A Literate Experimentation Manifesto

Jeremy Singer

University of Glasgow, UK

jeremy.singer@glasgow.ac.uk

Abstract

This paper proposes a new approach to experimental com-
puter systems research, which we call Literate Experimen-
tation. Conventionally, experimental procedure and writeup
are divided into distinct phases: i.e. setup (the method), data
collection (the results) and analysis (the evaluation of the
results). Our concept of a literate experiment is to have a
single, rich, human-generated, text-based description of a
particular experiment, from which can be automatically de-
rived: (1) a summary of the experimental setup to include in
the paper; (2) a sequence of executable commands to setup a
computer platform ready to perform the actual experiment;
(3) the experiment itself, executed on this appropriately con-
figured platform; and, (4) a means of generating results ta-
bles and graphs from the experimental output, ready for in-
clusion in the paper.

Our Literate Experimentation style has largely been in-
spired by Knuth’s Literate Programming philosophy. Effec-
tively, a literate experiment is a small step towards the exe-
cutable paper panacea. In this work, we argue that a literate
experimentation approach makes it easier to produce rigor-
ous experimental evaluation papers. We suggest that such
papers are more likely to be accepted for publication, due to
(a) the imposed uniformity of structure, and (b) the assur-
ance that experimental results are easily reproducible. We
present a case study of a prototype literate experiment in-
volving memory management in Jikes RVM.

Categories and Subject Descriptors 1.7.2 [Document and
Text Processing]: Document Preparation—Scripting lan-
guages

General Terms Documentation, Experimentation

Keywords literate programming, experimental write-up

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction

Most Computer Science papers follow one of a standard set
of publication design patterns. For example, consider the
INCREMENTAL-IMPROVEMENT pattern. The generic layout
of such a paper is as follows: Given an existing system Foo,
the paper authors present a small (but generally ingenious)
modification, Foo—+, that improves upon some aspect of the
original performance of Foo. In order to convince both the
paper reviewers and the eventual readers that Foo+ is in-
deed a significant advance worthy of publication, the au-
thors provide rigorous experimental evidence to demonstrate
the quantitative performance improvements gained by their
modification.

This paper proposes that the experimental evaluation sec-
tions of INCREMENTAL-IMPROVEMENT papers could be
standardized to such an extent that they might be automati-
cally generated, following a script-based approach. We have
been inspired by Knuth’s philosophy of literate program-
ming [15] where the program and its documentation are
inter-twined, yet the executable program and the human-
readable description can be extracted separately using au-
tomated scripting tools. To quote Knuth:

Let us change our traditional attitude to the con-
struction of programs: Instead of imagining that our
main task is to instruct a computer what to do, let
us concentrate rather on explaining to human beings
what we want a computer to do.

In the same way, we suggest a new approach to empir-
ical evaluation sections of INCREMENTAL-IMPROVEMENT
research, which we call literate experimentation. We paral-
lel Knuth’s message below:

Let us change our traditional attitude to the con-
struction of systems software experiments: Rather
than creating an experiment to demonstrate system-
level improvement, let us concentrate on explaining
to human beings how we intend the experiment to
operate.

In an instance of a literate experiment, the experimental
method (which is executed to generate the results) and the
prose description of the experiment (which is included in
the final paper) are inter-twined as a single textual source

2011/8/17

export N=30
#@# We perform the individual experiment \N times
for I in ‘seq 1 $N°
do
./run_expt.sh
done

Figure 2. A simple literate experimentation script

file. Scripting tools can automatically configure and execute
the experiments to generate a set of results. Subsequently,
they can perform data analysis to present the results in an
appropriate manner. Additionally, the scripting tools extract
the relevant textual descriptions of the experiment to insert
into appropriate sections of a paper. Figure 1 shows this
workflow in a schematic diagram.

In summary, our prototype approach is to write human-
readable descriptions of experiments as special comments
within shell scripts. We execute the shell script to run the
experiment. We process the same shell script with a simple
macro-processor (perl script) to extract the LaTeX fragments
for inclusion in the paper. Section 3 gives further techni-
cal details about this literate experimentation approach. For
now, Figure 2 gives a trivial example script.

1.1 Contributions of This Paper

This paper does not follow the INCREMENTAL-IMPROVE-
MENT design pattern. Instead, it is more of a STEP-CHANGE
style of paper. We are proposing a radical methodological
shift in the manner in which systems research is published.
The advantages of our literate experimentation technique
presented in this paper are:

1. The structure of experimental computer systems papers
will become more uniform, making them easier to write,
review, and assimilate.

2. The experimental method of such systems papers will be
clarified, in such a way as to make the results generation
process reproducible.

3. Given these two benefits, we feel that the evaluation prac-
tice of research performed by the systems community
will become more standardized and rigorous.

2. Motivation

This section presents the reasons why we consider our pro-
posed literate experimentation approach will be useful for
the computer systems research community. In Section 2.1
we give statistics to show that empirical experimentation pa-
pers in general (of which INCREMENTAL-IMPROVEMENT
papers are a special case) are becoming increasingly com-
mon. In Section 2.2 we show that there is a fairly standard
structure for such papers. In Section 2.3 we discuss the need

(and current lack of provision) for accurately and efficiently
reproducing results from such papers.

The rest of this paper demonstrates that these require-
ments can all be met by the literate experimentation method.

2.1 A Popular Paper Genre

A high proportion of computer systems papers that appear
in major international conferences and reputable journals are
based around the reporting of empirical experimental results.
For instance, Shaw [23, 24] gives statistics concerning sub-
mitted papers to the 2002 International Conference on Soft-
ware Engineering (ICSE). She reports that 48% of submis-
sions (42% of accepted papers) were of the class ‘method or
means of development’. Further, 14% of submissions (12%
of accepted papers) were of the class ‘design, evaluation, or
analysis of a particular instance’. Many of these papers fit
one of the experimental paper design patterns, such as the
INCREMENTAL-IMPROVEMENT pattern we describe in Sec-
tion 1.

The US-based Committee on Academic Careers for Ex-
perimental Computer Scientists reports that experimental
computer science has been a growing sub-discipline [7]
since the 1970s. Indeed, in 2007 an ACM workshop was
entirely devoted to experimental papers [1].

Tichy [26] argues that experimental style papers present-
ing small-step results are well worth publishing, since they
improve understanding and raise new questions. He presents
the importance of meaningful benchmarks and validation.

