
CHERIoT

Robert Norton-Wright
Saar Amar, Tony Chen, David Chisnall,
Wes Filardo, Kunyan Liu, Hongyan Xia
Microsoft



IoT
The ‘S’ stands for security



Motivation – IoT and embedded

The IoT ecosystem:

Includes diverse codebases

Mostly unsafe C/C++

Mitigations are rare

Rewriting in safe languages

has challenges:
Expensive

Talent shortage

Risk of introducing bugs



Much embedded code 
is intrinsically unsafe

Memory 
allocators

Schedulers

Device 
interface 

code



Some things work to 
our advantage

• Full control of software
• Break compatibility, drop hybrid mode, simplify ISA

• Very fast tightly coupled memory
• Enables new temporal safety mechanism



CHERIoT shrinks metadata to 32 bits

• No guaranteed out-of-bounds rangeBounds

• Only 3 bits of sealing type
• Separate code and data sealing spacesSealing

• 12 permissions in 6 bitsPermissions



And we add things

• Permit-load-mutable, deep immutability
• Permit-load-global, deep no-capture

Transitive permissions

• Jumping to these enables / disables interruptsInterrupt control via sentries

• 1 bit per 8 bytes in a separate SRAM bankTemporal safety via a 
hardware revocation bitmap



Hardware load barrier adds temporal safety

• Load pointer computes the base address
• Looks up the corresponding revocation bit
• Invalidates the pointer if the memory is freed

void *x = malloc(42);
// Print the allocated value:
Debug::log("Allocated: {}", x);
free(x);
// Print the dangling pointer
Debug::log("Use after free: {}", x);

Allocating compartment: Allocated: 0x80005900 (v:1 0x80005900-0x80005930 l:0x30 o:0x0 p: G RWcgm- -- ---)
Allocating compartment: Use after free: 0x80005900 (v:0 0x80005900-0x80005930 l:0x30 o:0x0 p: G RWcgm- -- ---)

Valid bit cleared, any attempt to 
use as a pointer will trap



Baseline security guarantees

No pointer 
injection

No bounds 
violations

No use 
after free

The system can assume these for building higher-
level abstractions.



Compartments are code and data

Code Globals

Global Pointer (read/write/global)Program Counter (read/execute)



Compartments are code and data

Code

Program Counter (read/execute)

Read-only 
data

Import 
table

and exports

Export 
table



Compartments are code and data

Import table

and exports

Export table

Program Counter
Global Pointer
Entry point 1
Entry point 2
Entry point …

Import 1
Import 2
Import …



From unforgeable pointers to compartments

Registers

SP

Memory

PC

GP

Thread 1 
Stack

Compartment A 
code 

Compartment A 
globals



From unforgeable pointers to compartments

Registers

SP

Memory

PC

GP

A0

Thread 1 
Stack

Compartment A 
code Compartment B 

code 

Compartment A 
globals

Compartment B 
globals



From unforgeable pointers to compartments

Registers

SP

Memory

PC

GP

A0

Thread 1 
Stack

Compartment A 
code Compartment B 

code 

Compartment A 
globals

Compartment B 
globals



From unforgeable pointers to compartments

Registers

SP

Memory

PC

GP

A0

Thread 1 
Stack

Compartment A 
code Compartment B 

code 

Compartment A 
globals

Compartment B 
globalsThread 1 

Stack (B’s 
subset)



Security guarantees across compartments

No sharing except 
via explicit pointer 

passing

Pointers from the 
caller may prevent 

modification or 
capture



Trusted 
(privilege-

separated) 
components

• Has full access to all memory
• Erases itself after boot
• Not needed if flash can store tags

Loader

• Can see state from multiple threads and compartments
• Has access to a reserved register (and system registers)
• Around 300 instructions

Switcher

• Trusted for availability
• No access to suspended thread state (registers or stack)

Scheduler

• Sets bounds / revocation state on allocations

Memory allocator (optional)



void 
publish(char *key, uint8_t *buffer, size_t size);

// Declaration adds an attribute to indicate 
// the compartment containing the implementation

__attribute__((cheri_compartment(“kv_store_sdk")))

Add compartmentalization to C/C++

uint8_t buffer[BUFFER_SIZE];
publish("key_id", buffer, sizeof(buffer));

// Call site looks like normal C.
// Compiled to a direct call in compartments build with 
// –cheri-compartment=kv_store_sdk
// Compiled to a cross-domain call in all other cases.



Linker reports



What can we statically audit?



Everything 
in this talk 
is open 
source
https://aka.ms/cheriot-tech-report

The ISA specification: 
https://github.com/microsoft/cheriot-sail

The reference core: 
https://github.com/microsoft/cheriot-ibex

The embedded OS:

https://github.com/microsoft/cheriot-rtos

The compiler (cheriot branch):

https://github.com/CTSRD-CHERI/llvm-project/

https://aka.ms/cheriot-tech-report
https://github.com/microsoft/cheriot-sail
https://github.com/microsoft/cheriot-ibex
https://github.com/microsoft/cheriot-rtos
https://github.com/CTSRD-CHERI/llvm-project/


Thanks

• UKRI / DSbD / CHERITech
• All prior CHERI work we’ve built on / inspired 

us:
• CHERI-RISCV Arch + LLVM
• CompartOS (Almetary)
• CheriOS(Esswood) 
• CHERI-RTOS (Xia)
• Sail
• Ibex / ETH Zurich / LowRISC
• …



Summary

Fine-grained spatial and temporal 
memory safety guarantees for C/C++

Lightweight compartments

Safe bounded cross-compartment 
sharing

Strong attestation over compartment 
structure

Any more questions, please ask in the GitHub Microsoft/CHERIoT-RTOS Discussions!
https://github.com/microsoft/cheriot-rtos/discussions/categories/q-a



Backup



Most codebases require very few changes

Microvium embedded 
JavaScript interpreter

• No changes

TPM reference stack

• No changes for 
memory safety 

• Small changes (<10LoC) 
for RISC-V

• One line changed to 
run in a compartment

FreeRTOS network stack

• No changes for 
memory safety

• Annotations for cross-
compartment calls

• Explicit sealing and 
unsealing

• Small changes (~100 
LoC) to run without 
disabling interrupts for 
mutual exclusion

mBedTLS

• No changes for 
memory safety

• Small changes for 
compartmentalisation



Capability format



Permission encoding




	CHERIoT
	IoT
	Motivation – IoT and embedded
	Much embedded code is intrinsically unsafe
	Some things work to our advantage
	CHERIoT shrinks metadata to 32 bits
	And we add things
	Hardware load barrier adds temporal safety
	Baseline security guarantees
	Compartments are code and data
	Compartments are code and data
	Compartments are code and data
	From unforgeable pointers to compartments
	From unforgeable pointers to compartments
	From unforgeable pointers to compartments
	From unforgeable pointers to compartments
	Security guarantees across compartments
	Trusted (privilege-separated) components
	Add compartmentalization to C/C++
	Linker reports
	What can we statically audit?
	Everything in this talk is open source�https://aka.ms/cheriot-tech-report
	Thanks
	Summary
	Backup
	Most codebases require very few changes
	Capability format
	Permission encoding
	Slide Number 29

