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Introduction: What is CHERI?
* CHERI=Capability Hardware Enhanced RISC Instructions

* CHERI is a new hardware technology that mitigates
software security vulnerabilities

¢ Deve|0ped by the UniVEI"Sit)' Of Cambr|dge and SRI An early experimental FPGA-

based CHERI tablet prototype

International starting in 2010, supported by DARPA and  unning the Cherigsb

operating system and
Other'S applications, Cambridge, 2013

* Arm collaboration from 2014

* From 2019: UKRI Digital Security by Design initiative has

brought in many more collaborators and led to the Arm
Morello prototype chip+system

3
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Reminder:Why develop CHERI?

“Buffer overflows have not objectively gone down in the last 40 years.
The impact of buffer overflows have if anything gone up.”
lan Levy, NCSC
* Matt Miller (MS Response Center) @ BlueHat 2019:
* From 2006 to 2018, year after year, 70% MSFT CVEs are memory safety bugs.
* First place: spatial safety
* Addressed directly by CHERI
* Second place: use after free

* Addressed by our work exploiting CHERI capability validity tags to precisely
find pointers
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Motivation — Chromium Browser Safety

“70% of our serious security bugs are memory safety problems”

www.chromium.org/Home/chromium-security/memory-safety

High+, impacting stable

Security-related assert

Use-after-free
36.1%

Other

Other memory unsafety [j ‘\ )
...l... UNIVERSITY OF
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National Security Agency | Cybersecurity Information Sheet

Software Memory Safety

Executive summary

Modern society relies heavily on software-based automation, implicitly trusting
developers to write software that operates in the expected way and cannot be
compromised for malicious purposes. While developers often perform rigorous testing to
prepare the logic in software for surprising conditions, exploitable software
vulnerabilities are still frequently based on memory issues. Examples include
overflowing a memory buffer and leveraging issues with how software allocates and de-
allocates memory. Microsoft® revealed at a conference in 2019 that from 2006 to 2018
70 percent of their vulnerabilities were due to memory safety issues. [1] Google® also
found a similar percentage of memory safety vulnerabilities over several years in

https://media.defense.gov/2022/Nov/10/2003 1 12742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
6 BB UNIVERSITY OF
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HOW THE HEARTBLEED BUG WORKS:

Example 1

SERVER, ARE YOU STiLL THERE?
IF 50, REPLY "POTATO" (b LETTERS).

) er Meg wants these 6 letters: POTATO

o
O

ser Meg wants these 6 letters: POTATO.

SERVER, ARE YOU STiLL THERE?
IF 50, REPLY “BIRD" (4 LETTERS).

User Meg wants
) ese 4 letters: BIRD
(o}
? f .(>

)
O
)

1HS€ | /Wod'padyx//:d1ay :234nos

58 UNIVERSITY OF
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HMM. ..

er Meg wants these 500 letters: HAT.

HAT. Lucas requests the "missed conne
ctions” page. t-_\-e(admmst.mtor)m

ts to set server’s master key to "148
35038534, Isabel wants pages about '
mkmhnrmmla\q User Karen
axt.-;wdwxpaaxxmtpa&wmw

/FSE | Jwod pdx//:d1y :924nos

5 UNIVERSITY OF
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HAT. Lucas requests the ‘missed conne
ctions” page. Eve (administrator) wan
ts to set server’'s master key to ' 148
350385347, Isabel wants pages about '
gnakes but not too long". User Karen
wants to change account password to ©

Meg wants the
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Went wrong! How do we do better?

e (Classical answer:

* The programmer forgot to check the bounds of the data structure
being read

* Fix the vulnerability in hindsight — one-line fix:
if (1+2+payload+16 > s->s3->rrec.length) return 0;

* Our answer:
* Preserve bounds information during compilation

* Use hardware (CHERI processor) to dynamically check bounds
with little overhead and guarantee pointer integrity & provenance

B UNIVERSITY OF
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Example 2: how to reduce the attack surface!?

* The software attack surface keeps getting bigger
* Applications just keep getting larger
* Huge libraries of code aid rapid program development
* Everything is network connected

* This aids the attacker:an expanding number of ways to break in

@8 UNIVERSITY OF
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CHERI solution: application-level least privilege

Software compartmentalization decomposes software into
isolated compartments that are delegated limited rights

Able to mitigate not only unknown vulnerabilities, but also

° ego o ° ] UNIVERSITYOF
as-yet undiscovered classes of vulnerabilities and exploits "Fl“
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THE CHERI APPROACH
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Architectural primitives for software security

Applications

H

Systems software

Compilers and toolchain

Instruction-Set Architecture

(ISA)

Microarchitecture

A

Software configures and uses capabilities to continuously
enforce safety properties such as referential, spatial, and
temporal memory safety, as well as higher-level security

constructs such as compartment isolation

N

CHERI capabilities are an architectural primitive that
compilers, systems software, and applications use to constrain
their own future execution

N

_@

The microarchitecture implements the capability data type
and tagged memory, enforcing invariants on their
manipulation and use such as capability bounds,
monotonicity, and provenance validity

¥ CAMBRID
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CHERI design goals and approach

* De-conflate memory virtualization and protection
* Memory Management Units (MMUs) protect by location (address)
* CHERI protects existing references (pointers) to code, data, objects

* Reusing existing pointer indirection avoids adding new architectural
table lookups

* Architectural mechanism that enforces software policies

* Language-based properties — e.g., referential, spatial, and temporal
integrity (C/C++ compiler, linkers, OS model, runtime, ...)

* New software abstractions — e.g., software compartmentalization

(confined objects for in-address-space isolation, ...)

