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Introduction:  What is CHERI?
• CHERI=Capability Hardware Enhanced RISC Instructions

• CHERI is a new hardware technology that mitigates 
software security vulnerabilities

• Developed by the University of Cambridge and SRI 
International starting in 2010, supported by DARPA and 
others

• Arm collaboration from 2014

• From 2019: UKRI Digital Security by Design initiative has 
brought in many more collaborators and led to the Arm 
Morello prototype chip+system
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An early experimental FPGA-
based CHERI tablet prototype 
running the CheriBSD
operating system and 
applications, Cambridge, 2013
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Reminder: Why develop CHERI?
“Buffer overflows have not objectively gone down in the last 40 years.

The impact of buffer overflows have if anything gone up.”

Ian Levy, NCSC 

• Matt Miller (MS Response Center) @ BlueHat 2019:

• From 2006 to 2018, year after year, 70% MSFT CVEs are memory safety bugs.

• First place: spatial safety

• Addressed directly by CHERI

• Second place: use after free

• Addressed by our work exploiting CHERI capability validity tags to precisely 
find pointers



Motivation – Chromium Browser Safety
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“70% of our serious security bugs are memory safety problems”
www.chromium.org/Home/chromium-security/memory-safety
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National Security Agency | Cybersecurity Information Sheet 

Software Memory Safety 

Executive summary 
Modern society relies heavily on software-based automation, implicitly trusting 
developers to write software that operates in the expected way and cannot be 
compromised for malicious purposes. While developers often perform rigorous testing to 
prepare the logic in software for surprising conditions, exploitable software 
vulnerabilities are still frequently based on memory issues. Examples include 
overflowing a memory buffer and leveraging issues with how software allocates and de-
allocates memory. Microsoft® revealed at a conference in 2019 that from 2006 to 2018 
70 percent of their vulnerabilities were due to memory safety issues. [1] Google® also 
found a similar percentage of memory safety vulnerabilities over several years in 
Chrome®. [2] Malicious cyber actors can exploit these vulnerabilities for remote code 
execution or other adverse effects, which can often compromise a device and be the 
first step in large-scale network intrusions.  

Commonly used languages, such as C and C++, provide a lot of freedom and flexibility 
in memory management while relying heavily on the programmer to perform the needed 
checks on memory references. Simple mistakes can lead to exploitable memory-based 
vulnerabilities. Software analysis tools can detect many instances of memory 
management issues and operating environment options can also provide some 
protection, but inherent protections offered by memory safe software languages can 
prevent or mitigate most memory management issues. NSA recommends using a 
memory safe language when possible. While the use of added protections to non-
memory safe languages and the use of memory safe languages do not provide absolute 
protection against exploitable memory issues, they do provide considerable protection. 
Therefore, the overarching software community across the private sector, academia, 
and the U.S. Government have begun initiatives to drive the culture of software 
development towards utilizing memory safe languages. [3] [4] [5] 

  

https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
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source: http://xkcd.com
/1354/

Example 1



8

source: http://xkcd.com
/1354/
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source: http://xkcd.com
/1354/



Went wrong? How do we do better?

• Classical answer:

• The programmer forgot to check the bounds of the data structure 
being read

• Fix the vulnerability in hindsight – one-line fix:
if (1+2+payload+16 > s->s3->rrec.length) return 0;

• Our answer:

• Preserve bounds information during compilation

• Use hardware (CHERI processor) to dynamically check bounds 
with little overhead and guarantee pointer integrity & provenance

10



Example 2: how to reduce the attack surface?

• The software attack surface keeps getting bigger

• Applications just keep getting larger

• Huge libraries of code aid rapid program development

• Everything is network connected

• This aids the attacker: an expanding number of ways to break in

11



Software compartmentalization decomposes software into
isolated compartments that are delegated limited rights

Able to mitigate not only unknown vulnerabilities, but also
as-yet undiscovered classes of vulnerabilities and exploits

CHERI solution: application-level least privilege



THE CHERI APPROACH
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Architectural primitives for software security
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Microarchitecture

Compilers and toolchain

Systems software

Applications

Instruction-Set Architecture 
(ISA)

CHERI capabilities are an architectural primitive that 
compilers, systems software, and applications use to constrain 

their own future execution

Software configures and uses capabilities to continuously 
enforce safety properties such as referential, spatial, and 
temporal memory safety, as well as higher-level security 

constructs such as compartment isolation

The microarchitecture implements the capability data type 
and tagged memory, enforcing invariants on their 
manipulation and use such as capability bounds, 

monotonicity, and provenance validity



CHERI design goals and approach
• De-conflate memory virtualization and protection

• Memory Management Units (MMUs) protect by location (address)

• CHERI protects existing references (pointers) to code, data, objects

• Reusing existing pointer indirection avoids adding new architectural 
table lookups

• Architectural mechanism that enforces software policies

• Language-based properties – e.g., referential, spatial, and temporal 
integrity (C/C++ compiler, linkers, OS model, runtime, …)

• New software abstractions – e.g., software compartmentalization 
(confined objects for in-address-space isolation, …)

15



virtual address (64 bits)

Pointers today
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• Implemented as integer virtual addresses (VAs)

• (Usually) point into allocations, mappings

• Derived from other pointers via integer arithmetic

• Dereferenced via jump, load, store

• No integrity protection – can be injected/corrupted

• Arithmetic errors – out-of-bounds leaks/overwrites

• Inappropriate use – executable data, format strings

Ø Attacks on data and code pointers are highly effective, often 
achieving arbitrary code execution



CHERI 128-bit capabilities today

• Capabilities extend integer memory addresses

• Metadata (bounds, permissions, …) control how they may be used

• Guarded manipulation controls how capabilities may be manipulated; 
e.g., provenance validity and monotonicity

• Tags protect capability integrity/derivation in registers + memory

Virtual address space
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CHERI enforces protection semantics for pointers

• Integrity and provenance validity ensure that valid pointers are derived from other valid pointers via valid 
transformations; invalid pointers cannot be used

• Valid pointers, once removed, cannot be reintroduced solely unless rederived from other valid pointers

• E.g., Received network data cannot be interpreted as a code/data pointer – even previously leaked pointers

• Bounds prevent pointers from being manipulated to access the wrong object

• Bounds can be minimized by software – e.g., stack allocator, heap allocator, linker

• Monotonicity prevents pointer privilege escalation – e.g., broadening bounds

• Permissions limit unintended use of pointers; e.g., W^X for pointers

• These primitives not only allow us to implement strong spatial and temporal memory protection, but 
also higher-level policies such as scalable software compartmentalization

18
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Principles CHERI aims to uphold

• The principle of intentional use

• Ensure that software runs the way the programmer intended, 
not the way the attacker tricked it

• Approach: guaranteed pointer integrity & provenance, with 
efficient dynamic bounds checking

• The principle of least privilege

• Reduce the attack surface using software compartmentalization

• Mitigates known and unknown exploits

• Approach: highly scalable and efficient compartmentalization
19



CHERI-RISC-V ISA

20



CHERI-RISC-V formal ISA model
• CHERI RISC-V ISA model extends RISC-V formal ISA specification, in Sail

• Sail RISC-V ISA specification developed by UCam + SRI

• Selected as official RISC-V spec by the Foundation

• Sail is a custom first-order imperative language for expressing ISA specifications, 
usable by engineers but with static type checking of bitvector lengths etc.

