
Le Temps des Cerises: Efficient stack safety using
uninitialized and directed capabilities

Alix Trieu
Based on joint work with A. L. Georges†, A. Guéneauý, T. van Strydonck�, A. Timany†, D. Devriese�, L. Birkedal†

†Aarhus University, ýInria, �KU Leuven

March 31, 2023

Disclaimer

The views, opinions and/or findings contained in this presentation are those of the authors and should
not be interpreted as representing the official views or policies of the French National Cybersecurity
Agency or the French Government.

March 31, 2023 2 / 36

Stack Safety

At a low level, functions must manage their own data, e.g., local variables and information on
how to return to their callers.
The call stack is a fundamental data structure used by many programming languages to
implement function calls efficiently.
It is thus the target of many attacks.
Is it protected by capabilities? Can it be more protected?

March 31, 2023 3 / 36

Stack Safety

In pure-capability mode, the most basic usage of CHERI capabilities is to enforce spatial memory
safety, e.g., protect against buffer overflows.

1 void f(void) {
2 int ch;
3 char buf [512];
4 char *p = buf;
5 while ((ch = getchar ()) != EOF) {
6 *p++ = (char)ch;
7 }
8 return ;
9 }

March 31, 2023 4 / 36

Stack Safety

Current software development practices are such that projects may have many dependencies that
are difficult to completely audit.
A gross overapproximation would be to basically consider external library as unknown code.

1 void adv(void);
2 void f(void) {
3 int *x = 1; // Allocated on the stack.
4 adv (); // Call some arbitrary code.
5 assert (x == 1); // Can we be sure this will not fail?
6 }

March 31, 2023 5 / 36

Spatial Stack Safety

The issue is that the stack pointer is not protected and is shared accross all functions.

1 f: # @f
2 cincoffset csp , csp , -64 # reserve stack frame
3 csc cra , 48(csp) # save return address
4 csc cs0 , 32(csp) # save frame pointer
5 cincoffset cs0 , csp , 64 # \
6 cincoffset ca0 , cs0 , -48 # build x in ca1
7 csetbounds ca1 , ca0 , 16 # /
8 csc ca1 , -64(cs0) #
9 cmove ca0 , cnull # ca0 = 0

10 cincoffset ca0 , ca0 , 1 # ca0 = 1
11 csc ca0 , 0(ca1) # *x = 1
12 ccall adv
13 ...

https://cheri-compiler-explorer.cl.cam.ac.uk/z/xqj7WY

March 31, 2023 6 / 36

https://cheri-compiler-explorer.cl.cam.ac.uk/z/xqj7WY

Spatial Stack Safety

The issue is that the stack pointer is not protected and is shared accross all functions.
This is not unexpected since that’s what the ABI mandates.
But can we define a new calling convention that protects the stack pointer?
How about not sharing the part of the stack that is used and restore it when we need it, how can
we do that?

March 31, 2023 7 / 36

Sealing

March 31, 2023 8 / 36

Sealing

March 31, 2023 9 / 36

A Calling Convention

A naive idea would be the following.
Before calling a function:

Copy and seal stack pointer.
Resize the stack pointer to remove own frame.
Clear registers if needed.
Provide sealed pair of return pointer and own frame to callee.
When callee returns, restore own frame.

When returning from a call:
Clear own stackframe and registers if needed.
Use CInvoke on sealed pair to return to caller.

The live stack pointer now only gives access to unused parts of the stack.

March 31, 2023 10 / 36

A Calling Convention

caller’s
stackframe

callee’s
stack

pointer

Sealed stack pointer in C31

Stack pointer given to callee in CSP

March 31, 2023 11 / 36

Another example

1 void adv(void);
2 void f(void) {
3 static int x; // Variable persists accross calls.
4 x = 0;
5 adv ();
6 x = 1;
7 adv ();
8 assert (x == 1); // This should not fail.
9 }

March 31, 2023 12 / 36

Well-Bracketed Control-Flow

“High-level” languages have a structured control-flow, and expect function calls to be
“well-bracketed”.

1 void adv(void);
2 void f(void) {
3 static int x; // Variable persists accross calls.
4 x = 0;
5 adv ();
6 x = 1;
7 adv ();
8 assert (x == 1); // This should not fail.
9 }

March 31, 2023 13 / 36

Well-Bracketed Control-Flow

“High-level” languages have a structured control-flow, and expect function calls to be
“well-bracketed”.

1 void adv(void);
2 void f(void) {
3 static int x; // Variable persists accross calls.
4 x = 0;
5 adv (); // <- Normal return .
6 x = 1;
7 adv ();
8 assert (x == 1); // This should not fail.
9 }

March 31, 2023 13 / 36

Well-Bracketed Control-Flow

“High-level” languages have a structured control-flow, and expect function calls to be
“well-bracketed”.

