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Spoiler Alert
▪ Most memory safe languages (e.g. Java, Javascript, Ruby, …) execute on 

managed runtime environments


▪ Managed runtime environments tend to be written in C/C++


▪ JVMs are a key part of the Morello software ecosystem


▪ We have managed to port interpreted OpenJDK to Morello


▪ Next steps are JIT & garbage collection


▪ Unlike other managed languages & runtimes (e.g. Javascript), the Java 
APIs expose longs as pointers 


▪ Porting to Morello requires modifications to core Java classes as well 
JVM internals
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Image source https://www.baeldung.com/wp-content/uploads/2021/07/1.png
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JVM Internals: >1.2M LOC
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Roadmap for the talk 

▪ Overview of attacks & exploits on Java/JVMs


▪ JVM porting strategy to Morello


▪ Preliminary Performance Results 


▪ Status/development plans for JVM ports


▪ Future Work/Questions
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Threat Model Guided By CVEs 
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Threat Model Guided By CVEs 
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Threat Model Guided By CVEs 
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Threat Model Guided By CVEs 

▪ JNI/Java code libraries misuse/flaws 


▪ Especially that related to XML/JSON processing


▪ JVM internals


▪ JIT compilation  


▪ ClassLoading/type verification  


▪ Object serialization/deserialization
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Outline of JIT Compilation Threats 

▪ Long history of attacks on JavaScript


▪ JIT is disabled Microsoft Edge security & iOS16 Lockdown modes


▪ Code is injected via JIT/heap spraying


▪ Control flow is directed into JIT-ted code at an altered PC


▪  Altering the PC delivers a different instruction sequence


▪ One that can be used to construct malicious actions


▪ Typically involves taking control of the execution stack


▪ Data only attacks corrupting a JIT’s intermediate representation


▪ Cause malicious code to be “legally” generated 
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Protecting the JVM with Capabilities
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Options & stages in protecting a JVM


▪ Morello pure capabilities - referential & spatial memory safety for free


▪ Temporal safety - requires revoke/invalidate capabilities


▪ Compartments 

JNI native code
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Target spatial memory safety using pure capability C64 mode


▪ Interpreter, then GC, then JIT 


▪ Morello has A64 and C64 purecap execution modes


▪ C64: object layout changes,  longs cannot represent addresses

Porting a JVM to (Morello) a new CPU

Compilation

System

Bytecode

Interpreter

Assembler


Just-in-time

Compiler


Zero 
assembler: libffi

 
TemplateTable interpreter machine 

code is generated at JVM startup. Needs 
an assembler

A64: sizeof(long) == sizeof(void*)

C64: sizeof(long) != sizeof(void*)

C64 modifies the A64 ISA 



13

 


Zero Assembler Interpreter

Entire JVM runs in purecap C64

• Fixed JVM assumptions

• Java API issues with longs

• Spatial memory protection 

Zero Assembler Bytecode Interpreter

Machine code address 
fields/arguments in Java API 

must use capabilities

Broke object layout

EpsilonGC no GC
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TemplateInterpreter 
Faster and enables profiling to trigger JIT compilation

JVM code runs in  A64

• Generates interpreter’s instructions 

• Tests interpreter usage of C64 ISA

• Manages A64/C64 transitions

Morello Assembler (A64)

TemplateTable Bytecode

Interpreter machine code (C64)

Limited 
spatial protection until 

it becomes fully 
purecap

JIT compilation can 
be added
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OpenJDK17 Initial Port Steps & Status
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OpenJDK17 Initial Port Steps & Status
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OpenJDK17 Initial Port Steps & Status
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OpenJDK17 Initial Port Steps & Status
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Preliminary JDK17 SciMark Composite Results 

Preliminary means performance has not been optimised,  and thus results are 
expected to be worst case


▪ Zero purecap assembler interpreter performance is 50% of the equivalent AArch64 
JVM 


▪ Template interpreter hybrid A64/C64 is 13x faster than  AArch64 Zero assembler 
interpreter


▪ Template interpreter AArch64 is 20x faster than the AArch64 Zero assembler 
interpreter


▪ Template interpreter hybrid A64/C64 performance is 66% of the equivalent 
AArch64 JVM
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Recap: OpenJDK Port

▪ Significant effort to get here


▪ Preliminary relative performance of AArch64 vs. Morello


▪ Demonstrated benefits of the templateInterpreter


▪ SciMark benchmark - subset of SpecJVM 
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OpenJDK17 Next Steps
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OpenJDK17 Next Steps
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 MOJO: OpenJDK17 Next Steps
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Takeaways for Porting Managed Languages

▪ Problems if managed language does not encapsulate machine code addresses (Java 
longs in API core classes)


▪ Hybrid A64/C64 execution needs detailed knowledge of codebase


▪ Moving to C64 execution can “break everything”


▪ Object layout changes, field offset calculations


▪ C64 code pointers have LSB set (problems in assembly stubs)


▪ Usage of LSBs for VM housekeeping potentially problematic


▪ Necessary to port in incremental steps 


▪ Make individual VM components C64 aware


▪ Use capabilities derived from the A64 default-data capability
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Ongoing/Future Work

▪ Improving OpenJDK port functionality/usage of capabilities


▪ Supporting Guest languages JavaScript/Python on Java 


▪ Improving security


▪ Fine-grained constraints for base/limit of capabilities


▪ Temporal safety 


▪ Compartmentalization models/APIs JNI/JIT compilers …


▪ Evaluate threat weaknesses in JVMs


▪ Exploit attack injection techniques for specific classes using modified JVMs
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Soteria & MOJO team

Soteria & MOJO projects: much more than just OpenJDK 


Andy Nisbet, Tim Hartley, Kunjian Song, David Jackson, Nikos Foutris, John Mawer, 
Guillermo Callaghan, Cosmic Gorgovan, Igor Wodiany, Lucas Cordeiro, Christos Kotselidis, 
Pierre Olivier, Giles Reger, Konstantin Korovin, Mikel Lujan: University of Manchester


Hannah Cushworth, Adam Dad, Eloise Slater, Philip Wilson, Hui Ling Wong, Christopher 
Woodham, James Mercer: The Hut Group


Avi Shaked, Thomas Melham: Oxford University


Thanks to Andrew Dinn (RedHat) for advice on OpenJDK internals and attack injections


Soteria & MOJO projects are funded via Innovate UK, as part of the DSbD programme



Questions?