• The Sail spec is inlined in versions of the unprivileged and privileged RISC-V 
manuals

• Sail auto-generates a C emulator, theorem-prover definitions, and SMT definitions

• Machinery for configuring model WRT YAML from compliance group

• Readable, precise definition of ISA behavior, usable as test oracle for testing 
hardware against and for software bring-up, and providing prover definitions if you 
want more rigorous reasoning

21



ISA formal modelling and verification

• Formal ISA models CHERI-MIPS, CHERI-RISC-V, and Morello
• Formal proof of compartmentalization for CHERI-MIPS, Morello

Rigorous engineering for hardware security:
Formal modelling and proof in the CHERI design

and implementation process

Kyndylan Nienhuis⇤, Alexandre Joannou⇤, Thomas Bauereiss⇤, Anthony Fox†, Michael Roe⇤, Brian Campbell‡,
Matthew Naylor⇤, Robert M. Norton⇤, Simon W. Moore⇤, Peter G. Neumann§, Ian Stark‡, Robert N. M. Watson⇤,

and Peter Sewell⇤
⇤University of Cambridge †ARM Limited ‡University of Edinburgh §SRI International

Abstract—The root causes of many security vulnerabilities

include a pernicious combination of two problems, often regarded

as inescapable aspects of computing. First, the protection mech-

anisms provided by the mainstream processor architecture and

C/C++ language abstractions, dating back to the 1970s and be-

fore, provide only coarse-grain virtual-memory-based protection.

Second, mainstream system engineering relies almost exclusively

on test-and-debug methods, with (at best) prose specifications.

These methods have historically sufficed commercially for much

of the computer industry, but they fail to prevent large numbers

of exploitable bugs, and the security problems that this causes

are becoming ever more acute.

In this paper we show how more rigorous engineering methods

can be applied to the development of a new security-enhanced

processor architecture, with its accompanying hardware im-

plementation and software stack. We use formal models of

the complete instruction-set architecture (ISA) at the heart of

the design and engineering process, both in lightweight ways

that support and improve normal engineering practice – as

documentation, in emulators used as a test oracle for hardware

and for running software, and for test generation – and for formal

verification. We formalise key intended security properties of the

design, and establish that these hold with mechanised proof. This

is for the same complete ISA models (complete enough to boot

operating systems), without idealisation.

We do this for CHERI, an architecture with hardware capabil-
ities that supports fine-grained memory protection and scalable

secure compartmentalisation, while offering a smooth adoption

path for existing software. CHERI is a maturing research

architecture, developed since 2010, with work now underway

on an Arm industrial prototype to explore its possible adoption

in mass-market commercial processors. The rigorous engineering

work described here has been an integral part of its development

to date, enabling more rapid and confident experimentation, and

boosting confidence in the design.

I. INTRODUCTION

Despite decades of research, memory safety bugs are still
responsible for many security vulnerabilities [1]. Microsoft
estimates that 70% of the vulnerabilities they have patched be-
tween 2006 and 2018 are caused by memory safety issues [2],
MITRE considers classic buffer overflows as the third most
dangerous software error [3], and high-profile memory-safety
bugs such as Heartbleed [4] have become common.

There are two fundamental problems here. First, mainstream
hardware architectures and C/C++ language abstractions pro-

vide only coarse-grained memory protection, via the memory
management unit (MMU). This is hard to change: the mass of
legacy C/C++ code makes it infeasible to migrate everything
to a type-safe language, or to radically change hardware
architectures, but introducing fine-grained memory protection
in software, e.g. with bounds-checking, is often too inefficient.

Second, mainstream systems are typically developed using
test-and-debug engineering methods. While this often suffices
to build systems that are sufficiently functionally correct under
normal use, it fails to build secure systems: it is easy to miss
a small mistake that manifests itself only in a corner case, but
attackers will actively try to find these, and one small bug can
compromise the entire system.

CHERI is an ongoing research project that addresses the
first problem with hardware support for fine-grained memory
protection and scalable software compartmentalisation, aiming
to provide practically deployable performance and compati-
bility [5]–[7]. CHERI achieves this by extending commodity
architectures with new security mechanisms, and adapting a
conventional software stack to make use of these.

This paper addresses the second problem: we show how
more rigorous engineering methods can be used to improve as-
surance and complement traditional methods, using the CHERI
project as a whole as a testbench for this. These include
both lightweight methods – formal specification and testing
methods that provide engineering and assurance benefits for
hardware and software engineering without the challenges of
full formal verification – and more heavyweight machine-
checked proof, establishing very high confidence that the
architecture design provides specific security properties.

A. The CHERI Context
The CHERI design is based on two principles. The principle

of least privilege [8] says that each part of a program should
run only with the permissions it needs to function. For exam-
ple, a conventional C/C++ program implicitly uses permission
to its entire memory region for accesses via a pointer, making
it vulnerable to buffer overflows, but in CHERI it can be
limited to the permission to access the pointed-to object. On
a larger scale, the JavaScript execution engine of a browser

IEEE SSP 2020

ESOP 2022
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Merged capability register file + tagged memory
(as found in CHERI-RISC-V and ARM Morello)

• 64-bit general-purpose registers (GPRs) are extended with 64 bits of metadata and a 1-bit validity tag

• Program counter (PC) is extended to be the program-counter capability ($PCC)

• Default data capability ($DDC) constrains legacy integer-relative ISA load and store instructions

• Tagged memory protects capability-sized and -aligned words in DRAM by adding a 1-bit validity tag

• Various system mechanisms are extended (e.g., capability-instruction enable control register, new TLB/PTE 
permission bits, exception code extensions, saved exception stack pointers and vectors become capabilities, etc.)
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CHERI-RISC-V MICROARCHITECTURE
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Early CHERI Capabilities

• ISCA 2014 paper: Revisiting RISC in the Age of Risk

• 256b capability with bounds and permissions but no address!

• Separate capability register file in capability coprocessor

25
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Figure 1: Memory capability

4.1. Capability registers

CHERI implements an additional register file for capabilities.
This approach distinguishes capability state from integer state
(and floating point state) in the architecture to avoid dynamic
register types. There are 32 capability registers, each 256-
bit wide, mirroring the number of integer and floating-point
registers in MIPS. A commercial implementation might con-
sider a smaller register set that would not unduly increase
stack spills, and would reduce context-switch overhead and
hardware resources, but we have maintained a large set for ex-
perimentation and for consistency with the MIPS architecture.

The currently implemented capability structure is shown in
Figure 1. The base and length fields are the two basic fields
needed to describe a segment of memory. We have allocated
64 bits to each, and choose not to implement a compression
algorithm at this time to allow maximum flexibility as a re-
search tool. The permissions field is a 31-bit vector with a
“1” in each position indicating an allowed permission for the
region. Permissions include load data, store data, execute, and
load and store for capabilities. The other 26 permissions, and
remaining capability fields, are being used for experimentation
as described in Section 11. An implementation intended for
widespread deployment would likely use a denser representa-
tion – for example, 128-bits using 40-bit virtual addresses or
the Low-Fat Pointer approach [20].

Existing MIPS load and store instructions are implicitly
offset via capability register 0, C0, and instruction fetches
are offset via an implied program counter capability, PCC.
This allows legacy code to run unmodified on CHERI, facil-
itating incremental adoption, and also allows sandboxing of
unmodified programs within a parent address space.

We have also added a full set of load and store operations
for addressing memory through capability registers with both
immediate and register offsets. As MIPS lacks native register-
indexed addressing, capability-relative addressing can often
be faster than legacy loads and stores.