B UNIVERSITY OF
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Pointers today

o
£ { virtual address (64 bits
o

64-bit

* Implemented as integer virtual addresses (VAs)

* (Usually) point into allocations, mappings
* Derived from other pointers via integer arithmetic
* Dereferenced via jump, load, store Allocation

* No integrity protection — can be injected/corrupted

* Arithmetic errors — out-of-bounds leaks/overwrites

* Inappropriate use — executable data, format strings \;i;tual
address
» Attacks on data and code pointers are highly effective, often space

achieving arbitrary code execution
6 5 UNIVERSITY OF
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CHERI 128-bit capabilities today

Virtual address space

| -bit

tag
[
<

|
-
S
e
(=%
[a

Memory
. allocation

permissions otype Bounds compressed relative to address C

|

. lowerbound |
64-bit virtual address (

* Capabilities extend integer memory addresses

128-bit
capability
A

* Metadata (bounds, permissions, ...) control how they may be used

* Guarded manipulation controls how capabilities may be manipulated;
e.g., provenance validity and monotonicity

* Tags protect capability integrity/derivation in registers + memory

17 UNIVERSITY OF
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CHERI enforces protection semantics for pointers

- A\ Globals | | /\ Stack |

* Integrity and provenance validity ensure that valid pointers are derived from other valid pointers via valid
transformations; invalid pointers cannot be used

Control flow

Integrity and

. Permissions
provenance validity

Bounds

* Valid pointers, once removed, cannot be reintroduced solely unless rederived from other valid pointers

* E.g, Received network data cannot be interpreted as a code/data pointer — even previously leaked pointers
* Bounds prevent pointers from being manipulated to access the wrong object

* Bounds can be minimized by software — e.g., stack allocator, heap allocator, linker
* Monotonicity prevents pointer privilege escalation — e.g., broadening bounds
* Permissions limit unintended use of pointers; e.g.,VWAX for pointers

* These primitives not only allow us to implement strong spatial and temporal memory protection, but
also higher-level policies such as scalable software compartmentalization =8 UNIVERSITY OF
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Principles CHERI aims to uphold

* The principle of intentional use

* Ensure that software runs the way the programmer intended,
not the way the attacker tricked it

* Approach: guaranteed pointer integrity & provenance, with
efficient dynamic bounds checking

* The principle of least privilege
* Reduce the attack surface using software compartmentalization
* Mitigates known and unknown exploits

* Approach: highly scalable and efficient compartmentalization

B UNIVERSITY OF
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CHERI-RISC-V ISA

I8 UNIVERSITY OF
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CHERI-RISC-V formal ISA model

* CHERI RISC-V ISA model extends RISC-V formal ISA specification, in Salil
* Sail RISC-V ISA specification developed by UCam + SRl
* Selected as official RISC-V spec by the Foundation

* Sail is a custom first-order imperative language for expressing ISA specifications,
usable by engineers but with static type checking of bitvector lengths etc.

* The Sail spec is inlined in versions of the unprivileged and privileged RISC-V
manuals

* Sail auto-generates a C emulator, theorem-prover definitions, and SMT definitions
* Machinery for configuring model WRT YAML from compliance group

* Readable, precise definition of ISA behavior, usable as test oracle for testing
hardware against and for software bring-up, and providing prover definitions if you
want more rigorous reasoning

B UNIVERSITY OF
» CAMBRIDGE
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ISA formal modelling and verification

Rigorous engineering for hardware security: ESOP 2022
Formal modelling and pro
and implementj

Verified Security for the Morello

Kyndylan Nienhuis*, Alexandre Joannou*, Thomas Bauer Capablllty-enhanced Prototype A_rm ArChlteCture
Matthew Naylor*, Robert M. Norton*, Simon W. Moore*,
and Peter §

*University of Cambridge TARM Limited t

Thomas Bauereiss'™®), Brian Campbell?®, Thomas Sewell'®,
Alasdair Armstrong!, Lawrence Esswood!, Ian Stark?, Graeme Barnes3,

IEEE SSP 2020 Robert N. M. Watson'!, and Peter Sewell

! University of Cambridge, Cambridge, UK
first.lastAcl cam.ac uk

* Formal ISA models CHERI-MIPS, CHERI-RISC-V, and Morello

* Formal proof of compartmentalization for CHERI-MIPS, Morello
@B UNIVERSITY OF
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Merged capability register file + tagged memory
(as found in CHERI-RISC-V and ARM Morello)

Capability width
I

$pc $pcc v
$ra $c31 v R d d |-
|f|:::| | DDC Iv|
Capabilit
$al $c4 h Control and P -
§a0 $c3 v status registers
(CSRs)

General-purpose register file (GPRs) Physical memory

* 64-bit general-purpose registers (GPRs) are extended with 64 bits of metadata and a |-bit validity tag
* Program counter (PC) is extended to be the program-counter capability ($PCC)

* Default data capability ($DDC) constrains legacy integer-relative ISA load and store instructions
 Tagged memory protects capability-sized and -aligned words in DRAM by adding a I-bit validity tag

* Various system mechanisms are extended (e.g., capability-instruction enable control register, new TLB/PTE
permission bits, exception code extensions, saved exception stack pointers and vectors become capabilities, etc.)
38 UNIVERSITY OF
CAMBRIDGE

7N

SR

International
NS

S AL L
Sl




CHERI-RISC-V MICROARCHITECTURE
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Early CHERI Capabilities

* ISCA 2014 paper: Revisiting RISC in the Age of Risk

256b capability with bounds and permissions but no address!

permissions (31 bits)

256 bits

base (64 bits)
length (64 bits)

Figure 1: Memory capability

Separate capability register file in capability coprocessor

Bl (e

Put Ca p blty Exchange Col mm|t
Instructio Op ands Addr Writeback
K Offset J
! Addre:
Request ‘ Read ‘ ‘Speculalive Write ‘ Write
Forwarding Register File

Capability Coprocessor

Figure 2: BERI pipeline with capability coprocessor

25 B UNIVERSITY OF
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Minimising the Cost of Capabilities

* Include an address in the capability so that all pointers can be turned into
capabilities

* This simplified the software model
* Compress capabilities into a 128-bit format

* Reduces data-cache footprint + extra DRAM bandwidth

* ARM were particularly concerned about power from extra DRAM traffic
* On CHERI-RISC-V we extend the integer register file to hold capabilities

* Reduces the amount of rename logic required, forwarding logic, register
space, etc.

