
OpenJDK on Morello

Port Status and Initial Lessons

Andy Nisbet, Tim Hartley and Mikel Luján

with input from many other team members

Soteria & MOJO projects funded by UK DSbD programme

2

Spoiler Alert
▪ Most memory safe languages (e.g. Java, Javascript, Ruby, …) execute on

managed runtime environments

▪ Managed runtime environments tend to be written in C/C++

▪ JVMs are a key part of the Morello software ecosystem

▪ We have managed to port interpreted OpenJDK to Morello

▪ Next steps are JIT & garbage collection

▪ Unlike other managed languages & runtimes (e.g. Javascript), the Java
APIs expose longs as pointers

▪ Porting to Morello requires modifications to core Java classes as well
JVM internals

3

Java Virtual Machine (JVM)
Java program javac Java bytecode (JVM instructions)

*.java

source code

*.class

binary files

Image source https://www.baeldung.com/wp-content/uploads/2021/07/1.png

4

JVM Internals: >1.2M LOC

Compilation

System

Bytecode

Interpreter

Assembler

Just-in-time

Compiler

Interpreted or

Compiled method

Machine code

Object map

Stack Heap Garbage Collector

JNI native code

5

Roadmap for the talk

▪ Overview of attacks & exploits on Java/JVMs

▪ JVM porting strategy to Morello

▪ Preliminary Performance Results

▪ Status/development plans for JVM ports

▪ Future Work/Questions

6

Threat Model Guided By CVEs

Compilation

System

Bytecode

Interpreter

Assembler

Just-in-time

Compiler

Interpreted or

Compiled method

Machine code

Object map

Stack Heap Garbage Collector

JNI native code

JNI
& Java code libraries misuses

and flaws

7

Threat Model Guided By CVEs

Compilation

System

Bytecode

Interpreter

Assembler

Just-in-time

Compiler

Interpreted or

Compiled method

Machine code

Object map

Stack Heap Garbage Collector

JNI native code

JIT
Compilation:

Code injection & IR
manipulation

Java bytecode
JIT processes a lowered

intermediate representation (IR) Machine code

8

Threat Model Guided By CVEs

Compilation

System

Bytecode

Interpreter

Assembler

Just-in-time

Compiler

Interpreted or

Compiled method

Machine code

Object map

Stack Heap Garbage Collector

JNI native code

JVM internals

• Class Loading

• Type checking

• Object de/serialisation

Malformed
inputs *.class and

program inputs

target

9

Threat Model Guided By CVEs

▪ JNI/Java code libraries misuse/flaws

▪ Especially that related to XML/JSON processing

▪ JVM internals

▪ JIT compilation

▪ ClassLoading/type verification

▪ Object serialization/deserialization

10

Outline of JIT Compilation Threats

▪ Long history of attacks on JavaScript

▪ JIT is disabled Microsoft Edge security & iOS16 Lockdown modes

▪ Code is injected via JIT/heap spraying

▪ Control flow is directed into JIT-ted code at an altered PC

▪ Altering the PC delivers a different instruction sequence

▪ One that can be used to construct malicious actions

▪ Typically involves taking control of the execution stack

▪ Data only attacks corrupting a JIT’s intermediate representation

▪ Cause malicious code to be “legally” generated

11

Protecting the JVM with Capabilities

Compilation

System

Bytecode

Interpreter

Assembler

Just-in-time

Compiler

Interpreted or

Compiled method

Machine code

Object map

Stack Heap Garbage Collection

Options & stages in protecting a JVM

▪ Morello pure capabilities - referential & spatial memory safety for free

▪ Temporal safety - requires revoke/invalidate capabilities

▪ Compartments

JNI native code

12

Target spatial memory safety using pure capability C64 mode

▪ Interpreter, then GC, then JIT

▪ Morello has A64 and C64 purecap execution modes

▪ C64: object layout changes, longs cannot represent addresses

Porting a JVM to (Morello) a new CPU

Compilation

System

Bytecode

Interpreter

Assembler

Just-in-time

Compiler

Zero
assembler: libffi

TemplateTable interpreter machine

code is generated at JVM startup. Needs
an assembler

A64: sizeof(long) == sizeof(void*)

C64: sizeof(long) != sizeof(void*)

C64 modifies the A64 ISA

13

Zero Assembler Interpreter

Entire JVM runs in purecap C64

• Fixed JVM assumptions

• Java API issues with longs

• Spatial memory protection

Zero Assembler Bytecode Interpreter

Machine code address
fields/arguments in Java API

must use capabilities

Broke object layout

EpsilonGC no GC

14

TemplateInterpreter
Faster and enables profiling to trigger JIT compilation

JVM code runs in A64

• Generates interpreter’s instructions

• Tests interpreter usage of C64 ISA

• Manages A64/C64 transitions

Morello Assembler (A64)

TemplateTable Bytecode

Interpreter machine code (C64)