4.2. Capability manipulation and protection

The greatest challenge for a protection model is to protect
memory capabilities from arbitrary manipulation (unforgeabil-
ity) without appealing to the kernel (unprivileged use). This
is important, as system calls remain a relatively expensive
operation. For example, malloc() implementations typically
amortize kernel entry by using a single mmap() system call to
acquire a large block of memory for disbursement over many
allocations [13]. A memory protection scheme that requires a

Mnemonic Description
CGetBase Move base to a GPR
CGetLen Move length to a GPR
CGetTag Move tag bit to a GPR
CGetPerm Move permissions to a GPR
CGetPCC Move the PCC and PC to GPRs

CIncBase Increase base and decrease length
CSetLen Set (reduce) length
CClearTag Invalidate a capability register
CAndPerm Restrict permissions

CToPtr Generate C0-based integer pointer from
a capability

CFromPtr CIncBase with support for NULL casts

CBTU Branch if capability tag is unset
CBTS Branch if capability tag is set

CLC Load capability register
CSC Store capability register
CL[BHWD][U] Load byte, half-word, word or double

via capability register, (zero-extend)
CS[BHWD] Store byte, half-word, word or double

via capability register

CLLD Load linked via capability register
CSCD Store conditional via capability register

CJR Jump capability register
CJALR Jump and link capability register

Table 1: CHERI instruction-set extensions

system call for every malloc() would negate this optimization
and be avoided in performance-sensitive applications.

To preserve capability integrity while allowing user-space
management, we must restrict capability manipulation, par-
ticularly in memory. That is, capabilities in memory must
not be corrupted by general-purpose stores. Some traditional
capability machines [42] and capability microkernels such as
seL4 [19] have done this by defining regions of memory that
can store capabilities distinct from those that can store data.
This approach is problematic for a fat-pointer approach, as
most contemporary programming languages allow arbitrary in-
termixing of pointers and data. In keeping with the RISC idea
of the ISA as a compiler target [29], we have implemented
tagged memory rather than supporting only regional separation.
Valid capabilities are identified by an extra ‘tag’ bit associated
with each 256-bit location. Any non-capability store clears this
bit, thereby protecting the integrity of capabilities in memory
without appealing to kernel mode.

With capabilities protected in memory, we implement user-
mode instructions to safely manipulate capabilities in the reg-
ister file. Table 1 shows a summary of the instructions that
CHERI adds to the MIPS IV ISA. These include a full comple-
ment of load and store instructions, instructions for inspecting

Inst.
Fetch Scheduler Decode Execute Writeback

Capability Coprocessor

Memory
Access

Exchange
Operands

Put Capability 
Instruction

Get 
Address

Commit 
Writeback

Offset 
Address

Forwarding Register File
Read WriteSpeculative WriteRequest

Figure 2: BERI pipeline with capability coprocessor

a capability, and for reducing (but not extending) the rights
granted by a capability. Instructions that change fields in a
capability must strictly reduce privilege, that is, disclaim per-
missions or reduce the extent. These restrictions allow CHERI
to ensure capabilities are unforgeable. With the software un-
able to fabricate arbitrary memory references, a protection
domain is defined by the transitive closure of memory capa-
bilities reachable from its capability register set. Under an
operating system, a process that begins with a capability for all
privilege to its virtual address space can construct arbitrarily
restricted domains described by unforgeable references.

CHERI tags physical memory, not virtual memory, and
therefore maintains a single table for the entire system. This
table holds one tag bit for each 256-bit line in memory, or 4MB
of tag space per gigabyte of memory. A tag manager below the
last level cache presents a 257-bit, tagged-memory interface
to the CHERI cache hierarchy. The manager associates each
memory transaction with a tag from the table and ensures
consistency between memory and tags. The CHERI cache
hierarchy propagates capability tags and implements CHERI
tag semantics (which preserve the tag for a capability store
and clear a tag on a general-purpose store). The decision
to use physical – not virtual – memory for tags eliminates
translation for the tag table (as required by Hardbound), and
allows the tags to accompany physical cache lines through
the cache hierarchy. CHERI allows capability registers to
contain general-purpose data, which preserves the cleared tag
to prevent use as a capability. This allows capability load and
store instructions to copy 256-bit blocks of memory while
remaining oblivious to whether they are copying data or a
capability. As a result, a simple implementation of memcpy()
can copy data structures containing both.

Our prototype maintains the tag table in DRAM. We could
alternatively move it to a smaller memory that can be accessed
in parallel with DRAM, or store tags in ECC-like bits to elimi-
nate table lookups. However, the current tag controller (which
minimizes table lookups using an 8KB tag cache) does not
noticeably degrade performance.

4.3. Compatibility

CHERI allows capability-aware and legacy code to share an ad-
dress space. Unsandboxed legacy executables run with access
to the full address space, but may invoke capability-protected
libraries. For example, an unmodified web browser can in-

voke capability-aware image libraries or video CODECs via
MIPS-ABI functions. Capability-aware code can use sand-
boxed legacy code by restricting the default instruction and
data capabilities (PCC and C0). The CToPtr and CFromPtr

instructions convert between C pointers and capabilities to
support safe and efficient interaction between capability-aware
and legacy code.

The CHERI capability model requires minimal support from
the OS. CHERI capabilities are layered atop standard paging,
so the virtual memory system works without modification.
On CPU reset, capability registers are initialized, granting
the OS access to the entire address space so an OS can run
unchanged without knowledge of the capability extensions.
Indeed, we first achieved stability with unmodified FreeBSD
on the processor before we added support for capabilities.

Our extended version of FreeBSD enables the capability
coprocessor on boot; when the first user process is created or
execve() is invoked, the entire user virtual address space is del-
egated to the user register file. The kernel saves and restores
per-thread capability-register state on context switches. The
user process then manages capabilities within that space, thus
restricting access. Capability-aware allocators can manage
memory and return capabilities in much the same way as con-
ventional memory allocators. Revocation can be accomplished
via zero-address-space-reuse allocators, TLB unmapping, or
by a simplified version of garbage collection (made reliable by
capability tags). New TLB permissions authorize capability
loads and stores. The OS virtual-memory system is being
extended to preserve tags for swapped pages.

4.4. Pipeline organization

As seen in Figure 2, our capability extensions are modularized
as a MIPS coprocessor with a dedicated register file. All
data accesses reference a capability register either explicitly
or implicitly (C0), so the capability coprocessor is tightly
coupled with the Execute and Memory Access stages of the
pipeline. While instruction fetches are logically offset by
a capability register, PCC, in implementation CHERI uses
an absolute address for the program counter and validates it
against PCC in the Execute stage to simplify both forwarding
and instruction address calculation.

The capability register file is an instantiation of the general-
purpose forwarding register file and inherits register renaming.
All capability manipulation instructions are single cycle, as
are capability loads and stores. This style of manipulation
has orders of magnitude higher performance than protected
segment manipulation on IA32 that, for example, required at
least 241 cycles on a 1.1GHz Pentium III [21].