B UNIVERSITY OF
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Capability Compression

Capabilities encode three 64-bit fields (plus permissions, etc.):
63 0
Top

Address

But we can encode the Top and Bottom relative to the Address:
63 Top 0
Address

—— — Exponent: pili

* Larger objects require greater alignment

* Address must be “near” the Top and Bottom
27
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IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.10, OCTOBER 2019 1455

CHERI Concentrate:
Practical Compressed Capabilities

Jonathan Woodruff*, Alexandre Joannou, Member, IEEE, Hongyan Xia™, Anthony Fox, Robert M. Norton™,
David Chisnall, Brooks Davis, Khilan Gudka, Nathaniel W. Filardo, A. Theodore Markettos, Michael Roe,
Peter G. Neumann, Fellow, IEEE, Robert N. M. Watson, and Simon W. Moore™, Senior Member, IEEE

Abstract—We present CHERI Concentrate, a new fat-pointer compression scheme applied to CHERI, the most developed capability-
pointer system at present. Capability fat pointers are a primary candidate to enforce fine-grained and non-bypassable security
properties in future computer systems, although increased pointer size can severely affect performance. Thus, several proposals for
capability compression have been suggested elsewhere that do not support legacy instruction sets, ignore features critical to the
existir” “<oftware b2sg, and also#™ uyce desie=" ‘<fficienei~” ‘0 B/ %:style pr~~assorpi= Mes. “RICe” Mrate’ qver nthr

v -~

* Published in IEEE Transactions on Computers, October 2019

* Has all the maths and formal proof in it...

58 UNIVERSITY OF
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Tips on Implementing CHERI Concentrate

* CHERI concentrate doesn’t require much logic, but it isn’t easy to
implement so that it is small and correct

* We used formal verification (symbolic proof) to check key invariant
properties

* Conventional testing is insufficient because the state space is large
and there are many corner cases

* Tip:use our library of base functions and DO NOT write your own!
https://github.com/CTSRD-CHERI/cheri-cap-lib

* C library to support software that needs to manipulate capabilities:
https://github.com/CTSRD-CHERI/cheri-compressed-cap

B UNIVERSITY OF
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Tagging Capabilities

* Capabilities have a hidden validity tag
* In registers and memory
* Tag bit is critical to security
* Conventional operations (arith, memory) clear the tag

* Only capability instructions preserve the tag and guarantee
monotonic decrease in rights

* One hidden bit per |128-bits avoids using other integrity measures
(no crypto needed...)

@8 UNIVERSITY OF
P CAMBRIDGE
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Propagating tags from registers to DRAM

I = tag storage

* Tags stored in registers and
registers caches with data to ensure
consistency

L1 I-cache L1 D-cache ° Off'Ch|P storage:

* Tags stored in upper |% of
EEICache commodity DRAM

* Tag cache per DRAM

controller reduces DRAM
traffic

DRAM controller Tag Cache

off-chip DRAM

* No consistency issues

mgn UNIVERSITY OF
4P CAMBRIDGE
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Tag Table Cache Locality Analysis

Temporal and Spatial Hits vs. Line Size
for Earley-Boyer, 256KiB tag cache, 8-way set associative

100%

[ misses [ spatial hits B temporal hits

80%

60%

40%

Tag cache accesses

20%

64-byte line of tags covers
: 8KiB block of data
1-byte line of tags covers
128B of data

1 2 4 8 16 32 64 128 256 512 1024
Tag cache line size (bytes)
32
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Hierarchical Tag Compression

* Size tag cache line length to 64-byte DDR4 burst transfer size
= one line covers tags for 8KiB of memory (128-bit capabilities)

* Many lines don’t contain tags (code, large blocks of data, disk cache,
etc.)

* So handling tag sparseness is important

* Only want to pay for tagging when needed

33
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Tag Compression

| bit per 8KiB of data: 0 for no tags set

R root table
Tags for a
8,KIB ?f dat? leaf table
64 bytes

* 2-level tag table

* Each bit in the root level indicates all zeros in a leaf group
* Reduces tag cache footprint

* Amplifies cache capacity

@8 UNIVERSITY OF
P CAMBRIDGE
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Tag Cache Optimisations

* Hierarchical compression

Root-level bit can eliminate a leaf-level group
* Silent write elimination

Don’t mark tag cache line dirty if not modified

* Empty line fabrication/invalidation

Create line in the cache when leaf cache-line gets its first tag,
invalidate without writeback when leaf cache-line becomes clear

@8 UNIVERSITY OF
P CAMBRIDGE
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Benchmarks in Hardware

DRAM Traffic Overhead in FPGA Implementation

Note: MiBench overheads with tag compression are approximately zero

(@) o
R R
T T

DRAM traffic overhead
N
R

B Uncompressed
@ Compressed

MiBench

Almost zero overhead
with tag compression 2%

S T O
S L P 300@&
&\Qﬁ Octane
> (very pointer heavy)
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CHERI-RISC-V SOFTWARE STACK
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Architectural primitives for software security

\
Software configures and uses capabilities to continuously
Applications / \ enforce safety properties such as referential, spatial, and
temporal memory safety, as well as higher-level security
< constructs such as compartment isolation
Systems software

C il d Ichai .

ompilers and toolchain CHERI capabilities are an architectural primitive that

compilers, systems software, and applications use to constrain

their own future execution

Instruction-Set Architecture

(ISA) /

L

The microarchitecture implements the capability data type

and tagged memory, enforcing invariants on their

manipulation and use such as capability bounds,
monotonicity, and provenance validity

Microarchitecture

&% CAMBRIDGE
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Two key applications of the CHERI primitives

. Efficient, fine-grained memory protection for C/C++
* Strong source-level compatibility, but requires recompilation
* Deterministic and secret-free referential, spatial, and temporal memory safety
* Retrospective studies estimate %3 of memory-safety vulnerabilities mitigated
* Generally modest overhead (0%-5%, some pointer-dense workloads higher)
2. Scalable software compartmentalization
* Multiple software operational models from objects to processes
* Increases exploit chain length: Attackers must find and exploit more vulnerabilities

* Orders-of-magnitude performance improvement over MMU-based techniques
(<90% reduction in IPC overhead in early FPGA-based benchmarks)

B UNIVERSITY OF
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What are CHERI’s implications for software!