Georges et al [11] analyse 50 papers on Java performance
evaluation at major international conferences between 2000
and 2007. Most of these fit into the INCREMENTAL-IMPRO-
VEMENT pattern. Georges et al review and critique the var-
ious statistical strategies for performance evaluation used in
this corpus of papers. In many cases, they conclude that the
strategies are not statistically sound, or rigorous. They offer
some high-level advice and ideas for how to evaluate perfor-
mance in a statistically rigorous way. They make mention of
experimental automation, although they are not concerned
with automatic paper generation, which is the focus of our
work.

The Evaluate Collaboratory group' campaign for better
experimental methods in systems research [9]. Their open
letter to conference program chairs states that:

We believe it is time for Computer Science to
become a better empirical science by promoting both
observation and reproduction studies. We hope you
agree with us. If you disagree, please let us know.
If you agree, we request that you actively encourage
observation and reproduction papers in your “call for
papers”.

"http://evaluate.inf.usi.ch

2011/8/17

Literate description
of experimental

method

[

Experimental Description of
Method test platform
section in paper

Data sets of
experimental results

—

Results tables
Results graphs

Figure 1. Schematic diagram showing how literate experimentation works in practice

Thus it appears that there is a growing interest in experimen-
tal computer systems research, backed by a greater commu-
nity adoption of rigorous scientific techniques.

Thus we infer from the Computer Systems meta-literature,
together with our personal experiences, that experimental
papers are relatively common, and there is widespread sup-
port for improving community practice.

2.2 A Standard Paper Structure

A paper that presents experimental results generally follows
a fairly standard structure:

1. It initially outlines a well-known and widely available
system, either in the Introduction or Background sec-
tion.

2. Then it highlights a potential inefficiency in this sys-
tem, either anecdotally or with some motivating scenar-
ios. This information is generally presented in the Back-
ground or Problem Statement section.

3. Then it outlines a potential solution to remove the inef-
ficiency. This section may be entitled Solution or Pro-
posed Technique.

4. Next it evaluates this solution empirically using a community-

accepted benchmark suite to demonstrate that the pre-
sented modification does improve the overall perfor-
mance of the system. The experimental description is
written in a Methodology section and the results are re-
ported in an Evaluation or Results section.

As with all published literature in this field, a certain
amount of boilerplate material is required in the Introduc-
tion and the Conclusion. For academic rigour there should
also be comprehensive Discussion and Related Work sec-
tions. We accept that human nature means that there will be
some natural variety in presentation style and ordering of
material. However we feel that for the highest quality pa-

pers, the core of an experimental paper will follow the above
template, in general.

We propose that, for a literate experiment, the whole of
the Methodology section and a large part of the Evalu-
ation section could be automatically generated from the
literate experiment description.

Although this de facto structure is familiar to experienced
systems researchers, new people (e.g. PhD students) trying
to establish themselves in the field may not have the same
awareness of the convention. In other scientific disciplines,
the paper structure and experimental evaluation technique is
tightly prescribed (e.g. biology [19], medicine [22]). How-
ever in Computer Systems research there is generally no
such standard structure specification.

Thus, we argue that a key motivation for literate experi-
ments is the Structural one. Papers using the literate exper-
imentation technique will follow an explicit standard tem-
plate, particularly in the Methodology and Evaluation sec-
tions.

2.3 A Requirement for Reproducibility

Another recent concern in the community has been the re-
producibility of experiments [8]. Elsevier 2 has recently or-
ganized a grand challenge for executable papers. Here, re-
producibility of experimental results is one of the major
concerns. In addition, more popular elements of the press
give coverage to alternative models of research publica-
tion, dissemination and evaluation, supported by the idea
of shared experimental data and meta-data in open-access
online repositories [6, 14].

In the field of Computer Systems research, more so than
in any other scientific discipline, we ought to be able to man-
age reproducibility, since the entire system is under our con-
trol. However, often the experiments are so complex [20]

2 http://www.executablepapers.com

2011/8/17

that to encapsulate them accurately, completely and engag-
ingly within the publishable paper limits is near-impossible.
Paper reviewers, the gate-keepers of academic respectabil-
ity, are generally unable to verify experiments empirically.
Instead they resort to a cursory inspection of the presented
results, and have to rely on their judgment as to whether
these results are believable. Further down the line, eventual
readers of the published papers may attempt to reproduce
the results in replica experiments, but are often unable to
do so, perhaps because vital experimental details were in-
advertently omitted from the paper. Indeed, a whole sub-
community?® has built up around the idea of duplicating or
debunking systems results.

Our proposed approach would make it easier to record
experimental methodology, and replay it at a later date. This
would aid both paper reviewers and general readers in their
attempts to reproduce experimental results. Thus another key
motivation of literate experimentation is the need to support
experimental authenticity and reproducibility.

3. Proposed Solution

In this section, we outline:

1. the basic components of literate experimentation

2. how to compose components to form a full experimental
description

3. how this description must processed in such a way as to:
(a) perform the experiment,

(b) recover the experimental artifacts required in the pa-
per.

3.1 System Requirements

We make several platform-specific assumptions for our pro-
totype implementation, since our literate experiment com-
ponents rely on Unix-style shell scripts and LaTeX paper
authoring. The shell scripts depend on some standard Unix
tools, e.g. bash, perl, wget, sed, cat. Thus our literate exper-
imentation implementation should be compatible with any
common Unix variant, e.g. Linux, Mac OS X. Conceivably,
the components we have developed could be ported to other
platforms, either with alternative implementations, or with
advanced scripting conditional tests for platform-dependent
options.

We advocate that, when a paper is published online, the
literate experiment description should be transmitted, along
with the actual paper*. This will serve to improve authentic-

3 Workshop on Duplicating, Deconstructing, and Debunking. http://
www.ece.wisc.edu/~wddd

4 For this paper, we incorporate the literate experiment script code as Ap-
pendix A. Further, a tarball containing the script and supporting files is
available from: http://www.dcs.gla.ac.uk/~jsinger/casestudy.
tar.gz. We hope that more elegant, integrated, mechanisms may emerge
for associating literate experiment information with published literature.

Architecture x86_64
Processor Intel(R) Core(TM) i7 CPU 920
Clock frequency 1600 MHz
No. cores 8
L1 Data 32K
L1 Instruction 32K
L2 Unified 256K
L3 Unified 8192K
RAM 5973 MB
oS Linux v2.6.31.14-0.4-default

Table 1. Platform description, automatically generated by
the InfoScript

ity and reproducibility of published experimental computer
systems research.

3.2 Literate Experiment Scripts

In this section, we introduce various kinds of scriptlets,
which have different roles in the literate experiment process.
These scriptlets combine to make a full literate experiment.
Initially we identify three kinds of scriptlets. We suppose
that further types of scriptlet may emerge as interest grows
in literate experimentation.

