
MutateNN: Mutation Testing of Image Recognition
Models Deployed on Hardware Accelerators

Nikolaos Louloudakis
n.louloudakis@ed.ac.uk
University of Edinburgh

Perry Gibson
p.gibson.2@research.gla.ac.uk

University of Glasgow

José Cano
jose.canoreyes@glasgow.ac.uk

University of Glasgow

Ajitha Rajan
arajan@ed.ac.uk

University of Edinburgh

Abstract—With the research advancement of Artificial In-
telligence in the last years, there are new opportunities to
mitigate real-world problems and advance technologically. Image
recognition models in particular, are assigned with perception
tasks to mitigate complex real-world challenges and lead to
new solutions. Furthermore, the computational complexity and
demand for resources of such models has also increased. To
mitigate this, model optimization and hardware acceleration has
come into play, but effectively integrating such concepts is a
challenging and error-prone process.

In order to allow developers and researchers to explore the
robustness of deep learning image recognition models deployed on
different hardware acceleration devices, we propose MutateNN,
a tool that provides mutation testing and analysis capabilities
for that purpose. To showcase its capabilities, we utilized 21
mutations for 7 widely-known pre-trained deep neural network
models. We deployed our mutants on 4 different devices of
varying computational capabilities and observed discrepancies
in mutants related to conditional operations, as well as some
unstable behaviour with those related to arithmetic types.

I. INTRODUCTION

With the popularity of perception AI increasing nowadays,
Deep Neural Networks (DNNs) are assigned with perception
tasks for complex, sophisticated and even safety-critical sys-
tems, such as autonomous vehicles. Furthermore, the necessity
of optimizing these models, while also enabling hardware
acceleration, becomes vital in order to achieve high perfor-
mance and meet the strict standards of systems as the ones
aforementioned. A recent study [7] however, has shown that
GPU bugs are amongst the main faults in DNNs, indicating
that the process of integrating hardware acceleration in DNNs,
is not straightforward.

Although many advances and standards have been defined to
increase effectiveness in the process, managing to implement
and apply optimizations to DNNs remains a challenging task
and an open problem [2]. Tools such as OpenAI’s Triton [15]
and Apache TVM’s TOPI [1] provide the necessary tools
for the developers to build such optimizations with focus
on integrating hardware acceleration, but the process requires
strong knowledge of parallel programming and DNNs in-
depth, and therefore are prone to software development bugs.

To assist developers identify the robustness of such opti-
mizations specifically when deploying on different hardware
acceleration devices, we propose a tool based on mutation
testing for DNNs, called MutateNN. The system generates
mutants out of pre-trained image classification models, imi-
tating errors introduced by the developers in the optimization
process, aiming to determine their effect across different hard-

ware acceleration devices. The tool orchestrates the mutation
generation an deployment process, following a configuration-
based recipe, through which it is capable of building mutations
targeting specific hardware acceleration devices, performing
deployment and inference and applying pairwise comparison
of the outputs in order to detect potential discrepancies. It is
noteworthy however that, although MutateNN is inspired by
the mutation testing concept applied in conventional software,
the system deviates for the paradigm, given that the aim is not
to test the effectiveness of specific test suites, but discover the
error-proneness of the system, when faults are unintentionally
introduced. This is valuable for DNNs, as the behaviour of
such systems is not imperatively defined by design. Further-
more, discovering problematic behaviours and error-proneness
is a difficult and non-straightforward procedure. Furthermore,
MutateNN can by used industrially by developers to test
the model architecture and structure robustness, by simulating
specific erroneous scenarios that can potentially be introduced
on model deployment and optimization phases, to observe
abnormal model behaviour and take measures to mitigate it,
especially in systems used in environments where there is little
margin of error.

To demonstrate the capabilities of MutateNN, we selected
7 widely-known image recognition models. The models were
all pre-trained with ImageNet [3] dataset. We generated 21 mu-
tations, related to model graph, tensor management, arithmetic
types and kernel operations, and we performed inference in 4
devices of varying computational capabilities. We observed
up to 100% differences across mutants related to conditional
operations, in particular those modifying the conditional op-
erator (e.g., less-than to less-than-equal). We also observed
an unexpectedly severe performance degradation when we
changed arithmetic types with ones of lower precision.