* Efficient fine-grained architectural memory protection enforces:
Provenance validity: Q: Where do pointers come from!?
Integrity: Q: How do pointers move in practice?
Bounds, permissions: Q: What rights should pointers carry?
Monotonicity: Q: Can real software play by these rules?

* Scalable fine-grained software compartmentalization

Q: Can we construct isolation and controlled communication
using integrity, provenance, bounds, permissions, and monotonicity!?

Q: Can sealed capabilities, controlled non-monotonicity, and

capability-based sharing enable safe, efficient compartmentalization?

B UNIVERSITY OF
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CHERI C/C++ MEMORY PROTECTION
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Memory-safe CHERI C/C++

UCAM-CL-TR-949
ISSN 1476-2986

Technical Report

Number 949

5B UNIVERSITY OF
Q¥ CAMBRIDGE

Computer Laboratory

Complete spatial safety for C and
C++ using CHERI capabilities

Alexander Richardson

June 2020

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/
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Capabilities used to implement all pointers
Implied — Control-flow pointers, stack pointers, GOTs, PLTs, ...
Explicit — All C/C++-level pointers and references

Strong referential, spatial, and heap temporal safety

Minor changes to C/C++ semantics; e.g.,
* All pointers must have well defined single provenance
* Increased pointer size and alignment
* Care required with integer-pointer casts and types

¢ Memory-copy implementations may need to preserve tags

Watson, et al. CHERI C/C++ Programming Guide,
UCAM-CL-TR-947, June 2020

I8 UNIVERSITY OF
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Memory protection for the language and the language runtime

* Capabilities are refined by the kernel, run-time linker,
Language-level memory safety compiler-generated code, heap allocator, ...

: i e Protection mechanisms:
Pointers to heap Pointers to

allocations Function * Referential memory safety
pointers Pointers to .
Pointers to stack memory mappings

allocations Pointers to TLS Pointers to sub-

variables objects * Applied automatically at two levels:

— T~ T~ "+ Language-level pointers point explicitly at stack and

heap allocations, global variables, ...

global variables

Spatial memory safety + privilege minimization

* Temporal memory safety

Vararg array
C?OT pointers PLT entry * Sub-language pointers used to implement control flow,
Return  Pointers pointers linkage, etc.
addresses C++v-table  EF.aux arg * Sub-language protection mitigates bugs in the language
Stack pointers int runtime and generated code, as well as attacks that cannot be
pointers pointers mitigated by higher-level memory safety
Sub-language memory safety * (e.g., union type confusion)

58 UNIVERSITY OF
CAMBRIDGE
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CHERI-based pure-capability process memory

Memory
Code Stack
Thread P < EI \d
register Rl 4 < ]
file ] I 4 RN p N (P >
oo L | i \ R Implied
L~ ! ! ',' captable N ,,' Heap pointer
: : : ‘/ " ulaee
]
i Globals /
[N —_—
.\.‘;‘ T~ P Explicit
! pointer
L NULL

* Capabilities are substituted for integer addresses throughout the address space

* Bounds and permissions are minimized by software including the kernel, run-time
linker, memory allocator, and compiler-generated code

* Hardware permits fetch, load, and store only through granted capabilities

* Tags ensure integrity and provenance Vallilt)' of all pointers "B UNIVERSITY OF

CAMBRIDGE
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RISC-V vs. CHERI-RISC-V generated code

struct timezone tz;

time t get unix time (void)

{

struct timeval tv;

gettimeofday (&tv, &tz);

return tv.tv_sec;

get unix time riscv:

addi sp, sp, -32
sd ra, 24 (sp)
addi a0, sp, 8

.LBBO 1:

auipc al, $pcrel hi (tz)

addi al, al, %pcrel lo(.LBBO_ 1)
call gettimeofday

(expands to auipc, possibly cld, cjalr)
1d a0, 8(sp)
1d ra, 24 (sp)
addi sp, sp, 32
ret

* The general code structure is unchanged except that:

* The integer stack pointer becomes a capability stack pointer

* The pointer to a local stack allocation becomes capability

* Compiler-specified bounds are set on the local variable pointer before use

* The loaded jump target is a capability rather than an integer address

45

get unix time cheririscv:

cincoffset csp, csp, -32
csc cra, 16 (csp)
cincoffset cal, csp, O
csetbounds cal, cal, 16

.LBBO_1:

auipcc cal, %captab pcrel hi(tz)
clccal, %pcrel lo(.LBBO_ 1) (cal)

.LBBO_2:

auipcc ca2, %captab pcrel hi(gettimeofday)
clcca2, %pcrel lo(.LBBO_ 2) (ca2)

cjalr cra, caz2

cld a0, O(csp)

clc cra, 16 (csp)
cincoffset csp, csp, 32
cret

I.  Adjust stack address/capability
2. Save return address/capability
3.  Create address/capability to local ‘tv’

4.  Generate address/capability to global ‘tz’

\
e

| Call gettimeofday()

-
6.  Load return value from ‘tv’
7.  Load return address/capability
8.  Restore stack address/capability
9.  Return
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CheriBSD:A pure-capability operating system

* Complete memory- and pointer-safe FreeBSD C/C++ kernel + userspace
* OS kernel: Core OS kernel, filesystems, networking, device drivers, ...
* System libraries: crt/csu, ld-elf.so, libc, zlib, libxml, libssl, ...
* System tools and daemons: echo, sh, Is, openssl, ssh, sshdq, ...
* Applications: PostgreSQL, nginx, WebKit (C++)

* Valid provenance, minimized privilege for pointers, implied VAs
* Userspace capabilities originate in kernel-provided roots
* Compiler, allocators, run-time linker, etc., refine bounds and perms

* Trading off privilege minimization, monotonicity, APl conformance

* Typically in memory management — realloc(), mmap() + mprotec

WE UNIVERSITY OF
&¥ CAMBRIDGE



CheriBSD 22.12 (December 2022)