3.2.1 InfoScripts

Some low-level script components will be executed to pro-
duce textual output that is incorporated into the LaTeX paper
directly, using the \input command. We call these compo-
nents InfoScripts. Figure 3 gives a simple InfoScript that,
when executed, produces a LaTeX table describing the plat-
form specification on which the experiment is to be exe-
cuted. This information is obligatory in all meaningful quan-
titative evaluation studies. Table 1 shows the resulting table,
generated on a standard Linux box which we use for experi-
mental evaluation in Section 4.

3.2.2 PipeScripts

Some low-level script components will be executed to pro-
duce output that will become the input for another script. We
call these PipeScripts. For instance, suppose we run an ex-
periment n times to obtain n measurements. These may be
written to a data file. Then we apply a PipeScript to this data
file to compute the arithmetic mean and standard deviation
of the n measurements.

We anticipate providing a library of standard PipeScripts
to handle these kinds of common data processing operations.

3.2.3 ExeScripts

Other, higher-level script components will be executed to
perform some part of the experiment, and they will also be
processed to extract a textual description of the experiment,
which can be dropped into the LaTeX paper. These scripts
are known as ExeScripts. An ExeScript is constructed by

2011/8/17

0NN RWN =

10
11

12
13
14

16
17
18
19
20
21
22
23

24
25

26

27

#!/bin/sh

get_sys_info.sh
Jeremy Singer
17 Mar 2011

ARCH= ‘uname —p*

CPU=‘cat /proc/cpuinfo | grep “"model name” | head
—n 1 | cut =d’:” —f 2 | cut —d’@ —f 1°
CLOCK=‘cat /proc/cpuinfo | grep “cpu MHz” | head

-n 1 | cut —d”:” —f 2°
CLOCK=‘echo "scale=0; $CLOCK/1” | bc*

CORES=‘cat /proc/cpuinfo | grep “processor” | wc
1
echo ”Architecture & $ARCH \\\\";
echo "Processor & $CPU \\\\";
echo ”Clock frequency & $CLOCK MHz\\\\”;
echo "No.\ cores & $CORES \\\\";
cache info
for INDEX in {0..5}
do
if [—d /sys/devices/system/cpu/cpuO/cache/
index$ {INDEX} 1;
then
LEVEL="cat /sys/devices/system/cpu/cpuO/
cache/index$ {INDEX}/level *;
TYPE=‘cat /sys/devices/system/cpu/cpuO/
cache/index$ {INDEX}/type *;
SIZE=‘cat /sys/devices/system/cpu/cpu0O/
cache/index$ {INDEX }/size ‘;
echo "L${LEVEL} $TYPE & $SIZE \\\\”;
fi
done
RAMXKB=‘cat /proc/meminfo | grep MemTotal | cut —

d”:” —f 2 | awk ’{print $1;}"°
RAMMB=‘echo "scale=0; $RAMKB/1024” | bc ‘;

echo "RAM & $RAMMB MB\\\\”;
OS=‘uname —s *
KERNEL= ‘uname —r *

echo ”OS & $0S v${KERNEL} \\\\";

Figure 3. InfoScript to gather experimental platform pa-
rameters

AN N AW N =

10

12

##HH A

FETCH

##HRAHHH

export JikesRvmVersion=3.1.1

#a#

#@# We conduct our experiments on the Jikes RVM
platform

#@# \cite{jikesrvm} which is an open—source
research based

#@# runtime environment for executing Java
bytecode programs.

#@# We use version \JikesRvmVersion of Jikes RVM.

#aw#

echo ”fetching jikes rvm”

wget http ://sourceforge.net/projects/jikesrvm/
files/jikesrvm/${JikesRvmVersion }/jikesrvm—${
JikesRvmVersion }. tar .bz2/download

Figure 4. ExeScript fragment to download source code tar-
ball

weaving together commands to execute part of the experi-
ment, and meta-data to describe that experimental process
in a human-readable way. (Some of these commands may
themselves be InfoScripts or PipeScripts.)

In our prototype implementation, an ExeScript is a well-
formed bash script, which has meta-data hidden in special
comments. A postprocessing pass over the script can extract
the special comments. These are snippets of LaTeX, describ-
ing the behaviour and results of the associated command ex-
ecutions in a way that is suitable for inclusion into the pa-
per. Dependencies between the shell script commands and
the LaTeX, e.g. version numbers of programs, can be han-
dled cleanly by allowing shared variables across bash and
LaTeX, using the export directive in bash and the define
macro command in LaTeX.

For instance, as part of the experimental setup, it may be
necessary to download a specific version of program source
code from an internet repository. Figure 4 gives an ExeScript
snippet that performs this task, including the literate descrip-
tion hidden behind the special #@# comment delimiters. A
simple perl script can process this ExeScript to generate the
appropriate lines of LaTeX for inclusion in the eventual pa-
per.

3.3 Experiment as Composition of Tasks

The ExeScript performs a sequence of related tasks, in an
experimental pipeline. Again, we anticipate the provision of
a set of template experimental pipelines, to handle the most
common cases. For instance, the pipeline of tasks might be
arranged as follows:

1. FETCH software system (download tarball from website,
Maven repository or similar)

2. INSTALL software system (compile, or configure, as
necessary)

2011/8/17

3. FETCH system mods (patches against original system,
stored in an online archive)

4. PATCH system (apply patches to original system)

5. INSTALL modified system (compile, or configure, as
necessary)

6. FETCH benchmarks (again, from online repository)

7. INSTALL benchmarks (compile, or configure, as neces-
sary)

8. RUN benchmarks on unmodified system and record re-
sults

9. RUN benchmarks on modified system and record results

10. ANALYSE results (to generate graphs, tables, etc)

This kind of workflow is a common experimental ap-
proach in computer software systems papers. Indeed, this is
the approach we adopted in a recent paper [25] which we
endeavour to reproduce in Section 4.

Different sections of the resulting paper will be derived
from literate markup in different sections of the script. The
script might be divided into logical sections to facilitate this
division. For instance, the details about software sources,
versions, configurations, and benchmarks will belong in the
experimental setup subsection. On the other hand, the actual
details of the experiments performed belong in the experi-
mental method subsection. Again, the discussion about data
analysis techniques and procedures is most appropriate in
the evaluation section.

We recognise that different experiments will require al-
ternative pipeline structures and components. Perhaps we
want to compare modified benchmarks on the same under-
lying system, or to compare a greater number of variants
of the original software system against each other. How-
ever we feel that many of our standard primitive compo-
nents, e.g. FETCH, INSTALL, PATCH, RUN, ANALYSE,
can be reused. Thus we are happy to provide example tem-
plates for these components. This is similar to the project
object model for software build processes as advocated by
the Apache Maven community®.

