
Confidential Computing
with Haskell
Abhiroop Sarkar
Chalmers University, Gothenburg

KEY IDEA 1

UNTRUSTED ENCLAVE
DECLASSIFICATION

KEY IDEA 2

ENCLAVE

Libraries with
ambient authority

KEY IDEA 2

ENCLAVE

Libraries with
ambient authority

Capabilities

Haskell on Trusted Execution
Environments

HasTEE

Authors

Robert Krook Koen ClaessenAbhiroop Sarkar

Cloud Deployments

HARDWARE

HYPERVISOR

OPERATING
SYSTEM

OPERATING
SYSTEM

APP APP APP My
APP

Trusted
Computing

Base

OS Vulnerabilities

Linux kernel vulnerabilities: State-of-the-art defenses and
open problems. Mao et al. In Proceedings of the Second
Asia-Pacific Workshop on Systems (pp. 1-5).

Characterizing hypervisor vulnerabilities in cloud computing
servers. Perez-Botero et al. In Proceedings of the 2013
international workshop on Security in cloud computing.

Cloud Deployments

HARDWARE

HYPERVISOR

OPERATING
SYSTEM

OPERATING
SYSTEM

APP APP APP My
APP

Cloud Deployments

HARDWARE

HYPERVISOR

OPERATING
SYSTEM

OPERATING
SYSTEM

Trusted Execution Environment (TEE)

HARDWARE

HYPERVISOR

OPERATING
SYSTEM

OPERATING
SYSTEM

TEE

Trusted Execution Environment (TEE)

HARDWARE

HYPERVISOR

OPERATING
SYSTEM

OPERATING
SYSTEM

TEE

Partitioning

Confidential
code and data

Restricted
libc (no mmap)

Trusted Execution Environment (TEE)

Physical Memory
Protection

Programming TEEs

Trusted
Project

Untrusted
Project

Original Project

Restricted
libc

Programming TEEs

Trusted
Project

Untrusted
Project

Original Project

EDL
● Trampoline functions
● Arcane Makefiles

HasTEE
● Type-driven Partitioning of a single program
● Program in a high-level language - Haskell
● Enforce Information Flow Control on data

within enclaves

add :: Int → Int → Int

Haskell

add_with_IO :: Int → Int → IO Int

Monad

add_with_IO :: Int → Int → IO Int
add_with_IO x y = do
 name ← read “Enter your name”
 putStrLn (“Hello” ++ name)

putStrLn (“Result = ” ++ (show (x + y)))

Illustration : Password Checker

The secure
code and data

The Enclave
monad

The untrusted
part

Enclave
Function

Application

Enclave
Function

Application
Mimics a
remote

procedure
call

Compilation 1

Compilation 1

Compilation 2

Compilation 1

Compilation 2

Runs on a
Trusted GHC
Runtime using
a subset of

glibc

Information Flow Control

Declassification

Low High

Information Flow Control

onEnclave

Low High

Information Flow Control

onEnclave :: (Binary a) => Secure (Enclave a) → Client a

Information Flow Control

onEnclave :: (Binary a) => Secure (Enclave a) → Client a

Lack of a Binary instance
prevents accidental leaks

Information Flow Control

onEnclave :: (Binary a) => Secure (Enclave a) → Client a

Enclave monad restricted
using a RestrictedIO typeclass

Zero Trust Federated Learning

Enclave a

Possibly malicious
libraries

Haskell has a long history of
using the type system to
protect confidential data*

*MAC, LIO, HLIO [Haskell 2008], [ICFP 2012], [OSDI 2012], [CSF 2014],
[ICFP 2015], [CCS 2017], [CSF 2019], [POPL 2019], [CSF 2020]

Enclave a
Does not instantiate

MonadIO but RestrictedIO

Enclave a

Ambient
authority

Enclave a dictPwdChkr :: (FileIO m, NetworkIO m)
 => Password → m Bool
dictPwdChkr pwd = do
 localDict ← readFile “foo.txt”
 let b = any (== pwd) localDict
 res ← compareDictPwd socket2 pwd
 str ← readFile “/etc/passwd”
 send socket1 str
 return (res || b)

Enclave a dictPwdChkr :: {Capability}
 → Password → IO Bool
dictPwdChkr pwd = do
 (fd1, socket2) ← getCaps
 localDict ← readFile fd1
 let b = any (== pwd) localDict
 res ← compareDictPwd socket2 pwd
 str ← readFile ???
 send ??? str
 return (res || b)

{fd1, socket2}

readFile :: FileDescriptor → IO String

Enclave a dictPwdChkr :: {Capability}
 → Password → IO Bool
dictPwdChkr pwd = do
 (fd1, socket2) ← getCaps
 localDict ← readFile fd1
 let b = any (== pwd) localDict
 res ← compareDictPwd socket2 pwd
 str ← readFile 7
 send ??? str
 return (res || b)

{fd1, socket2}

readFile :: FileDescriptor → IO String

Attempts to forge will
fail as the file table can
be protected outside the
library sandbox

Is Haskell’s purity and type system
ideal for tracking capabilities?

main :: IO ()
main = putStrLn “Hello World!”

main :: IO ()
main = putStrLn “Hello World!”

Not capability-safe as
System.IO exposes “stdout”

main :: IO ()

Global NamespacesConcurrency Exceptions

FFI System.IO

Joe-E

E

Secure
EcmaScript

Caja

Joule

WebAssembly

Capability Languages

Mostly dynamic languages

Capability Taming is tedious and
error prone (see JoeE)

dictPwdChkr :: Password → IO Bool

Can we look at library interfaces and figure
out what capabilities they require?

λ x . y + x

Free variable

λ x . … putStrLn x

Free variable

 dictPwdChkr :: (Password → IO Bool)

Blocks all ambient capabilities

Recovering Purity with Comonads and Capabilities. Choudhury et al. ICFP ‘20
Practical Normalization by Evaluation for EDSLs. Valliappan et al. ICFP ‘21

ENCLAVE

Libraries with
ambient authority

Capabilities

Secure Enclave Programming
HasTEE

CREDITS: This presentation template was created by
Slidesgo, incluiding icons by Flaticon, and

infographics & images by Freepik.

THANKS!
Do you have any questions?

sarkara@chalmers.se