II. SYSTEM ARCHITECTURE

MutateNN consists of three main components: the Model
Variants Generator, the Execution Module, and the Analysis
Module. It utilizes a configuration-based approach, capable of
generating, deploying, performing inference and analyzing a
batch of model mutations. The system architecture is presented
in Figure 1. The system is built on top of TVM compiler
stack [1], which allows heavy parameterization of the models
and deployment on multiple different hardware acceleration
devices.

a) Model Variants Generator Module: In order to test
perception AI model robustness, MutateNN allows the gen-

ar
X

iv
:2

30
6.

01
69

7v
2 

 [
cs

.L
G

] 
 2

1 
Ju

n 
20

23



Fig. 1. Architecture of MutateNN: (1) Model Variants Generator for generating different mutations and compiling them to device code; (2) Mutations
Execution that executes the various mutants on images from a target dataset; and (3) Analysis that compares inference metrics between mutant executions and
reporting discrepancies.

eration of a number of model mutations, focusing on model
1) graph structure, 2) tensor management and computations,
3) arithmetic operations and 4) GPU kernel-based elements,
such as stores. The mutations supported are selected on the
basis of the elements involved in order for developers to
apply optimizations to a model and it is error-prone for
developers to introduce errors in the process of optimization.
Considering all these aspects, we implemented a number of
graph and tensor-level mutations representative to each of
these categories on the respective intermediate representations
(IRs) using TVM passes. The IR is then lowered in device
code. An example of the effect of a mutation in the device
code, can be observed on Figure 2. MutateNN generates
mutants based on the definitions set in its configuration file,
and stores it in compressed format, so that they can be loaded,
deployed and executed at a later stage in the process.

b) Mutations Execution Module: Once the tool com-
pletes the mutant generation process, MutateNN loads and
deploys a mutant to a hardware acceleration device for model
inference. The system utilizes Remote Process Communi-
cation (RPC) in order to execute inference of a model to
a remote hardware acceleration device. Once the model is
loaded, MutateNN prepares the dataset under test, applies
the necessary pre-processing on each dataset image performs
inference against the model mutant, generating the top-K
inference result along with the execution time. It then stores
each output to a separate file for further examination by the
analysis module.

c) Analysis Module: Once inference operations are com-
plete for the whole experiment set, then MutateNN applies
analysis to determine discrepancies across different mutant
executions. The system applies pairwise comparison against
the inference outputs generated by different devices for the
respective mutant under test. The system supports a number
of comparison metrics, such as top inference output label com-
parison, Levenshtein distance and Kendall’s Tau. The reporting
results are generated in a summary JSON file, enabling further
processing. The analysis module also has an intelligent way
of distinguishing crashes in dataset inference outputs, even
they are implicit (i.e., the model has not crashed, but its
performance is severely degraded).

Fig. 2. Mutation of a conditional operator from less-than (top) to less-than-
equal (bottom) in the device kernel code (OpenCL) for a fused operation in
MobileNetV2.

III. IMPLEMENTATION

MutateNN is available publicly on GitHub, at
https://www.github.com/luludak/MutateNN. It is implemented in
1551 lines of Python code (including 353 lines of third-
party open-source code for preprocessing, and 72 lines for
third-party comparison algorithms, all publicly available),
utilized a highly parameterizable configuration. MutateNN
is implemented on top of Apache TVM [1], a performance-
oriented DNN compiler stack that enables extensive, manual
and automatic DNN optimization and deployment in a
variety of hardware acceleration devices of different software
backends and architectures.

a) Model Variants Generator: The Variants Generator
utilizes both the Relay and Tensor-level IR passes of Apache
TVM’s API. MutateNN is implemented so that its end users
can define their own operators or functions to replace, via the
configuration. To demonstrate this part, we present two sam-
ples of code, part of the implementation of TIR pass (Figure 3),
demonstrating the mutation of conditional operators, and Relay
IR pass (Figure 4), demonstrating the replacement of activation
functions. The users are able to define their own function

https://www.github.com/luludak/MutateNN


mutations, based on their model architecture. In addition, the
system allows them to instruct where in the code this mutations
will occur, and to which extent, by defining the exact positions
to be mutated for the model under test in the configuration.