Certain specialized scripts will be created entirely by the
experiment designer. In fact, these are the scripts s/he would
have probably written anyway, to automate the experiment
execution. In the new literate approach, the designer simply
has to incorporate these scripts, with appropriate literate
markup, into the main ExeScript.

3.4 Generating the Paper

For now, we presume that papers are produced using the
LaTeX software. The literate experiment scripts are post-
processed to give fragments of LaTeX that can be incorpo-
rated in the paper source. We recommend the use of the La-
TeX \input directive to weave together auto-generated sec-

Shttp://maven.apache.org/what-is-maven.html

tions and the manually authored sections of the paper. There
are some issues regarding dependencies between these sep-
arate files. For instance, the literate description may refer
to a label defined in a manually authored section. However
these are the kinds of challenges that face authors including
multiple LaTeX files at present. We expect that such authors
will have no problem adapting to use the literate approach.
In addition, we hope to provide basic text-editor support for
literate scripts. This should help with resolving inter-file de-
pendencies, pointing out dangling references, etc.

This paper is an initial example of a report on a liter-
ate experiment. Certain parts of this paper have been auto-
generated from a literate script. These are:

1. Table 1
2. Section 4
3. Figure 5

As mentioned already, Appendix A contains the literate
script source code and a tarball is available from http:
//www.dcs.gla.ac.uk/~jsinger/casestudy.tar.gz.

4. Case Study

This section of the paper describes a prototype case study in
literate experimentation. The whole of this section is auto-
matically generated from a literate experiment descrip-
tion file. In an ideal world, the description file would be pub-
lished and archived alongside the paper. For now, we make
the script and its support files available on our web site®. In
addition, we give the entire script source in an appendix to
this paper.

The case study involves reproducing a selection of exper-
imental results from our earlier work on the interaction be-
tween micro-economic theory and garbage collection [25].
In this earlier research, we showed that a metric called al-
location elasticity can be used to control the rate of heap
growth in a virtual machine, and hence the overall execution
time of a managed program. We stress that the published de-
scription of our original experiments [25] was not literate,
although we do have access to the shell scripts that we used
for that work. Now, in this case study, we are attempting to
re-engineer these shell scripts into literate scripts, incorpo-
rating this narrative material inlined directly into the Exe-
Script.

4.1 Experimental System Details

We conduct our experiments on the Jikes RVM platform [2]
which is an open-source research based runtime environ-
ment for executing Java bytecode programs. We use version
3.1.1 of Jikes RVM.

We test our modified heap growth strategy against the de-
fault Jikes RVM heap growth policy. Our strategy is avail-

®http://www.dcs.gla.ac.uk/~jsinger/casestudy.tar.gz

2011/8/17

able’ as a source code patch against Jikes RVM v3.1.1. Note
that we also have to apply a small update patch to handle a
minor checkstyle compatibility issue, which is Jikes RVM
JIRA issue number RVMO917.

All our experiments are conducted with the FastAdap-
tiveMarkSweep configuration, which has all internal run-
time assertions disabled for production-level performance.

We evaluate our Jikes RVM modifications using the Da-
Capo benchmark suite [5], version 2006-10-MR2. These
are standard Java benchmarks based on real-world open-
source programs. DaCapo is considered to be a standard and
reliable workload for virtual machine implementation and
garbage collection research [4].

All experiments are performed on a stock Linux box,
whose specification is given in Table 1.

4.2 Experimental Method

We compare the default heap growth policy in Jikes RVM
with our alternative, elasticity-based expansion policy by
measuring the execution times for DaCapo benchmarks with
variable sized heaps.

For each benchmark test, we perform 10 trial executions.
We gather timing data from the second iteration of each
benchmark execution, with replay compilation. In all cases,
Jikes RVM is configured to ignore explicit System.GC()
requests from the application. We report arithmetic means
and standard deviations of times, over the 10 runs.

The default heap growth policy we employ commences
benchmark execution with a 25 MB heap, and expands the
heap by increasing its size according to some factor ex-
tracted from a lookup table, which encodes a heap growth
heuristic based on GC load and current live ratio. The heap
size never grows beyond the maximum specified size of
1000 MB.

The alternative elasticity-based heap growth policy we
employ commences benchmark execution with the same
heap size of 25 MB, and has the same maximum limit of
1000 MB. The heap size grows after each GC for which the
current elasticity exceeds the target elasticity, F, until the
heap reaches the maximum size. At each individual growth
step, the heap size is multiplied by a constant growth ratio
value . We test various elasticity values E between 0.1 and
10. We test growth ratios 1.1, 1.3 and 1.5. This leads to an
exponential heap growth model. Alternative growth models,
such as linear, are possible within the same framework.

4.3 Experimental Results

Figure 5 shows execution time results for selected DaCapo
benchmarks, with variable sized heaps controlled using the
elasticity heuristic outlined above. The E value is varied
along the z-axis, note the log scale. The execution times
are measured on the y-axis. Confidence intervals are one

"http://sourceforge.net/tracker/download.php?group_id=
128805&atid=723235&file_id=379409&aid=3026328

standard deviation either side of the arithmetic mean, for
each result. We evaluate three different heap growth ratios:
1.1, 1.3, and 1.5. (The lookup table in the default Jikes RVM
HeapGrowthManager implementation has ratios in the same
range for heap expansion.) A larger heap growth ratio will
cause the heap to expand more rapidly.

We compare the performance of our new elasticity heuris-
tic for heap growth with the default Jikes RVM policy. In
Figure 5, the horizontal line in each benchmark’s graph
shows the execution time with the default policy.

The following paragraph, which engages in analysis
of the results presented in the graphs, does not logically
belong in a literate experiment script, since such analysis
can only happen after the results are auto-generated and
manually inspected.

For most benchmarks, the graphs are fairly flat when
E < 1. Above unit elasticity, the execution time increases
sharply. This is because the heap growth is restricted, which
causes more GCs to occur, which degrades the application
execution time. For some benchmarks, such as xalan, the
default policy gives comparable performance with our new
elasticity heuristic when £ < 1. For other benchmarks,
such as antlr, elasticity-based heap growth out-performs the
default policy when IZ < 1, particularly for higher growth
ratios.

The final paragraph in this section, which engages in
comparison of the latest results with those from our ear-
lier work [25], does not logically belong in the ExeScript.

