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Motivation — loT and embedded
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The loT ecosystem:

Includes diverse codebases
Mostly unsafe C/C++

Mitigations are rare
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Rewriting in safe languages

has challenges:

Expensive
Talent shortage

Risk of introducing bugs




Much embedded code
is intrinsically unsafe




Some things work to
our advantage

e Full control of software
* Break compatibility, drop hybrid mode, simplify ISA

* Very fast tightly coupled memory
* Enables new temporal safety mechanism



CHERIOT shrinks metadata to 32 bits

Bou ndS e No guaranteed out-of-bounds range

e Only 3 bits of sealing type
e Separate code and data sealing spaces

Sealing

Pe rmiSSiOnS e 12 permissions in 6 bits




And we add things

e Permit-load-mutable, deep immutability
e Permit-load-global, deep no-capture

e Jumping to these enables / disables interrupts

e 1 bit per 8 bytes in a separate SRAM bank



Hardware load barrier adds temporal safety

* Load pointer computes the base address
* Looks up the corresponding revocation bit
* Invalidates the pointer if the memory is freed

void *x = malloc(42);
// Print the allocated value:
Debug::log("Allocated: {}", x);

free(x);

Valid bit cleared, any attempt to
use as a pointer will trap

// Print the dangling pointer

Debug::log("Use after free: {}", x);

Allocating compartment: Allocated: 0x80005900 (v:1 0x?ﬂ§900-0x80005930 1:0x30 0:0x0 p: G RWcgm- -- ---)
Allocating compartment: Use after free: 0x80005900 (v:0 0x80005900-0x80005930 1:0x30 0:0x0 p: G RWcgm- -- ---)




Baseline security guarantees

No use
after free

No bounds
violations

No pointer
Injection

J )

The system can assume these for building higher-
level abstractions.




Compartments are code and data

Globals

| |

Program Counter (read/execute) Global Pointer (read/write/global)



Compartments are code and data and exports

f

Program Counter (read/execute)



Compartments are code and data and exports

Import 1 Program Counter
Import 2 Global Pointer
Import ... Entry point 1
Entry point 2
Entry point ...

Import table EXPOrT taple




From unforgeable pointers to compartments

Compartment A
deilz Memory

Thread 1

Registers

Compartment A
globals




From unforgeable pointers to compartments

Registers

Compartment A
— code Memory Compartment B
B code

Compartment A
globals

o Thread 1
Stack

Compartment B
globals



From unforgeable pointers to compartments

Compartment A
el Memory Compartment B
> code

—

Registers

Compartment A
globals

Compartment B
> globals

Thread 1
Stack




From unforgeable pointers to compartments

Registers

Compartment A
code

Memory

Thread 1
Stack

Thread 1
Stack (B’s
subset)

Compartment B
code

Compartment A
globals

Compartment B
globals




Security guarantees across compartments

Pointers from the

caller may prevent

modification or
capture

No sharing except
via explicit pointer
passing




Trusted
(privilege-
separated)

components

Loader

e Has full access to all memory
e Erases itself after boot
¢ Not needed if flash can store tags

Switcher

e Can see state from multiple threads and compartments
e Has access to a reserved register (and system registers)
e Around 300 instructions

Scheduler

e Trusted for availability
* No access to suspended thread state (registers or stack)

e Sets bounds / revocation state on allocations




Add compartmentalization to C/C++

// Declaration adds an attribute to indicate

// the compartment containing the implementation

void _ attribute_ ((cheri_compartment(“kv_store sdk")))
publish(char *key, uint8 t *buffer, size t size);

// Call site looks like normal C.

// Compiled to a direct call in compartments build with
// -cheri-compartment=kv_store sdk

// Compiled to a cross-domain call in all other cases.
uint8 t buffer[BUFFER_SIZE];

publish("key id", buffer, sizeof(buffer));



Linker reports

“compartments™:
"allocator":
"code™:

I
L
"inputs": |

"name": "alloc
"output":
"sha256": 4 31 ledd2efbleaddf"”

"imports™: [

1

5
"atomic fixed":

¥

“"freestanding”:

"hello":




What can we statically audit?