] robert : sh — Konsole
4 Developing and Evaluating an Open-Source Desktop for A...roject 10027440 Q2 Review Meeting (3).pdf — Okular <2> v A X File Edit View Bookmarks Plugins Settings Help
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Videos

* Plasma, KDE base applications including Dolphin,
Okular, Konsole Y—

{8l Developing and Evaluating an Op... pf
1 Modified Yesterday

firefox-105.0.1,2.pkg

Documents kernel. GENERIC-MORELLO-PURECAP.txz

£ images

Developing and Evalu...F document, 1.0 MiB)  Zoom:

* 9K CheriABI (memory-safe) packages

W — A 10:21
>~ i sty 12

Also shipped in December 2022 with: Shipping in June 2023 (we hope):

aarch64 CHERI/Morello-aware GDB * Heap temporal memory safety (w/Microsoft)

20K aarché4 (legacy) packages * CHERI-enabled hypervisor

* Experimental library compartmentalization * Memory-safe Google’s Chromium
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CHERI C compatibility: CheriBSD Code Changes

Files modified
flles total cha nged

Kernel 11,861 6,095k 6,961 0.18
e Core 7,867 705 9.0 3,195k 5,787 0.18
* Drivers 3,994 191 4.8 2,900k 1,174 0.04
Userspace 16,968 649 3.8 5,393k 2,149 0.04
* Runtimes (excl. libc++) 1,493 233 15.6 207k 989 0.48
* libc++ 227 17 7.5 114k 133 0.12
* Programs and libraries 15,475 416 2.7 5,186k 1,160 0.02
Notes:

=  Numbers from cloc counting modified files and lines for identifiable C, C++, and assembly files

= Kernel includes changes to be a hybrid program and most changes to be a pure-capability program
* Also includes most of support for CHERI-MIPS, CHERI-RISC-V, Morello
* Countincludes partial support for 32 and 64-bit FreeBSD and Linux binaries.
* 67 files and 25k LoC added to core in addition to modifications

* Most generated code excluded, some existing code could likely be generated
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C/C++ compatibility: WebKit - |]SC Code Changes

Files % Files
modified total changed

JSC-C 3368 550k 2217 0.40
JSC-JIT 3368 339 10.1 550k 7581 1.38
Notes:

= JSC-Cis a port of the C-language JavaScriptCore interpreter backend
= JSC-JIT includes support for a meta-assembly language interpreter and JIT compiler
= Runs SunSpider JavaScript benchmarks to completion
= Language runtimes represent worst-case in compatibility for CHERI
e Porting assembly interpreter and JIT compiler requires targeting new encodings
= Changes reported here did not target diff minimization

* Prioritized debugging and multiple configurations (including integer offsets into bounded JS heap) for performance and
security evaluation

* Some changes may not be required with modern CHERI compiler
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Pure-capability UNIX process environment

CheriABI: Enforcing Valid Pointer Provenance and
Minimizing Pointer Privilege in the POSIX C
Run-time Environment

Brooks Davis” Robert N. M. Watson T Alexander Richardson
brooks.davis@sri.com robert.watson@cl.cam.ac.uk alexander.richardson@cl.cam.ac.uk
Peter G. Neumann® Simon W. Moore John Baldwin¥

peter.neumann@sri.com simon.moore@cl.cam.ac.uk john@araratriver.co
David Chisnalls Jese*ca M larkel N-hanj*” Vesls Sile o1
J o !

* Received best paper award at ASPLOS, April 2019

* Complete pure-capability UNIX OS userspace with spatial memory safety
* Usable for daily development tasks
* Almost vast majority of FreeBSD tests pass
* Management interfaces (e.g. ioctl), debugging, etc., work

<5 * Large, real-world applications have been ported: PostgreSQL and WebKit g
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Heap temporal memory safety

Cornucopia: Temporal Safety for CHERI Heaps

Nathaniel Wesley Filardo; Brett F. Gutstein] Jonathan Woodruff,;” Sam Ainsworth] Lucian Paul-Trifu;
Brooks Davis:r Hongyan Xia; Edward Tomasz Napierala; Alexander Richardson; John Baldwin?
David Chisnallf Jessica Clarke* Khilan Gudka* Alexandre Joannou* A. Theodore Markettos*
Alfredo Mazzinghi; Robert M. Norton; Michael Roe; Peter Sewell; Stacey Son;

Timothy M. Jones; Simon W. Moore; Peter G. Neumann! Robert N. M. Watson*
*University of Cambridge, Cambridge, UK; TSRI International, Menlo Park, CA, USA;

§Microsoft Research, Cambridge, UK; fArarat River Consulting, Walnut Creek, CA, USA

Abstract—Use-after-free violations of temporal memory safety While use-after-free heap vulnerabilities are ultimately due
continue to plague software systems, underpinning many high- o application misuse of the malloc() and free() interface,
imract exploits. The CHERI capshility system. shows great omplet~ <anitiza*  of * vast” ¢y @ de’ e,/ ‘wen

s i tawi wd Cp” e ws /N

* |EEE Symposium on Security and Privacy (“Oakland”), May 2020

* Hardware and software support for deterministic temporal memory
safety for C/C++-language heaps using capability revocation

* Hardware enables fast tag searching using MMU-assisted tracking of

tagged values, tag controller and cache
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Microsoft security analysis of CHERI| C/C++

SECURITY ANALYSIS OF CHERI ISA

Nicolas Joly, Saif ElSherei, Saar Amar — Microsoft Security Response Center (MSRC)

INTRODUCTION AND SCOPE

The CHERI ISA extension provides memory-protection features which allow historically memory-unsafe programming languages such
as Cand C++ to be adapted to provide strong, compatible, and efficient protection against many currently widely exploited
vulnerabilities.

CHERI requires addressing memory through unforgeable, bounded references called capabilities. These capabilities are 128-bit
extensions of traditional 64-bit pointers which embed protection metadata for how the pointer can be dereferenced. A separate tag
table is maintained to distinguish each capability word of physical memory from non-capability data to enforce unforgeability.

In this document, we evaluate attacks against the pure-capability mode of CHERI since non-capability code in CHERI's hybrid mode
could be attacked as-is today. The CHERI system assessed for this research is the CheriBSD operating system running under QEMU as
it is the largest CHERI adapted software available today.