5. Use cases for CHERI capabilities
CHERI user-managed memory protection has a variety of
potential uses, most of which are unexplored in contemporary
operating systems. Cheap, fine-grained memory protection
radically changes the memory-safety trade-off topography, and

• Too big (cache footprint)
• Expensive to implement
• Difficult to use



Minimising the Cost of Capabilities

• Include an address in the capability so that all pointers can be turned into 
capabilities

• This simplified the software model

• Compress capabilities into a 128-bit format

• Reduces data-cache footprint + extra DRAM bandwidth

• ARM were particularly concerned about power from extra DRAM traffic

• On CHERI-RISC-V we extend the integer register file to hold capabilities

• Reduces the amount of rename logic required, forwarding logic, register 
space, etc.
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Capability Compression
Capabilities encode three 64-bit fields (plus permissions, etc.):
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← Exponent:

• Larger objects require greater alignment

• Address must be “near” the Top and Bottom
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CHERI Concentrate:
Practical Compressed Capabilities

JonathanWoodruff , Alexandre Joannou,Member, IEEE, Hongyan Xia , Anthony Fox, Robert M. Norton ,
David Chisnall, Brooks Davis, Khilan Gudka, Nathaniel W. Filardo, A. Theodore Markettos, Michael Roe,
Peter G. Neumann, Fellow, IEEE, Robert N. M. Watson, and SimonW. Moore , Senior Member, IEEE

Abstract—We present CHERI Concentrate, a new fat-pointer compression scheme applied to CHERI, the most developed capability-
pointer system at present. Capability fat pointers are a primary candidate to enforce fine-grained and non-bypassable security
properties in future computer systems, although increased pointer size can severely affect performance. Thus, several proposals for
capability compression have been suggested elsewhere that do not support legacy instruction sets, ignore features critical to the
existing software base, and also introduce design inefficiencies to RISC-style processor pipelines. CHERI Concentrate improves on the
state-of-the-art region-encoding efficiency, solves important pipeline problems, and eases semantic restrictions of compressed
encoding, allowing it to protect a full legacy software stack. We present the first quantitative analysis of compiled capability code, which
we use to guide the design of the encoding format. We analyze and extend logic from the open-source CHERI prototype processor
design on FPGA to demonstrate encoding efficiency, minimize delay of pointer arithmetic, and eliminate additional load-to-use delay.
To verify correctness of our proposed high-performance logic, we present a HOL4 machine-checked proof of the decode and pointer-
modify operations. Finally, we measure a 50 to 75 percent reduction in L2 misses for many compiled C-language benchmarks running
under a commodity operating system using compressed 128-bit and 64-bit formats, demonstrating both compatibility with and
increased performance over the uncompressed, 256-bit format.

Index Terms—Capabilities, fat pointers, compression, memory safety, computer architecture

Ç

1 INTRODUCTION

INTEL Memory Protection Extensions (MPX) and Software
Guard Extensions (SGX), as well as Oracle Silicon Secured

Memory (SSM), signal an unprecedented industrial willing-
ness to implement hardware mechanisms for memory safety
and security. As industry looks to the next generation, capa-
bility pointers have become a primary candidate to conclu-
sively solve memory safety problems. Capability pointers are
stronger than fault detection schemes such as MPX and SSM,
and are able to achieve provable containment at the granular-
ity of program-defined objects that is as strong as address-
space separation.

The greatest cost for capability pointers involves the
object bounds encoded with each pointer to enforce mem-
ory safety. Encoding both upper and lower bounds as well

as a pointer address requires either larger capabilities [1] or
restrictions on region properties, semantics, and address
space [2], [3].

This paper presents CHERI Concentrate (CC), a compres-
sion scheme applied to CHERI, the most developed capabil-
ity-pointer system at present. CC achieves the best published
region encoding efficiency, solves important pipeline prob-
lems caused by a decompressed register file, and eases
semantic restrictions due to the compressed encoding. The
contributions of this paper are:

! A floating-point bounds encoding with an Internal
Exponent that provides maximum precision for small
objects, spending bits to encode an exponent only for
larger and less common objects.

! The first quantitative characterization of capability
operations in compiled programs to inform capabil-
ity instruction optimization.

! A power-of-two Representable Region beyond object
bounds to allow temporarily out-of-bounds pointers,
enabling compatibility with a broad legacy code base.

! A Representability Check for pointer arithmetic with
delay comparable to a pointer add, enabling integra-
tion with standard processor designs.

CC improves efficiency over Low-Fat Pointers, the previ-
ous best capability bounds format, by inferring the most sig-
nificant bit of the Top field and by encoding the exponent
within the bounds. CC also improves both semantics and
timing by allowiny out-of-bounds pointer manipulations,
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Tips on Implementing CHERI Concentrate

• CHERI concentrate doesn’t require much logic, but it isn’t easy to 
implement so that it is small and correct

• We used formal verification (symbolic proof) to check key invariant 
properties

• Conventional testing is insufficient because the state space is large 
and there are many corner cases

• Tip: use our library of base functions and DO NOT write your own!
https://github.com/CTSRD-CHERI/cheri-cap-lib

• C library to support software that needs to manipulate capabilities:
https://github.com/CTSRD-CHERI/cheri-compressed-cap
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Tagging Capabilities

• Capabilities have a hidden validity tag

• In registers and memory

• Tag bit is critical to security

• Conventional operations (arith, memory) clear the tag

• Only capability instructions preserve the tag and guarantee 
monotonic decrease in rights

• One hidden bit per 128-bits avoids using other integrity measures 
(no crypto needed…)
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Propagating tags from registers to DRAM

• Tags stored in registers and 
caches with data to ensure 
consistency

• Off-chip storage:

• Tags stored in upper 1% of 
commodity DRAM

• Tag cache per DRAM 
controller reduces DRAM 
traffic

• No consistency issues
31
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Temporal and Spatial Hits vs. Line Size
for Earley-Boyer, 256KiB tag cache, 8-way set associative

64-byte line of tags covers 
8KiB block of data

1-byte line of tags covers 
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Hierarchical Tag Compression

• Size tag cache line length to 64-byte DDR4 burst transfer size
⇒ one line covers tags for 8KiB of memory (128-bit capabilities)

• Many lines don’t contain tags (code, large blocks of data, disk cache, 
etc.)

• So handling tag sparseness is important

• Only want to pay for tagging when needed

33



Tag Compression

• 2-level tag table

• Each bit in the root level indicates all zeros in a leaf group

• Reduces tag cache footprint

• Amplifies cache capacity
34

Figure 3 graphs the temporal and spatial hits in the tag cache
as the line size grows for the Earley-Boyer big case (256KiB
tag cache, 8-way associative). Spatial hits are on tags that
have not previously been accessed in the cache, i.e. that have
been brought in due to a miss on a nearby tag. Temporal
hits are on tags that have previously been accessed and are
re-accessed due to lack of capacity in the upper layer of
cache. The graph begins with a tag cache line that covers one
data line. As the line size increases, spatial hits continue to
increase consistently until we reach lines of 512 tags (64 bytes)
which each cover a 4KiB page of data. Bigger lines benefit
spatial hits more then they harm temporal hits until lines of
approximately 4096 tags (512 bytes) which each cover 8 pages
of data memory. After that point, no more spatial locality
seems to be harvested from larger lines, but the number of
temporal hits still decreases, harming overall hit-rate. Thus
the tag cache can exploit spatial locality at page granularities
to reduce overhead from an expected 50% of DRAM traffic
to less than 5%, even for an unusually small capacity.

Silent-Write Elimination: Writes that rewrite the existing
value, or silent writes, are more common for tags than for
data and are more problematic. Silent tag writes are common
since tag metadata is often unchanged through data writes,
e.g., when updating untagged data. Tag lines are also much
more likely to be dirty than data lines, as the coarse line
granularity increases the probability that some bit will be
written. Our simulated tag cache eliminates these silent writes.
This optimization reduces dirty lines from 80% to 4% in the
pointer-sparse FFMPEG case, and from 60% to around 30%
for the pointer-heavy Earley-Boyer case. This feature makes
writeback traffic dependent on the value of the tags. Figure 8
includes several use cases, one of which sees a 30% reduction
of traffic overhead without compression due to tags changing
less frequently.