We only ran experiments for three DaCapo benchmarks,
namely antlr, bloat and xalan. This was merely due to time
and space constraints, rather than any inherent difficulty in
the experimental process. However we are encouraged to
note that the final graphs in Figure 5 are very similar to those
in our original paper on this topic. Indeed, we appear to have
reproduced, and repeated, our earlier results.

S. How to Encourage Adoption

As with any major change in community behaviour, people
will need time and incentives before they pick up the practice
of literate experimentation.

Given that most code is recycled and adapted, we expect
that a simple ‘hello world’ literate experiment might be
helpful for other researchers to make an initial evaluation.
Eventually, we hope to have a library of template literate
experiment scripts / scriptlets. It would be useful to set
up a website (e.g. literateexperiments.com) to host
these examples, along with tutorials for beginners, and a
community forum.

We anticipate that a major uptake would require meaning-
ful engagement with program committees and journal edito-
rial boards. It might be possible to have some high-profile
workshops and journal special issues, for which all paper
submissions are required to include literate experimental de-
scriptions. We feel that as soon as researchers have used the

2011/8/17

1400 6400

growth ratio 1.1 ——

growth ratio 1.3 »mees 6200 growth ratio 1.3 »@-e growth ratio 1.3 @
1350 growth ratio 1.5 «=& growth ratio 1.5 == 6000 - growth ratio 1.5 «=
default policy 6000 default policy default policy

1300 5800
5600
5400
5200
5000

g 5 R 2800 -

1250

1200

execution time (ms)
execution time (ms)

1150 ¢ ¥

growth ratio 1.1 ——

7000 T
growth ratio 1.1 —=—

5000

4000

3000 -

execution time (ms)

2000 -

1100 . 4600 F Tl
0.1 1 10 o1

elasticity

1000 F AT
0.1 1 10

elasticity elasticity

Figure 5. Execution times for selected DaCapo benchmarks using a full-heap collector, with variable sized heap based on

elasticity heuristic, for several elasticity values and growth ratios

literate approach, they should become adherents, and per-
haps even advocates of literate experimentation.

A fundamental step required to enable serious literate
experimental practice is the provision of permanent and open
repositories for result publication. Furthermore, the research
systems development community will need to encourage
and support the distribution and archival of all experimental
artifacts, such as source code, benchmarks, patches, data
sets. The Jikes RVM team [2] is a shining example of this
level of care. They have an open-source infrastructure [3]
available on sourceforgeg, with older versions archived as
tarballs. They also provide a publicly accessible research
archive’ where people can post patches to versioned releases
of the trunk source code, with links to research papers.

Other projects vary in their levels of support for such a
research eco-system. Hall et al [13] advocate the use of open
repositories for experimental data for research-based soft-
ware systems, however they acknowledge that such practice
is not yet widespread in the community.

6. Related Work

The classic text on proper experimental practice is Lilja [18].
However he does not offer advice about documenting exper-
imental practice, only about conducting the actual experi-
ments. Georges et al [11] give more recent and focused ad-
vice on software systems experiments. Again they are con-
cerned about interpretation of results, rather than document-
ing practice.

The Elsevier Executable Paper Challenge!® took place
while this paper was in submission. The challenge shares
many aims with our literate experimentation philosophy. The
winners were recently announced, and we consider two of
the solutions below.

Nowakowski et al [21]. present a web based publication
repository. Each paper consists of static regions of text and
interactive assets which allow readers to explore experimen-
tal parameters or repeat an experiment on a remote server.

8http://sourceforge.net/projects/jikesrvm/
“http://jikesrvm.org/Research+Archive

Onttp: //www.executablepapers. com

Their executable assets correspond to experimental scripts
in our system. They are restricted by what can be executed
safely on a remote server; reportedly arbitrary Perl, Python
or Ruby code. The domain of the experiments will deter-
mine whether this support is sufficient for meaningful exper-
iments. Further, it is not clear how closely their executable
assets are linked with static text, i.e. how literate is their
scripting approach? This is the chief priority in our literate
experimental method.

Van Gorp and Mazanek [12] advocate an approach in
which paper authors package up their document, experimen-
tal scripts and data as files in a virtual machine (VM) image.
This VM image is then curated and distributed by the sci-
entific publisher. Subscribers can instantiate the VM image
remotely in order to read the paper and re-execute the exper-
iments. The motivation is that all experiments should be per-
fectly reproducible since the original authors and later read-
ers are running on an identical (virtual) platform. Our work
differs from theirs in two main areas. (1) We only distribute
the experimental scripts with the paper, rather than an entire
platform image. Thus our scripts are responsible for config-
uring the evaluation platform appropriately, i.e. downloading
and installing appropriate software packages, etc. (2) Their
approach is not literate, since the paper and the experimen-
tal script are two separate entities stored in the VM image.
We use a literate experimental description, which weaves
together the experimental execution commands and a high-
level description of the experiment.

Leisch [17] introduces the concept of literate data analy-
sis to generate statistical reports. His system allows authors
to write a single script file that includes LaTeX code for text
processing and R code for data processing. This file is pro-
cessed to execute the R fragments, incorporate the appropri-
ate output into the LaTeX document and then compile this to
generate a final PDF. Leisch’s approach is used to generate
the documentation for R, and for statistical analysis lecture
notes. The main difference between his approach and ours
is that Leisch has no built-in support for generating new raw
data. His package can only analyse existing data files. Our
script-based system can execute arbitrary software experi-
ments to generate fresh data sets.

2011/8/17

7. Conclusions
7.1 Summary

In this paper, we have introduced a literate approach to the
construction, execution and reporting of computer systems
experiments. We feel that literate experimentation may ini-
tially involve greater investigator effort. However this burden
should be amply repaid with two clear benefits:

1. Literate experimentation provides a templated approach
to enable researchers to devise well-constructed experi-
ments, and subsequently better structured papers.

2. Literate experimentation supports more straightforward
reproduction of results. This benefits both reviewers and
readers, along with future generations of researchers at-
tempting to improve upon the work.!!

7.2 Limitations

We acknowledge that our approach as presented in this paper
is prototypical. Currently it lacks many useful features. The
implementation depends on Linux for experiment execution
and LaTeX for paper authoring. The scripting mechanism
does not give support for any level of sophisticated error han-
dling or recovery. Further, it is not possible to select parts of
the experiment to be executed in isolation, without resorting
to commenting out appropriate regions of the script.

We intend to implement and distribute a more ma-
ture, platform neutral, fully featured scripting language and
toolset for literate experimentation in the near future.