b) Mutations Supported: In detail, the system supports
four types of mutations: (1) graph-based, by applying op-
erations on the DNN model’s graph, such as changing an
activation function (e.g., converting ReLU to Sigmoid), (2)
tensor management-based, by mutating operations related to
handling of tensors, such as conditional operations that might
be part of a custom optimization implementation (e.g., chang-
ing the less-than (LT) operator to less-than-equal (LTE) in
a conditional expression), (3) arithmetic types- based, by
modifying types (e.g., converting Float32 variables to Int16)
and (4) GPU kernel related-operations, such as multiplying
the value stored in a GPU variable (store) and thread extent
modification. The module eventually generates the model
mutant to a linked library for the respective mutant and
compresses it, but it also generates the Relay IR and TIR
sources, as well the device code in high-level source for
inspection purposes. We can see two examples of this code in
Figures 3 and 4. The implementation logic for each mutation
category, is described as follows: Regarding (1), the system
applies either a replacement of function calls in the model
graph in Relay IR, or injects function calls to apply specific
operations, such as tensor transposition. In the latter case,
the system also ensures that axis parameters are properly
defined by performing analysis on graph metadata, so that
the mutant preserves validity and compiles. An indicative
example is shown on Figure 5. Regarding (2), the system
follows the logic presented on Figure 3. It traverses the TIR
code Abstract Syntax Tree (AST), and when it detects a
specific source operator that is marked for replacement in a
conditional statement, it replaces it with an operator indicated
for that purpose in the documentation. In addition, it can apply
mathematical operations to left and right operands, such as
adding a specific value. Regarding (3), the ststem traverses
the AST of the TIR, and it replaces all occurrences from a
source type to a target one. Finally, regarding (4), the system
once again traverses the TIR AST, but it applies mathematical
operations upon inline values used by TIR artifacts for kernel
generation, such as store values.

c) Inference Analysis: The analysis module is built based
on a folder exploration algorithm, allowing the system to per-
form scalable analysis, by identifying all the folders containing
executions The system then compares the specific mutant of
one device to the same mutant on another to detect discrep-
ancies. The system also supports a wide variety of pairwise
comparison algorithms, such as top-1 comparison, Levenshtein
Distance, and Kendall’s Tau. For the sake of simplicity, we
choose the first option in our experiments by default. Once
pairwise comparison is performed for all sets of mutations and
devices, the system generates a JSON file, containing, amongst
a number of analysis metadata, the difference percentage of
outputs for a dataset executed on a specific mutant across two
devices. It also generates a separate JSON file which contains

Fig. 3. Implementation of the operator mutation generation in TIR pass.

Fig. 4. Implementation of the activation function replacement mutation
generation in Relay IR pass.

Fig. 5. Injected tensor transposition in Relay IR.

only the cases that presented discrepancies. The analysis
module is also able to detect a crash in an output bundle by
requiring the source and target dataset batches to have the
same size of outputs. The system also detects implicit crashes
or extreme model performance degradation, by monitoring the
occurrences of very similar results. Once the error threshold
defined in MutateNN configuration is passed, the analysis
terminates for this output bundle.

IV. RELATED WORK

Existing work has primarily focused towards exploring
DNN model correctness, applying adversarial testing [10],
[18]. In terms of mutation testing, DeepMutation [9] and
DeepMutation++ [5] generate model mutants to assess the
test data input quality for convolutional and recurrent neu-
ral networks, respectively. In addition, contributions such as
LEMON [17] and CRADLE [11] explore mutation testing
and fault localization from models sourced from different
deep learning (DL) frameworks. In total, such systems focus
on testing the effectiveness of adversarial inputs or specific
model aspects such as DL frameworks, but do not explore the
effects of potential computational environment aspects, such
as hardware acceleration. In relation to DNN faults, a taxon-
omy of faults has been created [7], which reveals that GPU
issues are a primary cause of DNN model faults. However,
DNN developers and researchers utilize custom optimization
methods that integrate hardware acceleration, by using tools
such as Triton [15] and TVM TOPI [1]. Furthermore, the
implementation and deployment of optimizations to hardware
acceleration devices is an error-prone task. To the best of
our knowledge, MutateNN is the first work that attempts



to mitigate this problem, by considering the importance of
the aforementioned work and using inspiration from mutation
testing frameworks to highlight potential problems in the
process.