B. Hardware Implementation
We rebuilt the tag controller engine in the open-source

CHERI processor (http://www.bericpu.org/), and added perfor-
mance counters to the CHERI cache. CHERI is instantiated
with 32KiB L1 caches and a 256KiB L2 cache, all 4-way set
associative with 128-byte lines. CHERI requires a tag bit for
each 256-bit word, resulting in a natural caching amplification
factor of 256. Our new tag controller includes a lookup engine
backed by a 32KiB 4-way set-associative cache with 128-byte
lines, matching the burst size in the CHERI system. Since
each cached tag bit covers 256 bits of data memory, each 128-
byte line in the tag-table cache provides tags for 32 kilobytes
of data memory. We restricted ourselves to a standard cache
instantiation for the tag controller which did not allow silent-
write elimination so this feature was not evaluated in hardware.

Benchmark results for this basic FPGA implementation are
shown as the Uncompressed case in Figure 9. All of our
benchmarks were compiled to use 256-bit CHERI capabilities
for all pointers, though the tag values do not affect hit rates for
the uncompressed case. Our benchmarks include a selection of
Octane benchmarks running under the Duktape interpreter and

of MiBench benchmarks running natively. DRAM overhead
was below 3% for programs with data sets contained in the
multi-megabyte reach of the tag cache. The Splay benchmark
with a working set of over 100MB still maintained an overhead
of less than 8%.

VI. TAG-TABLE CACHE COMPRESSION

Tag-table compression reduces cache footprint by taking
advantage of likely patterns in adjacent tag-bit values. Our
focus is on compression for caching rather than reducing the
size of the table in memory, as the table itself occupies a
very small proportion of DRAM, and the full capacity is
required in the worst case. As compressibility depends heavily
on probable distributions, we must select a tag use case to gain
concrete insights into compressibility.

Three prominent approaches have been taken for tag com-
pression. The Range Cache approach compressed arbitrary
ranges of tags with the same value, and was particularly useful
for large MTB systems [10]. The Multi-granularity tagging
approach indicates the presence or absence of tags using
the TLB, eliminating tag lookup for the majority of cases.
Most of these systems keep tags on virtual memory such that
tag storage is entirely under software control [9], [15], [33].
Our approach is a fully hardware-managed1 hierarchical tag
table in physical memory that performs compression while
emulating a flat tag space.

A. Hierarchical Tag Table
To optimize for regions that contain no tags, we may

implement a two-level table where a bit in the root level
indicates whether any bits are set in a group of leaf level
bits. In the example in Figure 4, one bit in the root level can
be cleared to indicate that 512 bits in the leaf level are all zero
and need not be accessed on a read or on a write of zero. We
refer to the group granularity as the grouping factor “GF”, as
this is the factor by which the tag footprint can be compressed
for groups with no pointers. All tag-table lookups must access
the root level, but only addresses that lie in a group including a
tagged word must access the leaf level. It is simple to maintain
such a hierarchy. Each time we clear a tag bit in the leaf level,
we must check whether the rest of the tags in the group are
zero, clearing the bit in the root level if this is the case. On
boot up, we must clear only the root level of the table to clear
the tag bits on all of memory.

root tabletag-cache line

leaf table

1 bit
tag-cache line

512 bits

. . .

. . .

Fig. 4. Hierarchical table structure for grouping factor of 512

Crucially, this scheme eliminates table-cache pressure for
applications that do not use tagged pointers. In addition, this

1WHISK demonstrates that the root level of a two-level tag table can be
managed in software at the cost of flushing tag caches on root updates [31].

64 bytes

Tags for a
8KiB of data

1 bit per 8KiB of data: 0 for no tags set
root table

leaf table



Tag Cache Optimisations

• Hierarchical compression

Root-level bit can eliminate a leaf-level group

• Silent write elimination

Don’t mark tag cache line dirty if not modified

• Empty line fabrication/invalidation

Create line in the cache when leaf cache-line gets its first tag,
invalidate without writeback when leaf cache-line becomes clear
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Benchmarks in Hardware

36

DRAM Traffic Overhead in FPGA Implementation
Note: MiBench overheads with tag compression are approximately zero
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CHERI-RISC-V SOFTWARE STACK
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Architectural primitives for software security

38

Microarchitecture

Compilers and toolchain

Systems software

Applications

Instruction-Set Architecture 
(ISA)

CHERI capabilities are an architectural primitive that 
compilers, systems software, and applications use to constrain 

their own future execution

Software configures and uses capabilities to continuously 
enforce safety properties such as referential, spatial, and 
temporal memory safety, as well as higher-level security 

constructs such as compartment isolation

The microarchitecture implements the capability data type 
and tagged memory, enforcing invariants on their 
manipulation and use such as capability bounds, 

monotonicity, and provenance validity



Two key applications of the CHERI primitives
1. Efficient, fine-grained memory protection for C/C++

• Strong source-level compatibility, but requires recompilation

• Deterministic and secret-free referential, spatial, and temporal memory safety

• Retrospective studies estimate ⅔ of memory-safety vulnerabilities mitigated

• Generally modest overhead (0%-5%, some pointer-dense workloads higher)

2. Scalable software compartmentalization

• Multiple software operational models from objects to processes

• Increases exploit chain length: Attackers must find and exploit more vulnerabilities

• Orders-of-magnitude performance improvement over MMU-based techniques
(<90% reduction in IPC overhead in early FPGA-based benchmarks)
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What are CHERI’s implications for software?
• Efficient fine-grained architectural memory protection enforces:

Provenance validity: Q:  Where do pointers come from?

Integrity: Q:  How do pointers move in practice?

Bounds, permissions: Q:  What rights should pointers carry? 

Monotonicity: Q:  Can real software play by these rules?

• Scalable fine-grained software compartmentalization

Q:  Can we construct isolation and controlled communication 
using integrity, provenance, bounds, permissions, and monotonicity?

Q:  Can sealed capabilities, controlled non-monotonicity, and 
capability-based sharing enable safe, efficient compartmentalization?
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CHERI C/C++ MEMORY PROTECTION
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Memory-safe CHERI C/C++
• Capabilities used to implement all pointers

Implied – Control-flow pointers, stack pointers, GOTs, PLTs, …

Explicit – All C/C++-level pointers and references

• Strong referential, spatial, and heap temporal safety

• Minor changes to C/C++ semantics; e.g.,

• All pointers must have well defined single provenance

• Increased pointer size and alignment

• Care required with integer-pointer casts and types

• Memory-copy implementations may need to preserve tags

• Watson, et al. CHERI C/C++ Programming Guide, 
UCAM-CL-TR-947, June 2020

42



Memory protection for the language and the language runtime
• Capabilities are refined by the kernel, run-time linker, 

compiler-generated code, heap allocator, …

• Protection mechanisms:

• Referential memory safety

• Spatial memory safety + privilege minimization

• Temporal memory safety

• Applied automatically at two levels:

• Language-level pointers point explicitly at stack and 
heap allocations, global variables, …

• Sub-language pointers used to implement control flow, 
linkage, etc.