CHERI also provides hardware features for application compartmentalization 115. In this document, we will review only the memory
safety guarantees, and show concrete examples of exploitation primitives and techniques for various classes of vulnerabilities.

SUMMARY

CHERI’s ISA is not yet stabilized. We reviewed the current revision 7, but some of the protections such as executable pointer sealing
is still experimental and likely subject to future change.

The CHERI protections applied to a codebase are also highly dependent on compiler configuration, with stricter configurations
requiring more refactoring and qualification testing (highly security-critical code can opt into more guarantees), with the strict sub-
allocation bounds behavior being the most likely high friction to enable. Examples of the protections that can be configured include:

o Pure-capability vs hybrid mode

e Chosen heap allocator’s resilience

e Sub-allocation bounds compilation flag

e Linkage model (PC-relative, PLT, and per-function .captable)
e Extensions for additional protections on execute capabilities
e Extensions for temporal safety

However, even with enabling all the strictest protections, it is possible that the cost of making existing code CHERI compatible will be
less than the cost of rewriting the code in a memory safe language, though this remains to be demonstrated.

We conservatively assessed the percentage of vulnerabilities reported to the Microsoft Security Response Center (MSRC) in 2019
and found that approximately 31% would no longer pose a risk to customers and therefore would not require addressing through a
security update on a CHERI system based on the default configuration of the CheriBSD operating system. If we also assume that
automatic initialization of stack variables (InitAll) and of heap allocations (e.g. pool zeroing) is present, the total number of
vulnerabilities deterministically mitigated exceeds 43%. With additional features such as Cornucopia that help prevent temporal
safety issues such as use after free, and assuming that it would cover 80% of all the UAFs, the number of deterministically mitigated
vulnerabilities would be at least 67%. There is additional work that needs to be done to protect the stack and add fined grained CFI,
but this combination means CHERI looks very promising in its early stages.

1|Page
Microsoft Security Response Center (MSRC)

Microsoft Security Research Center (MSRC) study analyzed all
2019 Microsoft critical memory-safety security vulnerabilities

* Metric:"Poses a risk to customers — requires a software
update”

* Vulnerability mitigated if no security update required
Blog post and 42-page report

* Concrete vulnerability analysis for spatial safety

* Abstract analysis of the impact of temporal safety

* Red teaming of specific artifacts to gain experience

CHERI,“in its current state, and combined with other mitigations,
it would have deterministically mitigated at least two
thirds of all those issues”

https://msrc-blog.microsoft.com/2020/10/1 4/55e2curity-analysis-of—cheri-isa/
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https://msrc-blog.microsoft.com/2020/10/14/security-analysis-of-cheri-isa/

Security Analysis of CHERI ISA

Security Research & Defense / By MSRC Team / October 14, 2020 /
Memory Corruption, Memory Safety, Secure Development, Security Research

Is it possible to get to a state where memory safety issues would be deterministically mitigated? Our quest to mitigate memory
corruption vulnerabilities led us to examine CHERI (Capability Hardware Enhanced RISC Instructions), which provides memory
protection features against many exploited vulnerabilities, or in other words, an architectural solution that breaks exploits. We’ve
looked at how CHERI would break class-specific categories of vulnerabilities and considered additional mitigations to put in place to
get to a comprehensive solution. We’ve assessed the theoretical impact of CHERI on all the memory safety vulnerabilities we
received in 2019, and concluded that in its current state, and combined with other mitigations, it would have
deterministically mitigated at least two thirds of all those issues.

We've reviewed revision 7 and used CheriBSD running under QEMU as a test environment. In this research, we’ve also looked for
weaknesses in the model and ended up developing exploits for various security issues using CheriBSD and gtwebkit. We've
highlighted several areas that warrant improvements, such as vulnerability classes that CHERI doesn’t mitigate at the architectural
level, the importance of using reliable and CHERI compliant memory management mechanisms, and multiple exploitation primitives
that would still allow memory corruption issues to be exploited. While CHERI does a fantastic job at breaking spatial safety
issues, more is needed to tackle temporal and type safety issues.

Your feedback is extremely important to us as there’s certainly much more to discover and mitigate. We're looking forward to your
comments on our paper.

Nicolas Joly, Saif EISherei, Saar Amar — Microsoft Security Response Center (MSRC)

- https://msrc-blog.microsoft.com/2020/10/14/security-analysis-of-cheri-isa/
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CHERI SOFTWARE
COMPARTMENTALISATION
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What is software compartmentalization?

aws_ota
\
45 AN
\

|
|
|
|
|
:
/1 I freertos_libota 6
|
|
|
|
|
|
I

freertos_tcpip !
1

l’ ! ! T~ <

. 6 64 h 1 S

\ s ! o : : §

, 104 | virtio \ ! Ihbtmycbor Ifreertos_hbcorejson /27

1
\ . \‘ . y — - 7 P /
~ N \ - s
\\\\ \\ \\12 \\ II /21 //’/1 //’/ T -
RN § 7 el
1_ _____

CheriFreeRTOS components and the application execute
in compartments. CHERI contains an attack within
TCP/IP compartment, which access neither flash nor the

internals of the software update (OTA) compartment.

71X
5 5
International
e

Fine-grained decomposition of a larger
software system into isolated
modules to constrain the impact of
faults or attacks

Goals is to minimize privileges
yielded by a successful attack, and
to limit further attack surfaces

Usefully thought about as a graph of
interconnected components,
where the attacker’s goal is to
compromise nodes of the graph
providing a route from a point of entry
to a specific target
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Software compartmentalization at scale

CHERI contains attack within compartment,
I preventing access to other data

g Memory Safety Crisis

~82% of exploited vulnerabilities in 2012 ( ) —
Software Vulnerability Exploitation Trends, Microsoft N -~ ‘ \
How are processors responding? I ~82% of exploited vulnerabilities in 2012
2 Software Vulnerability Exploitation Trends, Microsoft
LN ]

How are processors responding?

