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Transient-Execution Attacks

if (idx0 < size){
int idx1 = array0[idx0];
int idx2 = array1[idx1];
…

}

Transient-execution attacks combine:

• Directed speculative execution
• Side-channels, e.g., cache timing

Spectre v1 is most infamous example:

Cache lines for array1
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Transient-Execution Attacks

Transient-execution attacks have become numerous:

• Spectre-like: Following control-flow or data-flow 
misprediction

• Meltdown-like: Following a faulting instruction
• MDS (Microarchitectural Data Sampling): Leaking 

in-flight data from buffers

Leakage sources and reasons:

• Branch direction prediction
• Indirect jump target prediction
• Return address prediction
• Memory disambiguation
• Speculative load forwarding
• Instruction scheduling
• Out-of-order execution
• Reading from store buffers
• …
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Transient-Execution Attacks on CHERI

Previous research shows that CHERI systems can be 
vulnerable to transient-execution attacks

• Traditional Spectre attacks mostly work
• CHERI can, but does not need to protect against 

transient-execution attacks

CHERI-RISC-V

Spectre-PHT Safe

Spectre-BTB Vulnerable

Spectre-RSB Vulnerable

Spectre-STL Vulnerable

Meltdown-US-CHERI Safe

Meltdown-GP-CHERI Safe

Results on obtained on CHERI-Toooba

Mitigation of transient-execution attacks is caused by design 
properties of CHERI-Toooba rather than CHERI
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Transient-Execution Attacks on CHERI
What are the reasons for the successful attacks on CHERI systems?

“Speculation with capabilities”

Capability EntryTagPC

hash() = ?

Malicious code retrieves a capability and all its 
permissions during speculative execution!

BTB Entry
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How to mitigate transient-execution 
attacks?
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Compartmentalisation

Conventional compartmentalisation:

• Privilege decomposition
• Traditionally separate one process into multiple 

compartments with less privileges each
• Decrease the attack surface

Big process Multiple small 
compartments

Malicious code cannot escape their 
compartment
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Compartmentalisation against Transient Execution

Effective mitigation approach, but:

• Coarse-grained approach does not allow for fine-
grained protection

• High performance cost when process switching

Wild 
speculation

No state sharing 
between 

compartments

We need to do better!
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Compartmentalisation with CHERI
Advantages against conventional compartmentalisation:

• Fine-grained decomposition
• Built-in domain transitions, e.g., through capability 

sealing (non-dereferencable capabilities)

address

permissions compressed bounds s

64-bits

v

object type (24-
bits)

object type

more compressed bounds
sealed: 
S=1

That sounds like the 
problem is already solved!
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What are the main challenges ahead?
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Compartmentalisation Challenges (1)
“The architectural specification vacuum”

Currently, the architecture does not constrain speculative execution

We need architectural guarantees about speculative execution for security

Guarantees needed for:

• Ability to test hardware for security properties
• Build secure software on top of architectural guarantees
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Compartmentalisation Challenges (2)
“Understanding what we need to protect”

High-end microarchitectures have more and more 
state (Apple M1 has 16 billion transistors as an 
indicator for microarchitectural state growth)

Different forms of state:

• Long-term (i.e., BTB)
• Transient (i.e., scheduling in a pipeline)

Reason for complexity:

Need for ever increasing single-
core performance!

We need a full microarchitectural audit!
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Compartmentalisation Challenges (3)
“How to implement a compartment?”

Hardware design challenges:

• Large increase in compartment switches 
due to fine-grained compartments

• Every compartment switch is more 
expensive than a function call

• State sharing can benefit performance
• Dedicated additional microarchitectural 

state for compartments needed

Comp A

Comp B

ReturnCall

Calls and returns need to 
be inexpensive
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Compartmentalisation Challenges (4)
“How to implement security?”

Security challenges:

• Multiple different security models
• Hierarchy of compartments
• Trust relations between compartments

Comp A

Comp C

Comp B

What is the 
mutual trust 
relationship?

The two compartments have the same code

The two compartments have different code
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Conclusions

• Compartmentalisation is needed to mitigate transient-execution attacks

• Industry solutions are performance expensive and coarse grained

• CHERI allows fine-grained compartmentalisation

• Research in progress:

§ Architectural specification necessary

§ Identifying relevant microarchitectural state

§ Implementing microarchitectural solutions