• Sub-language protection mitigates bugs in the language 
runtime and generated code, as well as attacks that cannot be 
mitigated by higher-level memory safety

• (e.g., union type confusion)
43

Language-level memory safety

Pointers to heap
allocations

Pointers to stack 
allocations

Pointers to 
global variables
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Function 
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Sub-language memory safety
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PLT entry 
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CHERI-based pure-capability process memory

44

• Capabilities are substituted for integer addresses throughout the address space

• Bounds and permissions are minimized by software including the kernel, run-time 
linker, memory allocator, and compiler-generated code

• Hardware permits fetch, load, and store only through granted capabilities

• Tags ensure integrity and provenance validity of all pointers

Memory
StackCode

Heap
Implied
pointer

Explicit
pointer

…

Thread 
register 

file

PLTs

Globals

captable

DDC

PCC

GPRs

NULL

NULL

NULL



struct timezone tz;

time_t get_unix_time(void) 
{

struct timeval tv; 

gettimeofday(&tv, &tz);
return tv.tv_sec;

}

get_unix_time_riscv:
addi sp, sp, -32
sd ra, 24(sp)
addi a0, sp, 8
.LBB0_1:
auipc a1, %pcrel_hi(tz)
addi a1, a1, %pcrel_lo(.LBB0_1)
call gettimeofday
(expands to auipc, possibly cld, cjalr)
ld a0, 8(sp)
ld ra, 24(sp)
addi sp, sp, 32
ret

RISC-V vs. CHERI-RISC-V generated code

• The general code structure is unchanged except that:

• The integer stack pointer becomes a capability stack pointer

• The pointer to a local stack allocation becomes capability

• Compiler-specified bounds are set on the local variable pointer before use

• The loaded jump target is a capability rather than an integer address
45

get_unix_time_cheririscv:
cincoffset csp, csp, -32
csc cra, 16(csp)
cincoffset ca0, csp, 0
csetbounds ca0, ca0, 16
.LBB0_1:
auipcc ca1, %captab_pcrel_hi(tz)
clcca1, %pcrel_lo(.LBB0_1)(ca1)
.LBB0_2:
auipcc ca2, %captab_pcrel_hi(gettimeofday)
clcca2, %pcrel_lo(.LBB0_2)(ca2)
cjalr cra, ca2
cld a0, 0(csp)
clc cra, 16(csp)
cincoffset csp, csp, 32
cret

1. Adjust stack address/capability
2. Save return address/capability
3. Create address/capability to local ‘tv’

4. Generate address/capability to global ‘tz’

5. Call gettimeofday()

6. Load return value from ‘tv’
7. Load return address/capability
8. Restore stack address/capability
9. Return



CheriBSD: A pure-capability operating system
• Complete memory- and pointer-safe FreeBSD C/C++ kernel + userspace

• OS kernel: Core OS kernel, filesystems, networking, device drivers, …

• System libraries: crt/csu, ld-elf.so, libc, zlib, libxml, libssl, …

• System tools and daemons: echo, sh, ls, openssl, ssh, sshd, …

• Applications: PostgreSQL, nginx, WebKit (C++)

• Valid provenance, minimized privilege for pointers, implied VAs

• Userspace capabilities originate in kernel-provided roots

• Compiler, allocators, run-time linker, etc., refine bounds and perms

• Trading off privilege minimization, monotonicity, API conformance

• Typically in memory management – realloc(), mmap() + mprotect()
46



CheriBSD 22.12 (December 2022)
~100MLoC of spatially memory-safe C/C++:

• FreeBSD UNIX kernel w/all drivers

• FreeBSD userspace: libraries, tools, and key 
daemons (e.g., OpenSSH)

• OpenGL, Wayland display server

• Plasma, KDE base applications including Dolphin, 
Okular, Konsole

• 9K CheriABI (memory-safe) packages

Also shipped in December 2022 with:

• aarch64 CHERI/Morello-aware GDB

• 20K aarch64 (legacy) packages

• Experimental library compartmentalization

Shipping in June 2023 (we hope):

• Heap temporal memory safety (w/Microsoft)

• CHERI-enabled hypervisor

• Memory-safe Google’s Chromium
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CHERI C compatibility: CheriBSD Code Changes
Area Files total Files modified % 

files
LoC

total
LoC

changed
%

LoC

Kernel 11,861 896 7.6 6,095k 6,961 0.18

• Core 7,867 705 9.0 3,195k 5,787 0.18

• Drivers 3,994 191 4.8 2,900k 1,174 0.04

Userspace 16,968 649 3.8 5,393k 2,149 0.04

• Runtimes (excl. libc++) 1,493 233 15.6 207k 989 0.48

• libc++ 227 17 7.5 114k 133 0.12

• Programs and libraries 15,475 416 2.7 5,186k 1,160 0.02

Notes:
§ Numbers from cloc counting modified files and lines for identifiable C, C++, and assembly files
§ Kernel includes changes to be a hybrid program and most changes to be a pure-capability program

• Also includes most of support for CHERI-MIPS, CHERI-RISC-V, Morello
• Count includes partial support for 32 and 64-bit FreeBSD and Linux binaries.
• 67 files and 25k LoC added to core in addition to modifications
• Most generated code excluded, some existing code could likely be generated



C/C++ compatibility: WebKit - JSC Code Changes

Area Files total Files
modified

% Files LoC
total

LoC
changed

%
LoC

JSC-C 3368 148 4.4 550k 2217 0.40

JSC-JIT 3368 339 10.1 550k 7581 1.38

Notes:
§ JSC-C is a port of the C-language JavaScriptCore interpreter backend
§ JSC-JIT includes support for a meta-assembly language interpreter and JIT compiler
§ Runs SunSpider JavaScript benchmarks to completion
§ Language runtimes represent worst-case in compatibility for CHERI

• Porting assembly interpreter and JIT compiler requires targeting new encodings
§ Changes reported here did not target diff minimization

• Prioritized debugging and multiple configurations (including integer offsets into bounded JS heap) for performance and 
security evaluation

• Some changes may not be required with modern CHERI compiler



Pure-capability UNIX process environment

• Received best paper award at ASPLOS,  April 2019
• Complete pure-capability UNIX OS userspace with spatial memory safety

• Usable for daily development tasks
• Almost vast majority of FreeBSD tests pass
• Management interfaces (e.g. ioctl), debugging, etc., work
• Large, real-world applications have been ported: PostgreSQL and WebKit
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Minimizing Pointer Privilege in the POSIX C
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Abstract
The CHERI architecture allows pointers to be implemented
as capabilities (rather than integer virtual addresses) in a
manner that is compatible with, and strengthens, the seman-
tics of the C language. In addition to the spatial protections
o�ered by conventional fat pointers, CHERI capabilities o�er
strong integrity, enforced provenance validity, and access
monotonicity. The stronger guarantees of these architec-
tural capabilities must be reconciled with the real-world
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behavior of operating systems, run-time environments, and
applications. When the process model, user-kernel interac-
tions, dynamic linking, and memory management are all
considered, we observe that simple derivation of architec-
tural capabilities is insu�cient to describe appropriate access
to memory. We bridge this conceptual gap with a notional
abstract capability that describes the accesses that should be
allowed at a given point in execution, whether in the kernel
or userspace. To investigate this notion at scale, we describe
the �rst adaptation of a full C-language operating system
(FreeBSD) with an enterprise database (PostgreSQL) for com-
plete spatial and referential memory safety. We show that
awareness of abstract capabilities, coupled with CHERI archi-
tectural capabilities, can provide more complete protection,
strong compatibility, and acceptable performance overhead
compared with the pre-CHERI baseline and software-only
approaches. Our observations also have potentially signi�-
cant implications for other mitigation techniques.