A. Experimental Setup

We considered seven widely used image recognition
models of various sizes: MobileNetV2 [13], ResNet152 [4],
AlexNet [8], ShuffleNet [19], EfficientNet [16],
DenseNet121 [6] and InceptionV2 [14]. All models are
pre-trained on ImageNet [3], considering we focus on the
deployment process and we used the ImageNet object
detection test dataset [12] as our experiments base dataset.

We also utilized 4 high-end to low-end GPU accelerators: an
Intel-based server featuring an Nvidia Tesla K40c GPU (Server
#1), a Nvidia Titan Xp (Server #2), a Nvidia AGX Xavier
featuring an Nvidia Volta GPU (Xavier), and a mobile-class
Hikey 970 board featuring an Arm Mali-G72 GPU (Hikey).

For our mutations set, we select 21 mutations, applying
tensor transpositions and additional mathematical computa-
tions to a variety of layers, replacement of activation functions
and operational layers, modification of conditional statements,
change of types to different ones with lower accuracy and
modification of kernel-based elements, such as variable (store)
values. To maximize the mutation effect, and contrary to the
conventional software testing practice of introducing only mu-
tants randomly to a small part of the system, we deliberately
mutated the occurrences of all matching cases identified on
each mutant. In detail the mutations we applied are split
into 6 main categories: 1) transposition of key layer tensors,
2) application of arithmetic operations in key layer tensors,
3) replacement of arithmetic types to affect tensor value
precision, 4) replacement of activation functions and important
layer operations, 5) modification of kernel variables and 6)
modifications of conditional statements.

The selection of mutations, was done in compliance with
an established taxonomy of real faults in DNNs [7], with
focus on simulating key aspects related to deployment. Briefly,
the taxonomy identified that tensor and layer structure and
properties can be error-prone, as well as GPU errors. We aim
to simulate the tensor errors in categories (1) - (3), (4) focuses
on layer errors and (5) simulates errors related to kernel
code executed in GPUs. Category (6) is also related to GPU
executed code, as with systems such as TVM TOPI [1] and
Triton [15], developers can describe complex optimization
operations manually. Furthermore, we aim to explore the error-
proneness of this procedure. In detail:

1) The transposition of key layers include the transposition
of Conv2D and Dense layer and weight tensors, as well
as batch normalization layers.

2) The application of arithmetic operations include the
application of exponent and rounding operations on
batch normalization layers.

3) The replacement of arithmetic types include the replace-
ment of Float32 to Float16, Int32 and Int16.

4) The replacement of layers and operations include the
transformation of ReLU to Sigmoid, as well as Add
operation to Subtract.

5) The modification of variable (store) values in kernels,
by applying minor changes to values.

6) The modification of conditional statements, involve the
replacements across a set conditional expression condi-
tions (<, >, <=, >=), as well as the modifications of
values of any of the conditional expression operands.

In total, we utilize 21 different mutations. The aim, is to
imitate real-world faults and discover to what extent DNNs
are vulnerable to such errors. However, this set of mutations
is indicative, and the system can be utilized to generate new
mutants with respect to the related configuration.

B. Preliminary Results

We observed considerable discrepancies across devices for
operators related to conditional expressions. In particular, the
mutant of changing less-than (LT) to less-than-equal (LTE)
operator in conditional expressions, revealed a wide variety of
results, as presented in Figure 6. We observe that, although
Shufflenet and AlexNet were proven the most robust systems
for this mutant, EfficientNet, MobileNetV2 and InceptionV2
presented heavy discrepancies across devices, while the mu-
tant crashed for almost all devices for DenseNet121 and
ResNet152.

Another notable observation, was the mutant adding an
offset value (0.5) to the right operand of LT conditional
expressions, where once again models presented a variation
of discrepancies, of up to 100% across devices. The results
can be observed in detail in Figure 7. It is noteworthy
that the deviations of this mutant follow a similar pattern
with the aforementioned change in the less-than conditional
operator, but is expected to an extent, as the two mutants are
semantically similar - leading to a variant in approximation
threshold in the mutated condition.

