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IoT
The ‘S’ stands for security



Motivation – IoT and embedded

The IoT ecosystem:

Includes diverse codebases

Mostly unsafe C/C++

Mitigations are rare

Rewriting in safe languages

has challenges:
Expensive

Talent shortage

Risk of introducing bugs



Much embedded code 
is intrinsically unsafe

Memory 
allocators

Schedulers

Device 
interface 

code



Some things work to 
our advantage

• Full control of software
• Break compatibility, drop hybrid mode, simplify ISA

• Very fast tightly coupled memory
• Enables new temporal safety mechanism



CHERIoT shrinks metadata to 32 bits

• No guaranteed out-of-bounds rangeBounds

• Only 3 bits of sealing type
• Separate code and data sealing spacesSealing

• 12 permissions in 6 bitsPermissions



And we add things

• Permit-load-mutable, deep immutability
• Permit-load-global, deep no-capture

Transitive permissions

• Jumping to these enables / disables interruptsInterrupt control via sentries

• 1 bit per 8 bytes in a separate SRAM bankTemporal safety via a 
hardware revocation bitmap



Hardware load barrier adds temporal safety

• Load pointer computes the base address
• Looks up the corresponding revocation bit
• Invalidates the pointer if the memory is freed

void *x = malloc(42);
// Print the allocated value:
Debug::log("Allocated: {}", x);
free(x);
// Print the dangling pointer
Debug::log("Use after free: {}", x);

Allocating compartment: Allocated: 0x80005900 (v:1 0x80005900-0x80005930 l:0x30 o:0x0 p: G RWcgm- -- ---)
Allocating compartment: Use after free: 0x80005900 (v:0 0x80005900-0x80005930 l:0x30 o:0x0 p: G RWcgm- -- ---)

Valid bit cleared, any attempt to 
use as a pointer will trap



Baseline security guarantees

No pointer 
injection

No bounds 
violations

No use 
after free

The system can assume these for building higher-
level abstractions.



Compartments are code and data

Code Globals

Global Pointer (read/write/global)Program Counter (read/execute)



Compartments are code and data

Code

Program Counter (read/execute)

Read-only 
data

Import 
table

and exports

Export 
table



Compartments are code and data

Import table

and exports

Export table

Program Counter
Global Pointer
Entry point 1
Entry point 2
Entry point …

Import 1
Import 2
Import …



From unforgeable pointers to compartments

Registers

SP

Memory

PC

GP

Thread 1 
Stack

Compartment A 
code 

Compartment A 
globals
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From unforgeable pointers to compartments
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Memory
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globals
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Security guarantees across compartments

No sharing except 
via explicit pointer 

passing

Pointers from the 
caller may prevent 

modification or 
capture



Trusted 
(privilege-

separated) 
components

• Has full access to all memory
• Erases itself after boot
• Not needed if flash can store tags

Loader

• Can see state from multiple threads and compartments
• Has access to a reserved register (and system registers)
• Around 300 instructions

Switcher

• Trusted for availability
• No access to suspended thread state (registers or stack)

Scheduler

• Sets bounds / revocation state on allocations

Memory allocator (optional)



void 
publish(char *key, uint8_t *buffer, size_t size);

// Declaration adds an attribute to indicate 
// the compartment containing the implementation

__attribute__((cheri_compartment(“kv_store_sdk")))

Add compartmentalization to C/C++

uint8_t buffer[BUFFER_SIZE];
publish("key_id", buffer, sizeof(buffer));

// Call site looks like normal C.
// Compiled to a direct call in compartments build with 
// –cheri-compartment=kv_store_sdk
// Compiled to a cross-domain call in all other cases.



Linker reports



What can we statically audit?



Everything 
in this talk 
is open 
source
https://aka.ms/cheriot-tech-report

The ISA specification: 
https://github.com/microsoft/cheriot-sail

The reference core: 
https://github.com/microsoft/cheriot-ibex

The embedded OS:

https://github.com/microsoft/cheriot-rtos

The compiler (cheriot branch):

https://github.com/CTSRD-CHERI/llvm-project/

https://aka.ms/cheriot-tech-report
https://github.com/microsoft/cheriot-sail
https://github.com/microsoft/cheriot-ibex
https://github.com/microsoft/cheriot-rtos
https://github.com/CTSRD-CHERI/llvm-project/


Thanks

• UKRI / DSbD / CHERITech
• All prior CHERI work we’ve built on / inspired 

us:
• CHERI-RISCV Arch + LLVM
• CompartOS (Almetary)
• CheriOS(Esswood) 
• CHERI-RTOS (Xia)
• Sail
• Ibex / ETH Zurich / LowRISC
• …



Summary

Fine-grained spatial and temporal 
memory safety guarantees for C/C++

Lightweight compartments

Safe bounded cross-compartment 
sharing

Strong attestation over compartment 
structure

Any more questions, please ask in the GitHub Microsoft/CHERIoT-RTOS Discussions!
https://github.com/microsoft/cheriot-rtos/discussions/categories/q-a



Backup



Most codebases require very few changes

Microvium embedded 
JavaScript interpreter

• No changes

TPM reference stack

• No changes for 
memory safety 

• Small changes (<10LoC) 
for RISC-V

• One line changed to 
run in a compartment

FreeRTOS network stack

• No changes for 
memory safety

• Annotations for cross-
compartment calls

• Explicit sealing and 
unsealing

• Small changes (~100 
LoC) to run without 
disabling interrupts for 
mutual exclusion

mBedTLS

• No changes for 
memory safety

• Small changes for 
compartmentalisation



Capability format



Permission encoding
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