* Current CPUs limit:
* The number of compartments and rate of their creation/destruction
* The frequency of switching between them, especially as compartment count grows
* The nature and performance of memory sharing between compartments

* CHERI is intended to improve each of these — by at least an order of magnitude

58 UNIVERSITY OF
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CHERI-based compartmentalization

Shared virtual address space
Domain-specific Domain-specific Domain-specific Heap .
captables + PLTs stacks globals allocations Protectlon
domain A
Register
Protection fle —_ ‘,‘—"
domain “ o ======-- >
A o — ¢ Implie
. ?oin .
N /f Flexible set of
o 24 Shared s
crod ( ~~~~~ i heap shared resources
s... ~~~~~ . : o\
domaing=<w o< e® #o» Explicrt
resourc,esT a2, . e - a® nointer
| ] == g
,,,,, ‘...,‘lll\lllll
Filgister SO L ; J’--___ ,
Protection e, __-fle=T T __--- 'H “ RGN 2
. Lese[---" heap
domain SOt
B [ === = Protection
Domain B

* Isolated compartments can be created using closed graphs of capabilities,

combined with a constrained non-monotonic domain-transition mechanism
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Compartmentalization scalability

* CHERI dramatically improves compartmentalization scalability

e More compartments Early benchmarks show a |-to-2
order of magnitude performance
* More frequent and faster domain transitions - inter-compartment

communication improvement
compared to conventional
- designs

* Faster shared memory between compartments

* Many potential use cases — e.g., sandbox processing of each image in a
web browser, processing each message in a mail application

* Unlike memory protection, software compartmentalization requires
careful software refactoring to support strong encapsulation, and
affects the software operational model

58 UNIVERSITY OF
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Operational models for CHERI compartmentalization

* An architectural protection model enabling new software behavior
* As with virtual memory, multiple operational models can be supported
* E.g.,with an MMU: Microkernels, processes, virtual machines, etc.

* How are compartments created/destroyed? Function calls vs. message
passing? Signaling, debugging, ...?

* We have explored multiple viable CHERI-based models to date, including:
Isolated dynamic libraries  Efficient but simple sandboxing in processes
UNIX co-processes Multiple processes share an address space

* Improved performance and new paradigms using CHERI primitives

Both will be available in CheriBSD/Morello

B UNIVERSITY OF
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Proposed operational models:
Isolated libraries and UNIX co-processes

Isolated dynamically linked libraries

* New API loads libraries into in-process sandboxes.
Prototype

* Calling functions in isolated libraries performs a domain transition, with | to appear in
overheads comparable to function calls. CheriBSD

22.10
* Simple model eschews asynchrony, independent debugging, etc.
UNIX co-processes
* Multiple processes share a single virtual address space, separated using
independent CHERI capability graphs. Prototype
* CHERI capabilities enable efficient sharing, domain transition. _:Sti':'eaear "
* Rich model associates UNIX process with each compartment. CheriBSD
. . release
* Active area of research; early prototype available for co-processes

5 H UNIVERSITY OF
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Example: Robust shared libraries

Kernel

Process X rights Process Y rights
A I\

==

Userspace domain switcher

Jump-based Exception-based
intra-address-space  F= -~ ,’h\ N, 3 inter-address-space
CHERI domain switch : TN MMU context switch
"Sandbox | . Sandbox i '

: : l ;
I\ _____________ J N e e e e e e s
User process X User processY

* User compartments exist within individual UNIX processes (“robust shared libraries”™):
* CHERI isolates compartments within each address spaces
* Compartment switcher is itself a trusted userspace library
* Compartments have strict subset of OS rights of the process
* Intra-process domain switches take no architectural exceptions and do not enter the kernel

* Multiple processes + IPC required if differing OS right sets needed

. UNIVERSITY OF
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Example: CHERI co-process model

Kernel
Process X rights Process Y rights
A I\

MWitcher I

N
1
|
1
1
1
1
1
1
\

7’

ump-based intra-address- .
" | <pace CHERI domain A I
. Sandbox ! P . Sandbox !
| : switch also switches kernel i :
. (process X) : notion of active process . (processY) :
! ! 1 1
N e /’ N 4

User processes X andY with shared virtual address space
* CHERI isolates multiple processes within a single virtual address space
* Kernel-provided trusted compartment switcher runs in userspace (actually a microkernel)
* CHERI-based inter-process memory sharing + domain switching
* A compartment’s OS rights correspond to the owning process
* Inter-process context switches take no architectural exceptions and do not enter the kernel

* CHERI can be pitched as improving IPC performance while retaining a (largely)
SRl conventional process model
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CHERI desktop 3-month study: Key outcomes

One person in 3 months:

* Ported 6 million lines of C/C++
code compiled for memory safety;
modest dynamic testing

 Three compartmentalization
case studies in Qt/KDE

Evaluation results:

* 0.026% LoC modification rate
across full corpus for memory safety

* 73.8% mitigation rate across full
f . . corpus, using memory safety and
L e compartmentalization

http://www.capabilitieslimited.co.uk/pdfs/202 109 | 7-capltd-cheri-desktop-report-version | -FINAL.pdf _
' ' ' T 63 T BB UNIVERSITY OF
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Grand challenge in progress: Google Chromium

* Google Chrome, Microsoft Edge, Microsoft Teams, Electron, ...

*  “The real thing”:

o £ Settings — About Chromium X + v

@
e Over 35MLoC, >190 library dependencies € > C ® cwomium | chomedjsatingsihel 6% 0@ :

@ Settings Q search settings

* V8, an intimidatingly real language runtime

You and Google
9 About Chromium

Auto-fill
) . @ chromium
Privacy and security N

* Code from numerous diverse origins and in countless forms of

@ » » & © »

i i i ApeREace Ve 107.0.5301.0 (Devel Build) 64)
Idlomatlc C and C++ . ersion 107.0.5301.0 (Developer Build) (arm
Default browser Get help with Chromium 4]
* Vast wealth of past vulnerabilities O onsrur
Chromiu m
@  Languages Copyright 2022 The Chromium Authors. All rights reserved
L4 Pe r'fo rmance Critical com Ponents & Downloads Chromium is made possible by the Chromium open source project and other open source software.
T Accessibility
9,  System
- C t stat
u r re n s a e £  Reset settings

Extensions [/

© ¥

* In-progress adaptation to memory-safe C/C++, with 98% compiling ——

e  Current technical challenge:V8 runtime

e “Just one last bug needs to be fixed inV8” (ask again in April)

Pilot jointly funded by UKRI, Google '
I B UNIVERSITY OF

&¥ CAMBRIDGE

64




L
Where to learn more!?