Another criticism is that our approach is currently limited
to human interaction with the experiments. Future exten-
sions may incorporate rich meta-data with a literate exper-
imental write-up, using semantic web technology to enable
machine understanding and processing. An example of de-
velopment in this direction is the provenance information in-
cluded in the Verifiable Computational Results project [10].

7.3 Potential Impact

Knuth himself concedes that the practice of literate pro-
gramming has not become as widespread as he had initially
hoped!?. Nevertheless, inline code commenting (e.g. using
Javadoc [16]) is now standard behaviour for most develop-
ers. In a sense, this is a diluted form of Knuth’s literate pro-
gramming. We dare to imagine that our literate experimenta-
tion techniques could at least have the same kind of positive
effect.

We feel that any improvement in experimental Computer
Science has to be a useful contribution to the field. Thus we
offer our literate experimentation manifesto to the world. We

"TWe include the original investigator among ‘future generations’, since
s/he might return to her/his work in several years time, when s/he has
forgotten how to run the experiments, and the relevant postgraduate students
have moved on.

12Knuth stated this at the BCS/IET Turing Lecture in Glasgow, 2011.
http://www.bcs.org/content/ConWebDoc/38050

—_—
— OO0\ RN —

=
00~ O\ W B W

conclude with a couple of drum-banging catch-phrases that
encapsulate the literate experiment concept:

(i) Write up your experiments at design time!
(i) Weave together the description with the meta-
description of your experimental process!

A. ExeScript Source for Case Study

This appendix gives the source code listing for the literate
experiment ExeScript. This ExeScript was used to generate
Section 4 in this paper.

#!/bin/sh

case_study . sh
Jeremy Singer
12 Apr 11

This section of the paper describes a
prototype case

study in literate experimentation.
\textbf{The whole

of this section is automatically generated
#@# from a literate experiment description file}.

#@# In an ideal world, the description file would

#@# be published and archived alongside the paper.

#@# For now, we make the script and its support files

#@# available on our

#@# web site\footnote{\url{http ://www.dcs.gla.ac.uk/~
jsinger/casestudy.tar.gz}}.

#@# In addition , we give the entire script source in an

#@# appendix to this paper.

#Ha#

#@# The case study involves reproducing a selection of

#@# experimental results from our earlier work

#@# on the interaction between micro—economic

#@# theory and garbage collection

#@# \cite{singerlOeconomics}.

#@# In this earlier research, we showed that a metric

#@# called \textit{allocation

#@# elasticity} can be used to control the rate

#@# of heap growth in a virtual machine, and hence

#@# the overall execution time of a managed program.

#@# We stress that the published description of our

#@# original experiments \cite{singerlOeconomics}

#@# was not

#@# literate , although we do have access to the shell

#@# scripts that we used for that work.

#@# Now, in this case study, we

#@# are attempting to re—engineer these shell scripts

#@# into literate scripts, incorporating this

#@# narrative material inlined directly

#@# into the ExeScript.

#a#

#a#

#@# \subsection{Experimental System Details}

##H AR

FETCH

ldgaaaad

export JikesRvmVersion=3.1.1

#a#

#@# We conduct our experiments on the Jikes RVM platform

#@# \cite{alpernOOjalapeno}

#@# which is an open—source research based

#@# runtime environment for executing

#@# Java bytecode programs.

#@# We use version \JikesRvmVersion of Jikes RVM.

#aw

echo "fetching jikes rvm”

wget http ://sourceforge.net/projects/jikesrvm/ files/
jikesrvm/${JikesRvmVersion }/jikesrvm—${
JikesRvmVersion }. tar .bz2/download

mkdir orig

cp jikesrvm—${JikesRvmVersion }.tar.bz2 orig

2011/8/17

120
121
122
123

124
125
126
127
128

129
130
131
132
133
134
135
136
137
138

cd orig

echo "unpacking orig RVM”

tar xjf jikesrvm—${JikesRvmVersion}.tar.bz2
cd

#

mkdir patched

cp jikesrvm—${JikesRvmVersion }.tar.bz2 patched
cd patched

echo ” unpacking patch RVM”

tar xjf jikesrvm—${JikesRvmVersion}.tar.bz2
cd

#A## R

PATCH

#AHRBHAHH

cd patched

export PatchFile=http ://sourceforge.net/tracker/download.
php?group_id=128805& atid=723235& file_id =379409& aid

=3026328
#
#a@# We test our modified heap growth strategy
#@# against the default
#@# Jikes RVM heap growth policy. Our strategy is
#a# available\footnote{\url{\PatchFile}}
#@# as a source code patch
#@# against Jikes RVM v\JikesRvmVersion.
#

wget ”$PatchFile”

cp download.php* patch.tar.gz
tar xzf patch.tar.gz

cp ./elast_patch/elast —1.0.patch
ed jikesrvm —3.1.1

echo ”patching patch RVM with elast
patch —p0 < elast —1.0.patch

ed ../..

./jikesrvm —3.1.1

patch”

Another patch for checkstyle

export RvmlIssue=RVM917

#@# Note that we also have

#@# update patch to handle

#@# a minor checkstyle compatibility issue,

#@# Jikes RVM JIRA issue number \Rvmlssue.

wget http :// jira.codehaus.org/secure/attachment/54615/
bandaid—fix —for—${RvmIssue }. diff

cd orig/jikesrvm —3.1.1

patch —p0 < ../../bandaid—fix —for—RVMO17. diff

ed ../../patched/jikesrvm —3.1.1

patch —p0 < ../../bandaid—fix —for—RVMI17. diff

cd ../..

to apply a small

which is

lddaaaa

INSTALL

#AHHRAHAH

export JAVAHOME=/usr/java/jdkl.6.0_18/
export JikesRvmConfig=FastAdaptiveMarkSweep

#a#

#@# All our experiments are conducted with the

#a# \texttt{\JikesRvmConfig} configuration , which has

#@# all internal runtime assertions

#@# disabled for production—level performance.

#a#

echo "building orig jikes rvm”

cd orig/jikesrvm —3.1.1

ant —Dhost.name=x86_64—linux —Dconfig.name=
$JikesRvmConfig

cd ../..

echo ”building patched jikes rvm”

cd patched/jikesrvm —3.1.1

ant —Dhost.name=x86_.64—linux —Dconfig.name=
$JikesRvmConfig

ed ../..

#A##RAS

FETCH Benchmarks

#AH#HAY

export BmVersion=2006—10—MR2

#@# We evaluate our Jikes RVM modifications using the

#@# DaCapo benchmark suite \cite{blackburnO6dacapo},

139| #@# version \BmVersion.

140| #@# These are standard Java benchmarks based on

141| #@# real—world open—source programs.