1 void adv(void);
2 void f(void) {
3 static int x; // Variable persists accross calls.
4 x = 0;
5 adv ();
6 x = 1;
7 adv (); // <- Stash the return capability away and calls f.
8 assert (x == 1); // This should not fail.
9 }

March 31, 2023 13 / 36

Well-Bracketed Control-Flow

“High-level” languages have a structured control-flow, and expect function calls to be
“well-bracketed”.

1 void adv(void);
2 void f(void) {
3 static int x; // Variable persists accross calls.
4 x = 0;
5 adv (); // <- x is set to 0, and use the stashed return capability .
6 x = 1;
7 adv ();
8 assert (x == 1); // This should not fail.
9 }

March 31, 2023 13 / 36

Well-Bracketed Control-Flow

“High-level” languages have a structured control-flow, and expect function calls to be
“well-bracketed”.

1 void adv(void);
2 void f(void) {
3 static int x; // Variable persists accross calls.
4 x = 0;
5 adv ();
6 x = 1;
7 adv (); // Returned here with x set to 0.
8 assert (x == 1); // This should not fail.
9 }

March 31, 2023 13 / 36

Well-Bracketed Control-Flow

In order to ensure proper local state encapsulation, we need to enforce well-bracketedness of
control-flow.
The issue is that the return pointer can be stashed anywhere.
Is there a way to restrict that?

March 31, 2023 14 / 36

Local Capabilities

March 31, 2023 15 / 36

Local Capabilities

March 31, 2023 16 / 36

Local Capabilities

We follow the CHERI ISA Tech Report’s suggestion:
The stack pointer is made local (Global bit unset) and is the only capability with the Permit
Store Local bit set.
Thus all stack derived pointers are local and can only be stored on the stack.
We can make return pointers local and can thus only be stored on the stack!

March 31, 2023 17 / 36

Is it enough?

Before calling a function:
Copy and seal stack pointer.
Resize the stack pointer to remove own frame.
Clear registers if needed.
Provide sealed local pair of return pointer
and own frame to callee.
When callee returns, restore own frame.

The return pointer can only be kept on the stack
now!

f

adv

f

adv

return
pointer

March 31, 2023 18 / 36

Is it enough?

Before calling a function:
Copy and seal stack pointer.
Resize the stack pointer to remove own frame.
Clear registers if needed.
Clear the whole stack.
Provide sealed local pair of return pointer
and own frame to callee.
When callee returns, restore own frame.

The return pointer can only be kept on the stack
now!

f

adv

f

adv

return
pointer

f clears
before

calling adv

March 31, 2023 19 / 36

An (Improved) Calling Convention

Before calling a function:
Copy and seal stack pointer.
Resize the stack pointer to remove own frame.
Clear registers if needed.
Clear the whole stack.
Provide sealed local pair of return pointer and own frame to callee.
When callee returns, restore own frame.

When returning from a call:
Clear whole stack and registers if needed (to prevent caller and callee collaborating).
Use CInvoke on sealed pair to return to caller.

Clearly very inefficient!

March 31, 2023 20 / 36

Uninitialized Capabilities

Clearing the whole stack is clearly an expensive operation.
We introduce uninitialized capabilities to remedy that.

b a e

Can be
read and

overwritten

Can only be
written to

March 31, 2023 21 / 36

Unitialized Capabilities

Moving the cursor can only be accomplished through writing at the cursor boundary.

b a e

b a + 8 e

store

March 31, 2023 22 / 36

Uninitialized Capabilities

How can we use uninitialized capabilities to avoid clearing the stack?
To protect against the callee, one must first clear the part of the stack handed to it.
We can instead just give an uninitialized stack pointer to the callee, avoiding the need for
clearing.

March 31, 2023 23 / 36

No Clearing!

Before calling a function:
Copy and seal the local stack pointer.
Resize the stack pointer to remove own frame.
Clear registers if needed.
Clear the whole stack. Make sure the stack
pointer is uninitialized.
Provide sealed local pair of return pointer and
own frame to callee.
When callee returns, restore own frame.

f

adv

f

adv

return
pointer

Uninitialized
part

March 31, 2023 24 / 36

A (More Improved) Calling Convention

Before calling a function:
Copy and seal stack pointer.
Resize the stack pointer to remove own frame.
Clear registers if needed.
Clear the whole stack. Make sure the stack pointer is uninitialized.
Provide sealed local pair of return pointer and own frame to callee.
When callee returns, restore own frame.

When returning from a call:
Clear whole stack and registers if needed (to prevent caller and callee collaborating).
Use CInvoke on sealed pair to return to caller.

Can we avoid the stack clearing when returning?

March 31, 2023 25 / 36

What’s the issue?

adv needs to overwrite the stack to reserve its
stackframe.

adv

March 31, 2023 26 / 36

What’s the issue?

adv needs to overwrite the stack to reserve its
stackframe.

adv

March 31, 2023 26 / 36

What’s the issue?