Legend (solid=compartment call, dashed=library call)

Interrupts disabled -

Interrupts enabled
Interrupts inherited -
MMIO >

write(char const®)

freestanding

= ~pf memcpy(void*, void const¥, unsigned int)

MMIOs
0x02000000 + 0x10000

0x10000000 + 0x100

software_revoker

revoker tick()

\‘revoker_epoch_get()

allocator

scheduler

__export.sealing type.alloc.MallocKey

0x80007000 + 0x39000
0x83000000 + 0x1000

simulation_exit(unsigned int)
heap_allocate(Timeout*, SObjStruct*, unsigned i... =

atomic_fixed

- - thread_sleep(Timeout*)
heap can_free(SObjStruct*, void*)

_ library export libcalls atomic store 1

- - futex timed wait(Timeout*, unsigned int*, unsig...
heap free(SObjStruct*, void*)

_ library export libcalls atomic exchange 4

futex wake(unsigned int*, unsigned int)

heap_allocate array(Timeout* SObjStruct*, unsi...

_ library export libcalls atomic compare exch...

crt

clz(unsigned int)

ctz(unsigned int)




Everything
In this talk

IS open
source

://aka.ms/cheriot-tech-report

-

Be

The ISA specification:
https://github.com/microsoft/cheriot-sail

The reference core:
https://github.com/microsoft/cheriot-ibex

The embedded OS:
https://github.com/microsoft/cheriot-rtos

The compiler (cheriot branch):
https://github.com/CTSRD-CHERI/llvm-project/



https://aka.ms/cheriot-tech-report
https://github.com/microsoft/cheriot-sail
https://github.com/microsoft/cheriot-ibex
https://github.com/microsoft/cheriot-rtos
https://github.com/CTSRD-CHERI/llvm-project/

* UKRI / DSbD / CHERITech

* All prior CHERI work we’ve built on / inspired
us:

CHERI-RISCV Arch + LLVM
CompartOS (Almetary)
CheriOS(Esswood)
CHERI-RTOS (Xia)

Sail

Ibex / ETH Zurich / LowRISC




: Fine-grained spatial and temporal
n memory safety guarantees for C/C++

\/ Lightweight compartments

Summary

|? Safe bounded cross-compartment
sharing

Strong attestation over compartment
structure

Any more questions, please ask in the GitHub Microsoft/CHERIoT-RTOS Discussions!
https://github.com/microsoft/cheriot-rtos/discussions/categories/q-a



Backup



Most codebases require very few changes

Microvium embedded TPM reference stack FreeRTOS network stack mBedTLS
JavaScript interpreter

e No changes * No changes for * No changes for e No changes for
memory safety memory safety memory safety
e Small changes (<10LoC) e Annotations for cross- e Small changes for
for RISC-V compartment calls compartmentalisation
® One line changed to e Explicit sealing and
run in a compartment unsealing

e Small changes (~100
LoC) to run without
disabling interrupts for
mutual exclusion



Capability format

3l 25 24 22 21 18 17 9 8 0
R p’6 otype’3| E’4 B’9 T°9
@32

R areserved bit, which 1s zero in the root capabilities (and hence all tagged capabilities),
but may be set if untagged data 1s loaded into a register. In this case its value must be
preserved. This 1s very important because memory copies are performed with capa-
bility load a store instructions in order to preserve the tag on any capabilities present,
meaning these instructions must also faithfully copy arbitrary untagged data.

p a 6-bit compressed permissions field (see Section 7.13.1)

otype a 3-bit ‘object type’ used for sealing capabilities (see Section 7.13.2)

K a 4-bit exponent used for the bounds encoding (see Section 7.13.3)

B a 9-bit base used for the bounds encoding (see Section 7.13.3)

T a 9-bit top used in the bounds encoding (see Section 7.13.3)

a the 32-bit address of the capability



Permission encoding

Memory cap-read-write:
Memory cap-read-only:
Memory cap-write-only:
Memory data-only:
Executable:

Sealing:

GL SL | LM | LG
GL 1 |LM | LG
GL 01010

GL 0 [LD|SD
GL SR |LM | LG
GL U0 | SE | US

Implicit

Implicit

Implicit

Implicit

Implicit

Implicit

: LD, MC, SD

: LD, MC

: SD, MC

: None

: EX, LD, MC

: None



MEM-cap-rw

LD _LG_LM_MC_SD_SL

LD LM MC SD SL

LD MC_SD

Mem-Cap-ro

EX_LD LG_LM_MC_SR
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