Limited
spatial protection until

it becomes fully
purecap

JIT compilation can
be added

15

OpenJDK17 Initial Port Steps & Status

Compilation

System

Bytecode

Interpreter

Assembler

Just-in-time

Compiler

Interpreted or

Compiled method

Machine code

Object map

StackHeap

JVM Overview

Garbage Collector

JNI
Morello assembler A64

16

OpenJDK17 Initial Port Steps & Status

Compilation

System

Bytecode

Interpreter

Assembler

Just-in-time

Compiler

Interpreted or

Compiled method

Machine code

Object map

StackHeap

JVM Overview

Garbage Collector

JNI
Morello assembler A64

TemplateTable
interpreter mixed A64/C64

17

OpenJDK17 Initial Port Steps & Status

Compilation

System

Bytecode

Interpreter

Assembler

Just-in-time

Compiler

Interpreted or

Compiled method

Machine code

Object map

StackHeap

JVM Overview

Garbage Collector

JNI
Morello assembler A64

TemplateTable
interpreter mixed A64/C64

Zero assembler interpreter
fully C64 purecap

EpsilonGC C64

18

OpenJDK17 Initial Port Steps & Status

Compilation

System

Bytecode

Interpreter

Assembler

Just-in-time

Compiler

Interpreted or

Compiled method

Machine code

Object map

StackHeap

JVM Overview

Garbage Collector

JNI
Morello assembler A64

TemplateTable
interpreter mixed A64/C64

Zero assembler interpreter
fully C64 purecap

EpsilonGC C64

SerialGC C64

19

Preliminary JDK17 SciMark Composite Results

Preliminary means performance has not been optimised, and thus results are
expected to be worst case

▪ Zero purecap assembler interpreter performance is 50% of the equivalent AArch64
JVM

▪ Template interpreter hybrid A64/C64 is 13x faster than AArch64 Zero assembler
interpreter

▪ Template interpreter AArch64 is 20x faster than the AArch64 Zero assembler
interpreter

▪ Template interpreter hybrid A64/C64 performance is 66% of the equivalent
AArch64 JVM

20

Recap: OpenJDK Port

▪ Significant effort to get here

▪ Preliminary relative performance of AArch64 vs. Morello

▪ Demonstrated benefits of the templateInterpreter

▪ SciMark benchmark - subset of SpecJVM

21

OpenJDK17 Next Steps

Compilation

System

Bytecode

Interpreter

Assembler

Just-in-time

Compiler

Interpreted or

Compiled method

Machine code

Object map

StackHeap

JVM Overview

Garbage Collector

JNI
Morello assembler C64

TemplateTable
interpreter fully C64 purecap

execution

Zero assembler interpreter
fully C64 purecap

Serial &
Epsilon GC

22

OpenJDK17 Next Steps

Compilation

System

Bytecode

Interpreter

Assembler

Just-in-time

Compiler

Interpreted or

Compiled method

Machine code

Object map

StackHeap

JVM Overview

Garbage Collector

JNI
Morello assembler C64

Zero assembler interpreter
fully C64 purecap

Serial &
Epsilon GC

C1
JIT compiler

TemplateTable
interpreter fully C64 purecap

execution

23

 MOJO: OpenJDK17 Next Steps

Compilation

System

Bytecode

Interpreter

Assembler

Just-in-time

Compiler

Interpreted or

Compiled method

Machine code

Object map

StackHeap

JVM Overview

Garbage Collector

JNI
Morello assembler C64

Zero assembler interpreter
fully C64 purecap

Serial &
Epsilon GC

C1
JIT compiler

Graal
JIT compiler

G1
Concurrent GC

TemplateTable
interpreter fully C64 purecap

execution

24

Takeaways for Porting Managed Languages

▪ Problems if managed language does not encapsulate machine code addresses (Java
longs in API core classes)

▪ Hybrid A64/C64 execution needs detailed knowledge of codebase

▪ Moving to C64 execution can “break everything”

▪ Object layout changes, field offset calculations

▪ C64 code pointers have LSB set (problems in assembly stubs)

▪ Usage of LSBs for VM housekeeping potentially problematic

▪ Necessary to port in incremental steps

▪ Make individual VM components C64 aware

▪ Use capabilities derived from the A64 default-data capability

25

Ongoing/Future Work

▪ Improving OpenJDK port functionality/usage of capabilities

▪ Supporting Guest languages JavaScript/Python on Java

▪ Improving security

▪ Fine-grained constraints for base/limit of capabilities

▪ Temporal safety

▪ Compartmentalization models/APIs JNI/JIT compilers …

▪ Evaluate threat weaknesses in JVMs

▪ Exploit attack injection techniques for specific classes using modified JVMs

26

Soteria & MOJO team

Soteria & MOJO projects: much more than just OpenJDK

Andy Nisbet, Tim Hartley, Kunjian Song, David Jackson, Nikos Foutris, John Mawer,
Guillermo Callaghan, Cosmic Gorgovan, Igor Wodiany, Lucas Cordeiro, Christos Kotselidis,
Pierre Olivier, Giles Reger, Konstantin Korovin, Mikel Lujan: University of Manchester

Hannah Cushworth, Adam Dad, Eloise Slater, Philip Wilson, Hui Ling Wong, Christopher
Woodham, James Mercer: The Hut Group

Avi Shaked, Thomas Melham: Oxford University

Thanks to Andrew Dinn (RedHat) for advice on OpenJDK internals and attack injections

Soteria & MOJO projects are funded via Innovate UK, as part of the DSbD programme

Questions?