There is nothing keeping adv from overwriting the
whole stack!

adv

March 31, 2023 26 / 36

What’s the issue?

adv can keep a completely initialized stack pointer
and read leftover capabilities on the stack!

adv

f

adv can
keep an

initialized
view of

the stack

March 31, 2023 26 / 36

Temporal Safety and Dangling Pointers

1 int N, K;
2 void h(int* x) { *x = 0; }
3 void g(int* x) {
4 char* t[K];
5 h(x); }
6 void f(int ** x) {
7 char* t[N]; // Example illustrating
8 int z; // use after reallocate
9 *x = &z; } // issue

10 int main(void) {
11 int* x;
12 f(&x);
13 g(x);
14 return 0; }

March 31, 2023 27 / 36

Temporal Safety and Dangling Pointers

Functions should not be able to read leftover data on the stack.
Functions should not be able to pass up capabilities that are becoming stale.
How can we prevent this?

March 31, 2023 28 / 36

How the stack evolves

The stack evolves in a specific way and
maybe we can take advantage of this.

caller
caller’s

stackframe

stack
pointer
given to

the callee

March 31, 2023 29 / 36

How the stack evolves

The stack evolves in a specific way and
maybe we can take advantage of this.
We want to prevent the caller to be able to
read what’s left on the stack by the callee.
The unsealed stackframe capability should
not have read authority over the area of the
stack given to the callee.
This stackframe capability is passed to the
callee, so it doesn’t need to be able to be
kept within its own read authority.

caller
caller’s

stackframe

stack
pointer
given to

the callee

March 31, 2023 29 / 36

Restricting where capabilities can be stored

What if we restricted where the sealed
stackframe capability can be stored?
What if it could only be stored outside of its
read authority?
Since a capability range is contiguous, this
would allow the callee to ensure that its caller
does not have read authority over the given
part of the stack.

caller

can be
stored here

caller’s
stackframe

stack
pointer
given to

the callee

March 31, 2023 30 / 36

Restricting where capabilities can be stored

What if we restricted where the sealed
stackframe capability can be stored?
What if it could only be stored outside of its
read authority?
Since a capability range is contiguous, this
would allow the callee to ensure that its caller
does not have read authority over the given
part of the stack.

caller

cannot be
stored here

caller’s
stackframe

stack
pointer
given to

the callee

March 31, 2023 30 / 36

Restricting where capabilities can be stored

We also want to prevent a callee to pass up a
stack derived capability that is going to be
stale at the end of the call.

caller

callee
cannot be
stored here

March 31, 2023 31 / 36

Restricting where capabilities can be stored

This gives us some constraints:
Stack derived capabilities should not be stored where they have read authority.
Stack derived capabilities should not be passed up.
Therefore, stack derived capabilities can only be stored down.

March 31, 2023 32 / 36

Directed Capabilities

We propose directed capabilities such that a directed capability c can only be stored at some
address a such that readUpTo(c) ≤ a.
readUpTo(UR_, b, e, a) = min(e, a)
readUpTo(R_, b, e, a) = e

Simple check similar to existing ones.

March 31, 2023 33 / 36

A Final Calling Convention

Parameters are now passed on the stack.
Before calling a function:

Copy and seal the directed stack pointer.
Resize the stack pointer to remove own frame.
Clear registers if needed.
Make sure the stack pointer is uninitialized.
Provide sealed local pair of return pointer and own frame to callee by storing it on the stack.
When callee returns, restore own frame.

When returning from a call:
Clear the registers if needed.
Use CInvoke on sealed pair to return to caller.

March 31, 2023 34 / 36

Conclusion

We proposed a new calling convention for ensuring spatial and temporal stack safety.
We prove (formally) in the following publications that the properties are indeed properly enforced
for an idealized core capability machine.

Efficient and Provable Local Capability Revocation using Uninitialized Capabilities.
Aïna Linn Georges, Armaël Guéneau, Thomas Van Strydonck, Amin Timany, Alix Trieu, Sander
Huyghebaert, Dominique Devriese, Lars Birkedal.
48th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL), 2021.
Le Temps des Cerises: Efficient Temporal Stack Safety on Capability Machines using
Directed Capabilities.
Aïna Linn Georges, Alix Trieu, Lars Birkedal.
Object-oriented Programming, Systems, Languages, and Applications (OOPSLA), 2022.

March 31, 2023 35 / 36

Future Work

This is all theoretical currently, implement and test whether this calling convention is practical.
Is it compatible with CHERIoT? Are there enough free bits in their compression scheme?
Heap safety: Can we revoke shared heap capabilities?

Make heap capabilities local before sharing: capabilities loaded using these capabilities may be
global.
Need some sort of recursive “load-global” permission as proposed in CHERIoT.

March 31, 2023 36 / 36