We also observed that all numeric type conversions led to
either model crash, or heavy model degradation, meaning that
the models produced the same output for a large amount of
completely different inputs. We considered this case as a crash
as well. This result is interesting, as a change to a type (e.g.,
Float32 to Float16) was expected to lead to a performance
degradation, but not to complete model crash, given that there
are standard methods that apply this concept for optimization
purposes, such as quantization.

The models were proven to be robust on the rest of the
mutants, with the exception of the mutant converting less-
than to greater-than operand in conditional statements led
to crashes for most of the models, with the exception of
AlexNet, where 96.3% to 98.8% differences were observed.
Also, applying exponent computation to convolution and dense
layer outputs crashed most of the models, except EfficientNet,
which presented very small differences (0.1% to 0.43%).
Converting ReLU to Sigmoid activation function layers also
led the generated mutants to crash.



Fig. 6. Dissimilarities across devices of the mutant changing LT to LTE in
conditional statements for all the DNNs under test (grey color indicates model
crash).

Fig. 7. Dissimilarities across devices of the mutant changing conditional
statement threshold by adding to right operand the value of 0.5 on LT
conditional expressions for all the DNNs under test (grey color indicates model
crash).

V. CONCLUSION

We present MutateNN, a tool that enables mutation testing
of DNN image recognition models. The tool supports muta-
tions related to model graph, tensor management, arithmetic
types and kernel memory management. We demonstrated the
potential of our tool by running preliminary experiments of
7 perception AI models, generating 21 mutations for each
and executing in 4 hardware acceleration devices of varying
capabilities. We observed up to 100% output label deviations
in 4 mutants, related primarily to threshold approximations
and conditional operators. We also observed a number of
unexpected crashes in relation to numeric types, which are
subject to further investigation in future work.

REFERENCES

[1] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy. TVM: An
automated end-to-end optimizing compiler for deep learning. In 13th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18), pages 578–594, Oct. 2018.

[2] T. Chen, L. Zheng, E. Yan, Z. Jiang, T. Moreau, L. Ceze, C. Guestrin,
and A. Krishnamurthy. Learning to optimize tensor programs, 2019.

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on
computer vision and pattern recognition, pages 248–255. Ieee, 2009.

[4] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. CoRR, abs/1512.03385, 2015.

[5] Q. Hu, L. Ma, X. Xie, B. Yu, Y. Liu, and J. Zhao. Deepmuta-
tion++: A mutation testing framework for deep learning systems. In
2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 1158–1161, 2019.

[6] G. Huang, Z. Liu, and K. Q. Weinberger. Densely connected convolu-
tional networks. CoRR, abs/1608.06993, 2016.

[7] N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco,
and P. Tonella. Taxonomy of real faults in deep learning systems.
In Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering, pages 1110–1121, 2020.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. Commun. ACM, 60(6):84–90,
may 2017.

[9] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li,
Y. Liu, J. Zhao, and Y. Wang. Deepmutation: Mutation testing of
deep learning systems. In 2018 IEEE 29th International Symposium
on Software Reliability Engineering (ISSRE), pages 100–111, Los
Alamitos, CA, USA, oct 2018. IEEE Computer Society.

[10] K. Pei, Y. Cao, J. Yang, and S. Jana. Deepxplore: Automated whitebox
testing of deep learning systems. CoRR, abs/1705.06640, 2017.

[11] H. V. Pham, T. Lutellier, W. Qi, and L. Tan. Cradle: Cross-backend
validation to detect and localize bugs in deep learning libraries. In
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), pages 1027–1038, 2019.

[12] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-
Fei. ImageNet Large Scale Visual Recognition Challenge. International
Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

[13] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen.
Inverted residuals and linear bottlenecks: Mobile networks for classi-
fication, detection and segmentation. CoRR, abs/1801.04381, 2018.

[14] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with
convolutions. CoRR, abs/1409.4842, 2014.