Heap temporal memory safety

• IEEE Symposium on Security and Privacy (“Oakland”), May 2020
• Hardware and software support for deterministic temporal memory 

safety for C/C++-language heaps using capability revocation
• Hardware enables fast tag searching using MMU-assisted tracking of 

tagged values, tag controller and cache
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Microsoft security analysis of CHERI C/C++
• Microsoft Security Research Center (MSRC) study analyzed all 

2019 Microsoft critical memory-safety security vulnerabilities

• Metric: “Poses a risk to customers → requires a software 
update”

• Vulnerability mitigated if no security update required

• Blog post and 42-page report

• Concrete vulnerability analysis for spatial safety

• Abstract analysis of the impact of temporal safety

• Red teaming of specific artifacts to gain experience

• CHERI, “in its current state, and combined with other mitigations, 
it would have deterministically mitigated at least two 
thirds of all those issues”
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Microsoft Security Response Center (MSRC) 

SECURITY ANALYSIS OF CHERI ISA 
Nicolas Joly, Saif ElSherei, Saar Amar – Microsoft Security Response Center (MSRC) 

INTRODUCTION AND SCOPE 

The CHERI ISA extension provides memory-protection features which allow historically memory-unsafe programming languages such 

as C and C++ to be adapted to provide strong, compatible, and efficient protection against many currently widely exploited 

vulnerabilities. 

CHERI requires addressing memory through unforgeable, bounded references called capabilities. These capabilities are 128-bit 

extensions of traditional 64-bit pointers which embed protection metadata for how the pointer can be dereferenced. A separate tag 

table is maintained to distinguish each capability word of physical memory from non-capability data to enforce unforgeability. 

In this document, we evaluate attacks against the pure-capability mode of CHERI since non-capability code in CHERI’s hybrid mode 

could be attacked as-is today. The CHERI system assessed for this research is the CheriBSD operating system running under QEMU as 

it is the largest CHERI adapted software available today.  

CHERI also provides hardware features for application compartmentalization [15]. In this document, we will review only the memory 

safety guarantees, and show concrete examples of exploitation primitives and techniques for various classes of vulnerabilities. 

SUMMARY 

CHERI’s ISA is not yet stabilized. We reviewed the current revision ϳ, but some of the protections such as executable pointer sealing 

is still experimental and likely subject to future change. 

The CHERI protections applied to a codebase are also highly dependent on compiler configuration, with stricter configurations 

requiring more refactoring and qualification testing (highly security-critical code can opt into more guarantees), with the strict sub-

allocation bounds behavior being the most likely high friction to enable. Examples of the protections that can be configured include: 

x Pure-capability vs hybrid mode 

x Chosen heap allocator’s resilience 

x Sub-allocation bounds compilation flag 

x Linkage model (PC-relative, PLT, and per-function .captable) 

x Extensions for additional protections on execute capabilities 

x Extensions for temporal safety 

However, even with enabling all the strictest protections, it is possible that the cost of making existing code CHERI compatible will be 

less than the cost of rewriting the code in a memory safe language, though this remains to be demonstrated. 

We conservatively assessed the percentage of vulnerabilities reported to the Microsoft Security Response Center (MSRC) in 2019 

and found that approximately 31% would no longer pose a risk to customers and therefore would not require addressing through a 

security update on a CHERI system based on the default configuration of the CheriBSD operating system. If we also assume that 

automatic initialization of stack variables (InitAll) and of heap allocations (e.g. pool zeroing) is present, the total number of 

vulnerabilities deterministically mitigated exceeds 43%. With additional features such as Cornucopia that help prevent temporal 

safety issues such as use after free, and assuming that it would cover 80% of all the UAFs, the number of deterministically mitigated 

vulnerabilities would be at least 67%. There is additional work that needs to be done to protect the stack and add fined grained CFI, 

but this combination means CHERI looks very promising in its early stages.  

https://msrc-blog.microsoft.com/2020/10/14/security-analysis-of-cheri-isa/
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https://msrc-blog.microsoft.com/2020/10/14/security-analysis-of-cheri-isa/
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Security Analysis of CHERI ISA

Security Research & Defense / By MSRC Team / October 14, 2020 /
Memory Corruption, Memory Safety, Secure Development, Security Research

Is it possible to get to a state where memory safety issues would be deterministically mitigated? Our quest to mitigate memory 
corruption vulnerabilities led us to examine CHERI (Capability Hardware Enhanced RISC Instructions), which provides memory 
protection features against many exploited vulnerabilities, or in other words, an architectural solution that breaks exploits. We’ve 
looked at how CHERI would break class-specific categories of vulnerabilities and considered additional mitigations to put in place to 
get to a comprehensive solution. We’ve assessed the theoretical impact of CHERI on all the memory safety vulnerabilities we 
received in 2019, and concluded that in its current state, and combined with other mitigations, it would have 
deterministically mitigated at least two thirds of all those issues.

We’ve reviewed revision 7 and used CheriBSD running under QEMU as a test environment. In this research, we’ve also looked for 
weaknesses in the model and ended up developing exploits for various security issues using CheriBSD and qtwebkit. We’ve 
highlighted several areas that warrant improvements, such as vulnerability classes that CHERI doesn’t mitigate at the architectural 
level, the importance of using reliable and CHERI compliant memory management mechanisms, and multiple exploitation primitives 
that would still allow memory corruption issues to be exploited. While CHERI does a fantastic job at breaking spatial safety 
issues, more is needed to tackle temporal and type safety issues.

Your feedback is extremely important to us as there’s certainly much more to discover and mitigate. We’re looking forward to your 
comments on our paper.

Nicolas Joly, Saif ElSherei, Saar Amar – Microsoft Security Response Center (MSRC)

https://msrc-blog.microsoft.com/2020/10/14/security-analysis-of-cheri-isa/

https://msrc-blog.microsoft.com/2020/10/14/security-analysis-of-cheri-isa/


CHERI SOFTWARE 
COMPARTMENTALISATION
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What is software compartmentalization?
• Fine-grained decomposition of a larger 

software system into isolated 
modules to constrain the impact of 
faults or attacks

• Goals is to minimize privileges 
yielded by a successful attack, and 
to limit further attack surfaces

• Usefully thought about as a graph of 
interconnected components, 
where the attacker’s goal is to 
compromise nodes of the graph 
providing a route from a point of entry 
to a specific target
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CheriFreeRTOS components and the application execute 
in compartments. CHERI contains an attack within 
TCP/IP compartment, which access neither flash nor the 
internals of the software update (OTA) compartment.



Software compartmentalization at scale

• Current CPUs limit:

• The number of compartments and rate of their creation/destruction

• The frequency of switching between them, especially as compartment count grows

• The nature and performance of memory sharing between compartments

• CHERI is intended to improve each of these – by at least an order of magnitude
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...

CHERI contains attack within compartment, 
preventing access to other data
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CHERI-based compartmentalization

• Isolated compartments can be created using closed graphs of capabilities, 
combined with a constrained non-monotonic domain-transition mechanism
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Compartmentalization scalability

• CHERI dramatically improves compartmentalization scalability

• More compartments

• More frequent and faster domain transitions

• Faster shared memory between compartments

• Many potential use cases – e.g., sandbox processing of each image in a 
web browser, processing each message in a mail application

• Unlike memory protection,  software compartmentalization requires 
careful software refactoring to support strong encapsulation, and 
affects the software operational model

Early benchmarks show a 1-to-2 
order of magnitude performance 
inter-compartment 
communication improvement 
compared to conventional 
designs
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Operational models for CHERI compartmentalization

• An architectural protection model enabling new software behavior

• As with virtual memory, multiple operational models can be supported

• E.g., with an MMU: Microkernels, processes, virtual machines, etc.