142 | #@# DaCapo is considered to be a standard and

143| #@# reliable workload

144| #@# for virtual machine implementation and

145| #@# garbage collection research

146 | #@# \cite{blackburnO8wake }.

147| #e#

148| wget “http ://dacapo.anu.edu.au/regression/perf/dacapo—${
BmVersion }.jar”

149

150 | ######BARBHBHBH

151| # INFOSCRIPT

152 | #A##HHHHHRHHHHY

153| ./ get_sys_info.sh > sys_info.table

154| #

155| #@# All experiments are performed on a stock

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

208
209
210
211
212
213
214
215
216

#@# Linux box, whose specification is given
#@# in Table \ref{tab—prop—scripts—infoscript}.

#
#@# \subsection{Experimental Method}
#

#H#H#H#H
RUN timing expts on orig RVM
#Ht##HH

#o#
#o#
#a#
#a#
#a#
#o#
#o#

We compare the default heap growth

policy in Jikes RVM

with our alternative ,

elasticity —based expansion policy

by measuring the execution times for DaCapo
benchmarks with variable sized heaps.

export NumTrials=10

For each benchmark test,

we perform \NumTrials trial executions.

We gather timing data from the second iteration

of each benchmark execution, with replay compilation.

In all cases, Jikes RVM is configured to ignore
explicit \texttt{System .GC()} requests from the
application .

We report arithmetic means and standard deviations
of times,

over the \NumTrials runs.

export HeapStart=25
export HeapMax=1000
#

#a#
#a#
#a#
#a#
#a#
#a#
#a#
#a#
#aw
#a#
#a#
#a#

The \emph{default} heap growth policy we employ
commences benchmark execution
with a \HeapStart MB heap,

and expands the heap by
increasing its size according
extracted from a lookup table,
growth heuristic based on

GC load and current live ratio.

The heap size never grows beyond the
maximum specified size

of \HeapMax MB.

to some factor
which encodes a heap

RVM=./orig/jikesrvm —3.1.1/dist/
FastAdaptiveMarkSweep_x86_64—linux /rvm

mkdir orig_results
for BM in ‘cat bms.txt *
do
REPLAY FLAGS="—X:aos:enable_replay_compile=true \
—X:vm: edgeCounterFile=$BM. edges \
—X:aos:cafi=$BM. advice \
—X:aos:dcfi=$BM. callgraph”

2011/8/17

217

218
219
220
221
222
223
224
225

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

258
259
260
261
262
263
264
265
266
267
268
269
270

271
272
273
274
275
276
271
278
279
280
281

282
283
284

285
286

echo

cat > orig_results /$BM. timings.gcs; #
blank file

echo “bm is $BM”;

for T in ‘seq 1 $NumTrials *;
do
echo ”starting heapsize is $HeapStart”;
echo "max heapsize is $HeapMax”;
$RVM —X:gc:verbose=0 —X:gc:ignoreSystemGC=true —Xms${
HeapStart M —Xmx${HeapMax M $REPLAY _FLAGS —
classpath ./dacapo—2006—10—MR2. jar Harness —n 2
$BM

done 2>&1 | cat >> orig_results/$BM. timings . gcs
done

#H##HH

RUN timing expts on modified RVM

H#t####

#

#a#

#@# The \emph{alternative} elasticity —based
#@# heap growth policy we employ

#@# commences benchmark execution

#@# with the same heap size of

HO# \HeapStart MB, and has the same

#@# maximum limit of \HeapMax MB.

#@# The heap size grows

#@# after each GC for which the current elasticity
#@# exceeds the target elasticity , ES,

#@# until the heap reaches the maximum size .
#@# At each individual growth step, the heap size is
#@# multiplied

#@# by a constant \textit{growth ratio} value
#@# We test various elasticity values

#a# E between 0.1 and 10.

#a# We test growth ratios 1.1, 1.3 and 1.5.
#@# This leads to an \textit{exponential}

#@# heap growth model.

#@# Alternative growth models, such as linear,
#@# are possible within the same framework.

RVM=./patched/jikesrvm —3.1.1/dist/
FastAdaptiveMarkSweep_x86_64—linux /rvm

mkdir patched_results
for BM in ‘cat bms.txt *
do
REPLAY FLAGS="—X:aos:enable_replay_compile=true \
—X:vm: edgeCounterFile=$BM. edges \
—X:aos:cafi=$BM. advice
—X:aos:dcfi=$BM. callgraph”
for GR in 1.1 1.3 1.5
do
echo ”” | cat > patched_results/$BM. timings—${GR}.gcs;

blank file
echo ”"bm is $BM”;

for ELASTICITY in 0.1 0.2 0.5 1 2 5 10
do
echo “elasticity is $ELASTICITY”;
for I in ‘seq 1 $NumTrials °;
do
echo "starting heapsize is $HeapStart”;
echo "max heapsize is $HeapMax™;
$RVM —X:gc:verbose=0 —X:gc: elasticity=${ELASTICITY} —
X:gc:growthratio=${GR} —X:gc:ignoreSystemGC=true
—Xms${HeapStart M —Xmx${HeapMax }M $REPLAY_FLAGS
—classpath ./dacapo—2006—10—MR2. jar Harness —n
2 $BM

done
done 2>&1 | cat >> patched_results/$BM. timings—${GR}.
gcs
done
done

287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303

304
305
306

307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

#o#

\subsection{Experimental Results}

lddaaaaaaaad
ANALYSE data to produce results summary files
HHRBHHHAHHHH

echo ”generating graphs”
mkdir graphs

Use PipeScripts taken from original experiment,

to

for
do

calculate means and stdevs from all dump files
BM in ‘cat bms.txt *

for GR in 1.1 1.3 1.5
do

./ pipescripts/process_patched_timing_dumps.pl ./

patched_results /${BM}.timings—${GR}.gcs > ./ graphs
/${BM}—${GR} . dat
done

Now handle default case (standard heapgrowth model)

./ pipescripts/process_orig_-timing_dumps.pl ./
orig-results/${BM}.timings.gcs > ./graphs/${BM}—
default.dat

done

#AHARAHARAHAHRA

GENERATE graphs from results summaries
###A#BRAH AR AHY

cd graphs

for
do

BM in ‘cat ../bms.txt *

gnuplot gnuplot.commands.${BM}.times
epstopdf ${BM}—elast—times.eps

done

cd

#a#
#a#

#a#

Figure \ref{fig—casestudy—graphs} shows
execution time results for selected DaCapo
benchmarks, with variable sized heaps controlled
using the elasticity heuristic outlined above. The
E value is varied along the x—axis, note the
log scale. The execution times are measured on
the y—axis. Confidence intervals are one
standard deviation either side of the arithmetic
mean, for each result. We evaluate three
different heap growth ratios: 1.1, 1.3, and

1.5. (The lookup table in the default Jikes RVM
\texttt{HeapGrowthManager} implementation has
ratios in the same range for heap expansion.) A
larger heap growth ratio will cause the heap to
expand more rapidly .

