figure 11b shows the performance
speedup when using the AutoTVM optimized mapping for the
fully connected layers. While the speedup is smaller than the
convolutional layers, the optimized mappings demonstrate an
average speedup of 11× compared to the default mappings,
with all layers seeing a similar speedup.



Observing the generated mapping for these layers obtained
from the AutoTVM module, Table VI gives a hint as to why
these mappings are sub-optimal. The table shows that the
AutoTVM module always maximizes the T S tile (number
of output neurons mapped) while always minimizing T N
(number of batches mapped) and T K (number of input
neurons) when the optimization target is minimizing psums.
The AutoTVM mappings optimizing for psums are not able
to achieve globally optimal dataflow orchestration, as they
are not able to vary the mapping depending on the layer
characteristics.

TABLE VI: Mappings for the fully connected layers in
AlexNet executed using simulated MAERI, comparing the
basic mapping with the mappings generated by AutoTVM and
mRNA. The tiles for fully connected layers in MAERI are
T S, T K, T N [4], see Table V for full descriptions.

Mapping FC1 FC2 FC3
Basic 1, 1, 1 1, 1, 1 1, 1, 1

AutoTVM 20, 1, 1 20, 1, 1 20, 1, 1
mRNA 12, 8, 1 16, 4, 1 8, 10, 1

Comparing our AutoTVM mappings with those chosen by
mRNA, the latter can vary the size of T N and T K for
each layer for optimal dataflow orchestration. mRNA performs
better as it explicitly encodes the design of the MAERI
architecture, and thus can make more informed choices.
mRNA uses domain knowledge about MAERI to generate
an efficient dataflow mapping, while AutoTVM optimizes the
dataflow purely based on metrics from iterative simulations.
Additionally, mRNA is more efficient taking minutes rather
than hours to produce its mappings, since it does not need to
run a simulation. Thus, mRNA mappings were generated with
the goal of minimizing the total cycle count for each layer,
compared to AutoTVM where we used psums to reduce the
search time (as discussed in Section VII-B).

To show how well Bifrost’s AutoTVM module compares to
expert mapping systems (such as mRNA), the cycle counts for
all layers of AlexNet using the dataflow mappings generated
by STONNE by default, AutoTVM, and mRNA are shown in
Figure 12. The figure shows how the psums count is merely
loosely correlated with performance. Optimizing based on
psums produces efficient mappings but not optimal ones. This
works reasonably well for convolutional layers but not for fully
connected layers. This shows that Bifrost+AutoTVM is fit for
purpose when evaluating a reconfigurable accelerator design
that does not have an optimized mapping tool such as mRNA,
but will not necessarily find the optimal configuration. This
could make it valuable during accelerator design exploration.

Figure 12a shows how the mapping generated by mRNA
requires on average 20% fewer cycles than the one generated
by AutoTVM. A similar trend can be observed for the fully
connected layers in Figure 12b, where the mRNA mapping
requires on average 67% fewer cycles compared to the Au-
toTVM mapping.

An important observation is that AutoTVM can perform
almost as well as expert tools (e.g., mRNA) while assuming no

(a) Convolutional layers (b) Fully connected layers

Fig. 12: Clock cycles using different mappings for AlexNet’s
convolutional (a) and dense (b) layers running on simulated
MAERI architecture. The y-axis scale is logarithmic.

knowledge about the underlying architecture. AutoTVM also
tuned the dataflow based on the psums count which is only
loosely correlated to performance. More efficient mappings
could most likely be obtained by tuning using cycle counts,
however AutoTVM is still limited by the execution time of
STONNE, so this would take a prohibitively long time. These
results show that Bifrost+AutoTVM can produce mappings
with similar efficiency compared to expert systems such as
mRNA, and would be ideal for other novel reconfigurable
architectures with no expert tools available to optimize the
hardware. For example, this could be valuable during the
development of novel reconfigurable accelerator designs. Be-
spoke mapping tools should be considered an end goal of
mature reconfigurable accelerator design, and can be integrated
into Bifrost when available.

IX. CONCLUSION

This paper presented Bifrost, a tool built on STONNE [7]
and Apache TVM [9] that enables accessible end-to-end eval-
uation and optimization of reconfigurable DNN accelerators.
The main challenges of using STONNE were identified, as the
limited support for different deep learning frameworks and
the significant manual effort required to create architecture
configuration and mapping files. To address these challenges
we connected STONNE with TVM, with TVM’s support of
a wide range of deep learning frameworks solving the first
issue, and its learning-based cost model AutoTVM being used
to explore architecture design and dataflow mapping space.

We evaluated Bifrost on the SIGMA architecture at varying
levels of sparsity. For the MAERI architecture, which requires
user defined reconfiguration, we compared using the mRNA
mapping tool (integrated with Bifrost) against AutoTVM to
generate mappings. The mappings identified by AutoTVM
required only 20% more clock cycles for the convolutional
layers and 67% more for the fully connected layers. This
makes Bifrost+AutoTVM potentially suitable for optimizing
novel reconfigurable architecture designs which do not have
yet have expert tools available.

As future work, we would like to extend Bifrost to support
AutoTVM tuning using other optimization targets such as
energy efficiency and add support for more operators such as
sparse-dense matrix multiplication [19], which would allow
other accelerator designs like MAGMA [19] to be evaluated.
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