CHERIoT

Robert Norton-Wright

Saar Amar, Tony Chen, David Chisnall,
Wes Filardo, Kunyan Liu, Hongyan Xia
Microsoft

Or security

Motivation — loT and embedded

‘((.«rl)z'

The loT ecosystem:

Includes diverse codebases
Mostly unsafe C/C++

Mitigations are rare

o

[e]

Rewriting in safe languages

has challenges:

Expensive
Talent shortage

Risk of introducing bugs

Much embedded code
is intrinsically unsafe

Some things work to
our advantage

e Full control of software
* Break compatibility, drop hybrid mode, simplify ISA

* Very fast tightly coupled memory
* Enables new temporal safety mechanism

CHERIOT shrinks metadata to 32 bits

Bou ndS e No guaranteed out-of-bounds range

e Only 3 bits of sealing type
e Separate code and data sealing spaces

Sealing

Pe rmiSSiOnS e 12 permissions in 6 bits

And we add things

e Permit-load-mutable, deep immutability
e Permit-load-global, deep no-capture

e Jumping to these enables / disables interrupts

e 1 bit per 8 bytes in a separate SRAM bank

Hardware load barrier adds temporal safety

* Load pointer computes the base address
* Looks up the corresponding revocation bit
* Invalidates the pointer if the memory is freed

void *x = malloc(42);
// Print the allocated value:
Debug::log("Allocated: {}", x);

free(x);

Valid bit cleared, any attempt to
use as a pointer will trap

// Print the dangling pointer

Debug::log("Use after free: {}", x);

Allocating compartment: Allocated: 0x80005900 (v:1 0x?ﬂ§900-0x80005930 1:0x30 0:0x0 p: G RWcgm- -- ---)
Allocating compartment: Use after free: 0x80005900 (v:0 0x80005900-0x80005930 1:0x30 0:0x0 p: G RWcgm- -- ---)

Baseline security guarantees

No use
after free

No bounds
violations

No pointer
Injection

J)

The system can assume these for building higher-
level abstractions.

Compartments are code and data

Globals

| |

Program Counter (read/execute) Global Pointer (read/write/global)

Compartments are code and data and exports

f

Program Counter (read/execute)

Compartments are code and data and exports

Import 1 Program Counter
Import 2 Global Pointer
Import ... Entry point 1
Entry point 2
Entry point ...

Import table EXPOrT taple

From unforgeable pointers to compartments

Compartment A
deilz Memory

Thread 1

Registers

Compartment A
globals

From unforgeable pointers to compartments

Registers

Compartment A
— code Memory Compartment B
B code

Compartment A
globals

o Thread 1
Stack

Compartment B
globals

From unforgeable pointers to compartments

Compartment A
el Memory Compartment B
> code

—

Registers

Compartment A
globals

Compartment B
> globals

Thread 1
Stack

From unforgeable pointers to compartments

Registers

Compartment A
code

Memory

Thread 1
Stack

Thread 1
Stack (B’s
subset)

Compartment B
code

Compartment A
globals

Compartment B
globals

Security guarantees across compartments

Pointers from the

caller may prevent

modification or
capture

No sharing except
via explicit pointer
passing

Trusted
(privilege-
separated)

components

Loader

e Has full access to all memory
e Erases itself after boot
¢ Not needed if flash can store tags

Switcher

e Can see state from multiple threads and compartments
e Has access to a reserved register (and system registers)
e Around 300 instructions

Scheduler

e Trusted for availability
* No access to suspended thread state (registers or stack)

e Sets bounds / revocation state on allocations

Add compartmentalization to C/C++

// Declaration adds an attribute to indicate

// the compartment containing the implementation

void _ attribute_ ((cheri_compartment(“kv_store sdk")))
publish(char *key, uint8 t *buffer, size t size);

// Call site looks like normal C.

// Compiled to a direct call in compartments build with
// -cheri-compartment=kv_store sdk

// Compiled to a cross-domain call in all other cases.
uint8 t buffer[BUFFER_SIZE];

publish("key id", buffer, sizeof(buffer));

Linker reports

“compartments™:
"allocator":
"code™:

I
L
"inputs": |

"name": "alloc
"output":
"sha256": 4 31 ledd2efbleaddf"”

"imports™: [

1

5
"atomic fixed":

¥

“"freestanding”:

"hello":

What can we statically audit?