We compare the performance of our new elasticity
heuristic for heap growth with the default Jikes
RVM policy. In Figure
\ref{fig—casestudy—graphs}, the horizontal

line in each benchmark’s graph shows the execution
time with the default policy.

\textbf{The following paragraph, which

engages in analysis of the results presented in
the graphs, does not logically belong in a literate
experiment script, since such analysis

can only happen

after the results are auto—generated and manually
inspected.}

For most benchmarks, the graphs are

fairly flat when $E<I$.Above unit elasticity , the
execution time increases sharply. This is because
the heap growth is restricted , which causes more
GCs to occur, which degrades the application
execution time.

For some benchmarks ,

such as xalan, the default policy gives
comparable performance with our new elasticity
heuristic when $E<I$. For other benchmarks, such
as antlr, elasticity —based heap growth
out—performs the default policy when $E<IS$,
particularly for higher growth ratios.

2011/8/17

364
365

366 | #a#

367
368
369
370
371
372
373
374
375
376
371
378
379
380
381
382
383

#Ha#

#@# \textbf{The final paragraph in this section,
engages in comparison of the

#@# latest results with those

#@# from our earlier work \cite{singerlOeconomics},
#a# does not logically belong in the ExeScript.}
#a#

#@# We only ran experiments for three

#@# DaCapo benchmarks, namely

#@# antlr, bloat and xalan.

#@# This was merely due to time and space

#@# constraints , rather than any

#@# inherent difficulty in the

#@# experimental process. However we

#@# are encouraged to note that

#@# the final graphs are very similar

#@# to those in our original

#@# paper on this topic. Indeed, we appear

#@# to have reproduced, and repeated,

#@# our earlier results.

which

References

[1] Proceedings of the 2007 Workshop on Experimental Com-
puter Science. ACM, 2007.

[2] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke,
P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,
M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F. Mergen,
T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd,
S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The
Jalapefio virtual machine. IBM Systems Journal, 39(1):211—
238, Feb 2000.

[3] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Coc-
chi, P. Cheng, J. Dolby, S. Fink, D. Grove, M. Hind, K. S.
McKinley, M. Mergen, J. E. B. Moss, T. Ngo, V. Sarkar, and
M. Trapp. The Jikes research virtual machine project: Build-
ing an open source research community. /BM Systems Jour-
nal, 44(2):1-19, Feb 2005.

[4] S. Blackburn, K. McKinley, R. Garner, C. Hoffmann,
A. Khan, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Guyer, et al. Wake up and smell the coffee: evaluation
methodology for the 21st century. Communications of the
ACM, 51(8):83-89, 2008.

[5] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Framp-
ton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee,
J. E. B. Moss, A. Phansalkar, D. Stefanovié, T. VanDrunen,
D. von Dincklage, and B. Wiedermann. The DaCapo bench-
marks: Java benchmarking development and analysis. In Pro-
ceedings of the 21st Annual ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages, and Ap-
plications, pages 169—190, October 2006.

[6] F. Casati, F. Giunchiglia, and M. Marchese. Publish and
perish: why the current publication and review model is killing
research and wasting your money. Ubiquity, January 2007.

[7] Committee on Academic Careers for Experimental Computer
Scientists, National Research Council. Academic Careers for
Experimental Computer Scientists and Engineers. National
Academies Press, 1994.

[8] A. Diwan and R. Hundt. Repeatable, reproducible, and use-
ful. In Proceedings of the NSF Workshop on Archiving Exper-
iments to Raise Scientific Standards, 2010.

[9] L. Eeckhout. Position statement at Evaluate 2010, 2010.

[10] M. Gavish and D. Donoho. A universal identifier for com-
putational results. Procedia Computer Science, 4:637-647,
2011.

[11] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigor-
ous Java performance evaluation. In Proceedings of the 22nd
Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications, pages 57—
76, 2007.

[12] P. V. Gorp and S. Mazanek. Share: a web portal for creating
and sharing executable research papers. Procedia Computer
Science, 4:589 — 597, 2011.

[13] M. Hall, D. Padua, and K. Pingali. Compiler research: the next
50 years. Communications of the ACM, 52:60-67, February
2009.

[14] P. Jump. Research intelligence—rip it up and start again.
Times Higher Education, Dec. 2010.

[15] D. Knuth. Literate programming. The Computer Journal,
27(2):97-111, 1984.

[16] D. Kramer. API documentation from source code comments:
a case study of Javadoc. In Proceedings of the 17th Annual

International Conference on Computer Documentation, pages
147-153, 1999.

[17] E. Leisch. Sweave: Dynamic generation of statistical reports
using literate data analysis. Technical Report Report No. 69,
SFB Adaptive Information Systems and Modelling in Eco-
nomics and Management Science, Mar 2002.

[18] D. J. Lilja. Measuring Computer Performance A Practi-
tioner’s Guide. Cambridge University Press, 2000.

[19] V. E. McMillan. Writing papers in the biological sciences.
Bedford Books, 1997.

[20] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney.
Producing wrong data without doing anything obviously
wrong! In Proceeding of the 14th International Conference on
Architectural Support for Programming Languages and Oper-
ating Systems, pages 265-276, 2009.

[21] P. Nowakowski, E. Ciepiela, D. Harezlak, J. Kocot,
M. Kasztelnik, T. Bartynski, J. Meizner, G. Dyk, and
M. Malawski. The collage authoring environment. Procedia
Computer Science, 4:608 — 617, 2011.

[22] K. N. Nwogu. The medical research paper: Structure and
functions. English for Specific Purposes, 16(2):119 — 138,
1997.

[23] M. Shaw. What makes good research in software engineer-
ing? International Journal on Software Tools for Technology
Transfer, 4(1):1-7, 2002.

[24] M. Shaw. Writing good software engineering research papers.
In Proceedings of the 25th International Conference on Soft-
ware Engineering, pages 726-736, 2003.

[25] J. Singer, R. E. Jones, G. Brown, and M. Lujan. The eco-
nomics of garbage collection. In Proceedings of the 2010 In-

ternational Symposium on Memory Management, pages 103—
112, 2010.

[26] W. Tichy. Should computer scientists experiment more? Com-
puter, 31(5):32-40, May 1998.

2011/8/17