[15] M. Tan and Q. V. Le. Efficientnet: Rethinking model scaling for
convolutional neural networks, 2020.

[16] M. Tan and Q. V. Le. Efficientnet: Rethinking model scaling for
convolutional neural networks, 2020.

[17] Z. Wang, M. Yan, J. Chen, S. Liu, and D. Zhang. Deep learning
library testing via effective model generation. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE
2020, page 788–799, New York, NY, USA, 2020. Association for
Computing Machinery.

[18] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid. Deeproad:
Gan-based metamorphic testing and input validation framework for
autonomous driving systems. In 2018 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 132–142.
IEEE, 2018.

[19] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An extremely
efficient convolutional neural network for mobile devices. In 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 6848–6856, 06 2018.



APPENDIX

MutateNN is a comprehensive suite for compiling, op-
timizing, executing and analyzing pretrained DNNs under
different computational environment settings. In total, the tool
supports:

• Downloading and building Deep Neural Networks.
• Generating mutants from a variety of settings for testing

purposes, given many parameterization capabilities.
• Generating device code for execution on different hard-

ware acceleration devices supporting different frame-
works such as OpenCL and CUDA.

• Executing inference on those devices for a dataset of
inputs, following the necessary pre-processing, dependent
on each DNN model.

• Performing analysis against all mutation configurations,
for all devices, by supporting a variety of pairwise com-
parison operators, such as top-1 output label comparison,
and Kendall’s Tau.

• Allowing debug execution and different optimizations
applications on DNN models.

The suite utilizes Apache TVM[1]. The mutation transfor-
mations are programmed on Relay[?], TVM’s graph Interme-
diate Representation (IR), and TIR, the Tensor-level IR.

VI. INSTALLATION

The system requires TVM to be installed. We also use
Python v3.x.x (tested with 3.6.x-3.10.x) and Pip
as the package installer.

In addition, the system requires a number of pip packages.
You can find them in the requirements.txt file

VII. INSTRUCTIONS

1) Install Python and Pip on your system. Python comes
with linux distributions usually, but this is not always
the case for Pip. You can install it by running sudo
apt install python3-pip

2) Download and install TVM: For instructions of how to
install TVM, please refer to the TVM related guide for
developers1. We tested MutateNN using TVM v0.13.0.

3) Follow the installation from source instructions, and
based on the experiments you want to run, enable
the respective flags in the <tvm_folder>/build/
config.cmake. For our experiments, we followed
different settings per-device, but consider enabling the
USE_LLVM and USE_OPENCL or USE_CUDA flags,
depending on your configuration.

4) Install necessary Python packages by executing the com-
mand: pip install -r requirements.txt

5) Download necessary models, if you wish to run them
locally. Alternative, you can instruct the MutateNN
to download them for you. Although system utilizes
already provided models for Keras and PyTorch, we

1https://tvm.apache.org/docs/install/from_source.
html#developers-get-source-from-github

utilized some TF and TFlite models from the GitHub
repository of TensorFlow for slim Models.

6) You can also download the models manually,
place them in the models folder defined in
models_out_relative parameter, and defining
"type": "local" in the configuration file. By
default, use models from the official TensorFlow repo2.
The supported format for the models is ONNX.

VIII. CONFIGURATION

The configuration of the system is included into the ‘con-
fig.json‘ file. Each section is self-explanatory and defines
which part it concerns.

Important notes:
• You can utilize the TVM debugger, by setting
debug_enabled: true to collect additional infer-
ence metadata and execution traces.

• You can set different TVM optimization settings, by
modifying the opt_level variable from 0 to 4, with
optimization level increasing.

• You can set the mutations you want to generate, by
modifying the mutations entry of the object.

• You can specify the occurrence numbers that you want
your mutation to be applied, by modifying ‘positions‘
parameter in mutations. You can see examples of it on
the configuration file provided.

• Device settings have been cleared out to preserve
anonymity. If you wish, you can set up your own TVM
RPC server on your own device and run everything
following the instructions in TVM documentation3. You
can then define your device in the system configuration
and perform inference.