• How are compartments created/destroyed? Function calls vs. message 
passing? Signaling, debugging, …?

• We have explored multiple viable CHERI-based models to date, including:

Isolated dynamic libraries Efficient but simple sandboxing in processes

UNIX co-processes Multiple processes share an address space

• Improved performance and new paradigms using CHERI primitives

• Both will be available in CheriBSD/Morello
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Proposed operational models:
Isolated libraries and UNIX co-processes

Isolated dynamically linked libraries

• New API loads libraries into in-process sandboxes.
• Calling functions in isolated libraries performs a domain transition, with 

overheads comparable to function calls.
• Simple model eschews asynchrony, independent debugging, etc.

UNIX co-processes

• Multiple processes share a single virtual address space, separated using 
independent CHERI capability graphs.

• CHERI capabilities enable efficient sharing, domain transition.
• Rich model associates UNIX process with each compartment.

• Active area of research; early prototype available for co-processes
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Prototype 
to appear in 
CheriBSD
22.10

Prototype 
to appear in 
future 
CheriBSD
release



Kernel

User process X

Sandbox Sandbox 

Userspace domain switcher

Process X rights

Example: Robust shared libraries

• User compartments exist within individual UNIX processes (“robust shared libraries”):

• CHERI isolates compartments within each address spaces

• Compartment switcher is itself a trusted userspace library

• Compartments have strict subset of OS rights of the process

• Intra-process domain switches take no architectural exceptions and do not enter the kernel
• Multiple processes + IPC required if differing OS right sets needed
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Jump-based
intra-address-space 

CHERI domain switch

User process Y

Process Y rights

Exception-based 
inter-address-space 

MMU context switch



Kernel

Example: CHERI co-process model

• CHERI isolates multiple processes within a single virtual address space

• Kernel-provided trusted compartment switcher runs in userspace (actually a microkernel)

• CHERI-based inter-process memory sharing + domain switching

• A compartment’s OS rights correspond to the owning process

• Inter-process context switches take no architectural exceptions and do not enter the kernel
• CHERI can be pitched as improving IPC performance while retaining a (largely) 

conventional process model 62

User processes X and Y with shared virtual address space

Sandbox 
(process X) 

Sandbox 
(process Y) 

Userspace domain switcher

Jump-based intra-address-
space CHERI domain 

switch also switches kernel 
notion of active process

Process X rights Process Y rights



CHERI desktop 3-month study: Key outcomes
One person in 3 months:

• Ported 6 million lines of C/C++ 
code compiled for memory safety; 
modest dynamic testing

• Three compartmentalization 
case studies in Qt/KDE

Evaluation results:

• 0.026% LoC modification rate 
across full corpus for memory safety

• 73.8% mitigation rate across full 
corpus, using memory safety and 
compartmentalization
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http://www.capabilitieslimited.co.uk/pdfs/20210917-capltd-cheri-desktop-report-version1-FINAL.pdf

http://www.capabilitieslimited.co.uk/pdfs/20210917-capltd-cheri-desktop-report-version1-FINAL.pdf


Grand challenge in progress: Google Chromium
• Google Chrome, Microsoft Edge, Microsoft Teams, Electron, …

• “The real thing”:

• Over 35MLoC, >190 library dependencies

• V8, an intimidatingly real language runtime

• Code from numerous diverse origins and in countless forms of
idiomatic C and C++

• Vast wealth of past vulnerabilities

• Performance critical components

• Current state

• In-progress adaptation to memory-safe C/C++, with 98% compiling

• Current technical challenge: V8 runtime

• “Just one last bug needs to be fixed in V8” (ask again in April)

• Pilot jointly funded by UKRI, Google
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Where to learn more?
• Project web pages:

• http://www.cheri-cpu.org/

• An Introduction to CHERI, Technical 
Report UCAM-CL-TR-941, Computer 
Laboratory, September 2019

• Capability Hardware Enhanced RISC 
Instructions: CHERI Instruction-Set 
Architecture (Version 8), UCAM-CL-TR-
951, October 2020

• CHERI C/C++ Programming Guide, 
UCAM-CL-TR-947, June 2020
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An Introduction to CHERI

• Architectural capabilities and the 
CHERI ISA

• CHERI microarchitecture
• ISA formal modeling and proof
• Software construction with 

CHERI
• Language and compiler 

extensions
• OS extensions
• Application-level adaptations

http://www.cheri-cpu.org/


EXPLOITATION PATHS
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CHERI research and development timeline

Years 1-2: Research platform, prototype architecture

Years 2-4: Hybrid C/OS model, compartment model

Years 4-7: Efficiency, CheriABI/C/C++/linker, ARMv8-A

Years 8-9:  RISC-V, temporal safety, formal proof
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Over 150 researcher years of 
effort by Cambridge & SRI

Many engineer years by Arm



Bridging the commercialisation chasm
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UK Industry Strategy Challenge Fund:
Digital Security by Design

• £90M UK gov. funding, >£200M UK industrial match, to create CHERI-
ARM demonstrator SoC + board with proven ISA

• Leap supply-chain gap that makes adopting new architecture difficult – in 
particular, validation of concepts in  microarchitecture, architecture, and 
software “at scale”

• Support industrial and academic R&D (EPSRC, ESRC, InnovateUK)

• Technology Access Program in 4th round (https://www.dsbd.tech/technology-access-
programme/)

• Ongoing collaboration reviewing and distilling {essential, desirable, 
experimental} CHERI features for use in SoC

• Science designed allowed: Support multiple architectural design choices for 
software-based evaluation once fabricated

• 2020 emulation models; 2021 “Morello” board delivery
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Morello Demonstrator Board

https://www.arm.com/architecture/cpu/morello



Open Source Stack: Research and Deployment

• CHERI-RISC-V developed open source:

• Documentation (ISA ref, architecture overview, etc)

• Specification in Sail

• Simulators: Spike, Qemu

• Clang/LLVM toolchain

• OS support: CheriBSD, CheriFreeRTOS, CheriRTEMS

• Hardware implementations

• 3-stage, 5-stage and OoO cores on FPGA including AWS F1
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Project URL:
http://cheri-cpu.org/

links to:
https://www.cl.cam.ac.uk/research/security/ctsrd/

Also:
http://CheriBSD.org



Open-Source CHERI-RISC-V Cores Implemented

• Piccolo 32b microcontroller:
https://github.com/CTSRD-CHERI/Piccolo

• Flute 64b/32b scalar core:
https://github.com/CTSRD-CHERI/Flute

• Toooba 64b out-of-order core based on MIT Riscy-OOO core
https://github.com/CTSRD-CHERI/Toooba
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https://github.com/CTSRD-CHERI/Piccolo
https://github.com/CTSRD-CHERI/Flute
https://github.com/CTSRD-CHERI/Toooba


Conclusions
• CHERI provides the hardware with more semantic knowledge of what the 

programmer intended

• Toward the principle of intentional use

• Efficient pointer integrity and bounds checking

• Eliminates buffer overflow/over-read attacks (finally!)

• Provide scalable, efficient compartmentalisation

• Allows the principle of least privilege to be exploited to
mitigate known and unknown attacks

• Large performance improvement over process-based compartmentalisation

• Working with industry & open-source community to deploy the technology
• Thanks to sponsors: DARPA, ARM, Google, EPSRC, ESRC, HEIF, Isaac Newton Trust, Thales E-Security, HP 

Labs
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