* Project web pages:

An Introduction to CHERI * http://www.cheri-cpu.org/

e An Introduction to CHERI, Technical

Architectural capabilities and the

CHERI ISA Report UCAM-CL-TR-941, Computer
CHERI microarchitecture Laboratory, September 2019
ISA formal modeling and proof
Software construction with * Capability Hardware Enhanced RISC
CHERI Instructions: CHERI Instruction-Set
LIRS @Rl Architecture (Version 8), UCAM-CL-TR-
06 orcarc 951, October 2020

extensions
Application-level adaptations - CHERI C/C++ Programming Guide,

UCAM-CL-TR-947, June 2020

65
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EXPLOITATION PATHS
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CHERI research and development timeline

Nov. 2012: < Sep. 2014: MIT LI Sep. 2015:
Sandboxed code on | S team live Heartb), pure-capa
Oct. 2011: Capability CheriBSD; live ’ ) mitigation demo proce
microkernel runs FPGA-base Trojan A — icrokernel
sandbox on FPGA Jul. 2012: LLVM  Mmitigation demo . ! _ Broadcom,
generates - rich, G
[ CHER 0008 o - / July2019:  Sep.2019: ISCF DSbD
y ’ e e ‘ 3 CheriBSD experimental CHERI-ARM
et === | un.20Z g mporal CPU, SoC, and board

B e CheriBSD capability T “Morello”

proposal
submitted 1@&)« smtchmg

- S

L ! B
' ' 2011 / ' 2012 ' 2019 ,1
3 ' : ~ Jun. 2019:
Over 150 researcher years of _ ccozors .
Oct: 2010: CheriRTOS ; CHERI ISAv7
CTSRD p;Oi oyl : 32-bit ISAS - formal semantics,
begins work | effort by Cambridge & SRI = CHER concentat,
Nov. 2011: . : ‘ : neutrality, temporal
FPGA tablet + Many engineer years by Arm _ Aol safety, RISC-V
C pointer
LAW 2010: CHERI-specific i 5 ;
Capabilities microkernel 2017: ASPLOS 2019:
revisited gged Pure-capability
UNIX userspace
3 IEEE TCS 2019:
RESOLVE 2012: : ompressed MICRO 2019:
Hybrid MMU/ éﬁ:‘gﬁﬁow' capabilities Temporal memory-

capability mg safety feasibility study

Years |-2: Research platform, protoc ear : Efficiency, CheriABI/C/C++/linker, ARMv8-A
Years 2-4: Hybrid C/OS model, com

Years 8-9: RISC-V, temporal safety, formal proof
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Bridging the commercialisation chasm
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UK Industry Strategy Challenge Fund:

Digital Security by Design
* £90M UK gov. funding, >£200M UK industrial match, to create CHERI- Neovrse® N1 CPU

ARM demonstrator SoC + board with proven ISA Coresight™ multicore debug and trace

* Leap supply-chain gap that makes adopting new architecture difficult — in
particular, validation of concepts in microarchitecture, architecture, and ATE-A W62
software “at scale”

* Support industrial and academic R&D (EPSRC, ESRC, InnovateUK)

* Technology Access Program in 4" round (hetps://www.dsbd.tech/technology-access- p—————
programme/)

1x 256-bit AMBA® 5 CHI Direct-Connect

* Ongoing collaboration reviewing and distilling {essential, desirable,
experimental} CHERI features for use in SoC

* Science designed allowed: Support multiple architectural design choices for =
software-based evaluation once fabricated :
E300-

T e =
* 2020 emulation models; 2021 “Morello” board delivery = é;éjﬁl[ﬁzﬁ J.=é=% o

8 UNIVERSITY OF
4P CAMBRIDGE

69




E arm Morello Program

Morello Demonstrator Board

https://www.arm.com/architecture/cpu/morello

70 © Copyright 2022 Arm Limited a r m



Open Source Stack: Research and Deployment

* CHERI-RISC-V developed open source:

* Documentation (ISA ref, architecture overview, etc)

.r: . . . Project URL:
* Specification in Sail rﬁ:;,,,cheri_cpu org/
. . links to:
* Simulators: Sp|ke’ Qemu https://www.cl.cam.ac.uk/research/security/ctsrd/
] Also:
* Clang/LLVM toolchain http://CheriBSD.org

* OS support: CheriBSD, CheriFreeRTOS, CheriRTEMS

* Hardware implementations

* 3-stage, 5-stage and OoO cores on FPGA including AWVS Fl

@B UNIVERSITY OF
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Open-Source CHERI-RISC-V Cores Implemented

* Piccolo 32b microcontroller:
https://github.com/CTSRD-CHERI/Piccolo

 Flute 64b/32b scalar core:
https://github.com/CTSRD-CHERI/Flute

* Toooba 64b out-of-order core based on MIT Riscy-OOO core
https://github.com/CTSRD-CHERI/Toooba
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L
Conclusions

* CHERI provides the hardware with more semantic knowledge of what the

programmer intended E E

* Allows the principle of least privilege to be exploited to E ﬁ:i

mitigate known and unknown attacks hteps://www.cl.cam.ac.uk/

research/security/ctsrd/

* Large performance improvement over process-based compartmentalisation

* Toward the principle of intentional use

* Efficient pointer integrity and bounds checking
* Eliminates buffer overflow/over-read attacks (finally!)

* Provide scalable, efficient compartmentalisation

* Working with industry & open-source community to deploy the technology

* Thanks to sponsors: DARPA,ARM, Google, EPSRC, ESRC, HEIF, Isaac Newton Trust, Thales E-Security, HP
Labs
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