IX. EXAMPLE CASE

In order to verify your installation and be able to run the
framework with your own configuration, we have setup the
configuration to build the system utilizing 7 models under
test: MobileNetV2 [13], DenseNet121 [6], ResNet152 [4],
[?], AlexNet [8], EfficientNetLite [16], ShuffleNet [19], and
InceptionV2 [14]. You can download, run and evaluate the
models accordingly. All models are obtained from the slim
official repository, are pre-trained against ImageNet [3] and
perform classification tasks against 1000 labels.

We also provide a small test dataset, consisting of 5
public domain images, obtained from unsplash4. To demon-
strate device comparison, we have generated 3 simulations
on different devices for MobileNetV2, which can be found
on /generated/MobileNetV2/simple_run. You can
instruct MutateNN to build, run and evaluate the existing
dataset against these device outputs, by setting build,

2https://github.com/tensorflow/models/tree/master/
research/slim

3https://tvm.apache.org/docs/tutorial/cross_
compilation_and_rpc.html

4https://unsplash.com/images/stock/public-domain



execute and evaluate to true in theMobileNetV2
model entry of the configuration file.

Each model configuration entry also contains a number
of necessary parameters, such as the input layer name and
size, the output layer, etc, which are necessary for the model
preparation, deployment, execution and evaluation.

Once you set up the tool, you can execute MutateNN by
running: python3 main.py. An example of an execution
instance terminal output, containing model build, execution
and analysis, is presented on figure8.

A. Model Build & Mutants Generation

Inside config.json, you can set the mutations you want
to generate, by modifying the mutations entry of the object.
You can instruct MutateNN to generate mutants on Relay IR,
or in the Tensor-level IR. A number of supported mutations are
already provided, but they can be modified and parameterized,
based on the user needs.

The system will generate the models in the folder defined
in config.json in a tar package, along with a folder
providing their generated Relay, TIR representations, but also
their GPU host and kernel code, for inspection and debugging
purposes.

In total, the framework will generate the models compiled
on TVM, utilizing the opt=2 optimization setting by default
which performs basic graph-level optimizations to the models,
such as inference simplification, operator fusion and constant
folding.

B. Execution

Your system will then execute, generating a folder with
experiments. The structure followed is the following, using
MutateNN folder (<script_folder>) as the base folder:

• Build: /<models_out_relative>/<model_
variant>_<opt_setting>.tar

• Execution: <exec_out_relative>/mutations/
ts_<epoch_time_of_run>/<predictions>
.txt

• Evaluation: <evaluation_out_relative>
Based on existing configuration, inference generates the

top-5 predictions, along with the execution time per-
prediction at the bottom. In addition, you will find an
execution_log.txt file in the aforementioned folder,
containing info about the run.

The console will indicate the status of the running model
and update accordingly, as shown in Figure 8.

C. Analysis

Once execution is complete, analysis will be executed. This
will be done in 3 ways:

• Comparing results per-device (if provided), in JSON files.
• Analyze CSV and JSON files, containing metadata related

to the execution.
• Comparing results per-multiple executions (if provided).
The system will then generate the following files inside each

evaluation folder:

Fig. 8. Log of MutateNN performing all operations (build, execute, evaluate)
simultaneously, for MobileNetV2.

• device_evaluation.json, containing results per-
device comparison in a pairwise manner.

• device_discrepancies.json containing only the
cases where dissimilarities are observed.

• output_stats_total.csv, containing inference
time data and performance of statistical analysis against
execution times (using One Way ANOVA). This is an im-
plementation related to analyzing inference times, which
is not included in this work but is intended for future
work usage.

Finally, you can also try your own model, given you provide
the right files and settings. Configuration provides exactly the
details requested for a model to be loaded from a backend,
compiled using a specific optimization and GPU backend and
be run for inference, respectfully.

D. Error Logging

In case of an error, the suite will generate a file related to the
specific execution instance, by generating a file containing all
the necessary data in <script_folder>/error_log/
<model>/ts_<epoch_time_of_problematic_
run>/error_log.txt.


	Introduction
	System Architecture
	Implementation
	Related Work
	Experimental Setup
	Preliminary Results

	Conclusion
	References
	Installation
	Instructions
	Configuration
	Example Case
	Model Build & Mutants Generation
	Execution
	Analysis
	Error Logging