Legend (solid=compartment call, dashed=library call)

Interrupts disabled -

Interrupts enabled
Interrupts inherited -
MMIO >

write(char const®)

freestanding

= ~pf memcpy(void*, void const¥, unsigned int)

MMIOs
0x02000000 + 0x10000

0x10000000 + 0x100

software_revoker

revoker tick()

\‘revoker_epoch_get()

allocator

scheduler

__export.sealing type.alloc.MallocKey

0x80007000 + 0x39000
0x83000000 + 0x1000

simulation_exit(unsigned int)
heap_allocate(Timeout*, SObjStruct*, unsigned i... =

atomic_fixed

- - thread_sleep(Timeout*)
heap can_free(SObjStruct*, void*)

_ library export libcalls atomic store 1

- - futex timed wait(Timeout*, unsigned int*, unsig...
heap free(SObjStruct*, void*)

_ library export libcalls atomic exchange 4

futex wake(unsigned int*, unsigned int)

heap_allocate array(Timeout* SObjStruct*, unsi...

_ library export libcalls atomic compare exch...

crt

clz(unsigned int)

ctz(unsigned int)

Everything
In this talk

IS open
source

://aka.ms/cheriot-tech-report

-

Be

The ISA specification:
https://github.com/microsoft/cheriot-sail

The reference core:
https://github.com/microsoft/cheriot-ibex

The embedded OS:
https://github.com/microsoft/cheriot-rtos

The compiler (cheriot branch):
https://github.com/CTSRD-CHERI/llvm-project/

https://aka.ms/cheriot-tech-report
https://github.com/microsoft/cheriot-sail
https://github.com/microsoft/cheriot-ibex
https://github.com/microsoft/cheriot-rtos
https://github.com/CTSRD-CHERI/llvm-project/

* UKRI / DSbD / CHERITech

* All prior CHERI work we’ve built on / inspired
us:

CHERI-RISCV Arch + LLVM
CompartOS (Almetary)
CheriOS(Esswood)
CHERI-RTOS (Xia)

Sail

Ibex / ETH Zurich / LowRISC

: Fine-grained spatial and temporal
n memory safety guarantees for C/C++

\/ Lightweight compartments

Summary

|? Safe bounded cross-compartment
sharing

Strong attestation over compartment
structure

Any more questions, please ask in the GitHub Microsoft/CHERIoT-RTOS Discussions!
https://github.com/microsoft/cheriot-rtos/discussions/categories/q-a

Backup

Most codebases require very few changes

Microvium embedded TPM reference stack FreeRTOS network stack mBedTLS
JavaScript interpreter

e No changes * No changes for * No changes for e No changes for
memory safety memory safety memory safety
e Small changes (<10LoC) e Annotations for cross- e Small changes for
for RISC-V compartment calls compartmentalisation
® One line changed to e Explicit sealing and
run in a compartment unsealing

e Small changes (~100
LoC) to run without
disabling interrupts for
mutual exclusion

Capability format

3l 25 24 22 21 18 17 9 8 0
R p’6 otype’3| E’4 B’9 T°9
@32

R areserved bit, which 1s zero in the root capabilities (and hence all tagged capabilities),
but may be set if untagged data 1s loaded into a register. In this case its value must be
preserved. This 1s very important because memory copies are performed with capa-
bility load a store instructions in order to preserve the tag on any capabilities present,
meaning these instructions must also faithfully copy arbitrary untagged data.

p a 6-bit compressed permissions field (see Section 7.13.1)

otype a 3-bit ‘object type’ used for sealing capabilities (see Section 7.13.2)

K a 4-bit exponent used for the bounds encoding (see Section 7.13.3)

B a 9-bit base used for the bounds encoding (see Section 7.13.3)

T a 9-bit top used in the bounds encoding (see Section 7.13.3)

a the 32-bit address of the capability

Permission encoding

Memory cap-read-write:
Memory cap-read-only:
Memory cap-write-only:
Memory data-only:
Executable:

Sealing:

GL SL | LM | LG
GL 1 |LM | LG
GL 01010

GL 0 [LD|SD
GL SR |LM | LG
GL U0 | SE | US

Implicit

Implicit

Implicit

Implicit

Implicit

Implicit

: LD, MC, SD

: LD, MC

: SD, MC

: None

: EX, LD, MC

: None

MEM-cap-rw

LD _LG_LM_MC_SD_SL

LD LM MC SD SL

LD MC_SD

Mem-Cap-ro

EX_LD LG_LM_MC_SR

	CHERIoT
	IoT
	Motivation – IoT and embedded
	Much embedded code is intrinsically unsafe
	Some things work to our advantage
	CHERIoT shrinks metadata to 32 bits
	And we add things
	Hardware load barrier adds temporal safety
	Baseline security guarantees
	Compartments are code and data
	Compartments are code and data
	Compartments are code and data
	From unforgeable pointers to compartments
	From unforgeable pointers to compartments
	From unforgeable pointers to compartments
	From unforgeable pointers to compartments
	Security guarantees across compartments
	Trusted (privilege-separated) components
	Add compartmentalization to C/C++
	Linker reports
	What can we statically audit?
	Everything in this talk is open source�https://aka.ms/cheriot-tech-report
	Thanks
	Summary
	Backup
	Most codebases require very few changes
	Capability format
	Permission encoding
	Slide Number 29

