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OS Vulnerabilities

Linux kernel vulnerabilities: State-of-the-art defenses and 
open problems. Mao et al. In Proceedings of the Second 
Asia-Pacific Workshop on Systems (pp. 1-5).

Characterizing hypervisor vulnerabilities in cloud computing 
servers. Perez-Botero et al. In Proceedings of the 2013 
international workshop on Security in cloud computing.
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Trusted Execution Environment (TEE)
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Programming TEEs

Trusted 
Project
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Project
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EDL
● Trampoline functions
● Arcane Makefiles



HasTEE
● Type-driven Partitioning of a single program
● Program in a high-level language - Haskell
● Enforce Information Flow Control on data 

within enclaves



add :: Int → Int → Int 

Haskell

add_with_IO :: Int → Int → IO Int 



Monad

add_with_IO :: Int → Int → IO Int
add_with_IO x y = do
   name ← read “Enter your name”
   putStrLn (“Hello” ++ name)

putStrLn (“Result = ” ++ (show (x + y))) 
   
 



Illustration : Password Checker
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Compilation 1

Compilation 2

Runs on a 
Trusted GHC 
Runtime using 
a subset of 

glibc 



Information Flow Control

Declassification

Low High



Information Flow Control

onEnclave

Low High



Information Flow Control

onEnclave :: (Binary a) => Secure (Enclave a) → Client a 



Information Flow Control

onEnclave :: (Binary a) => Secure (Enclave a) → Client a 

Lack of a Binary instance 
prevents accidental leaks



Information Flow Control

onEnclave :: (Binary a) => Secure (Enclave a) → Client a 

Enclave monad restricted 
using a RestrictedIO typeclass



Zero Trust Federated Learning



Enclave a

Possibly malicious 
libraries



Haskell has a long history of 
using the type system to 
protect confidential data*

*MAC, LIO, HLIO [Haskell 2008], [ICFP 2012], [OSDI 2012], [CSF 2014], 
[ICFP 2015], [CCS 2017], [CSF 2019], [POPL 2019], [CSF 2020]



Enclave a
Does not instantiate 

MonadIO but RestrictedIO
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Enclave a dictPwdChkr :: (FileIO m, NetworkIO m) 
            => Password → m Bool
dictPwdChkr pwd = do
   localDict ← readFile “foo.txt”
   let b = any (== pwd) localDict
   res ← compareDictPwd socket2 pwd
   str ← readFile “/etc/passwd”
   send socket1 str
   return (res || b)



Enclave a dictPwdChkr :: {Capability} 
             → Password → IO Bool
dictPwdChkr pwd = do
   (fd1, socket2) ← getCaps
   localDict ← readFile fd1
   let b = any (== pwd) localDict
   res ← compareDictPwd socket2 pwd
   str ← readFile ???
   send ??? str
   return (res || b)

{fd1, socket2}

readFile :: FileDescriptor → IO String



Enclave a dictPwdChkr :: {Capability} 
             → Password → IO Bool
dictPwdChkr pwd = do
   (fd1, socket2) ← getCaps
   localDict ← readFile fd1
   let b = any (== pwd) localDict
   res ← compareDictPwd socket2 pwd
   str ← readFile 7
   send ??? str
   return (res || b)

{fd1, socket2}

readFile :: FileDescriptor → IO String

Attempts to forge will 
fail as the file table can 
be protected outside the 
library sandbox



Is Haskell’s purity and type system 
ideal for tracking capabilities?



main :: IO ()
main = putStrLn “Hello World!”



main :: IO ()
main = putStrLn “Hello World!”

Not capability-safe as 
System.IO exposes “stdout”



main :: IO ()

Global NamespacesConcurrency Exceptions

FFI System.IO



Joe-E

E

Secure 
EcmaScript

Caja

Joule

WebAssembly

Capability Languages

Mostly dynamic languages



Capability Taming is tedious and 
error prone (see JoeE)



dictPwdChkr :: Password → IO Bool 

Can we look at library interfaces and figure 
out what capabilities they require?



λ x . y + x

Free variable



λ x . … putStrLn x

Free variable



 dictPwdChkr ::   (Password → IO Bool)

Blocks all ambient capabilities

Recovering Purity with Comonads and Capabilities. Choudhury et al. ICFP ‘20
Practical Normalization by Evaluation for EDSLs. Valliappan et al. ICFP ‘21
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Secure Enclave Programming
HasTEE



CREDITS: This presentation template was created by 
Slidesgo, incluiding icons by Flaticon, and 

infographics & images by Freepik.

THANKS!
Do you have any questions?

sarkara@chalmers.se


