
How to make a virtual machine less virtual

Or: an “integrated” approach

to dynamic language implementation

Stephen Kell

stephen.kell@comlab.ox.ac.uk

How to make a VM. . . – p.1

Programming languages. . .

Programming languages are great, but. . .

� requirements are diverse (“none is perfect”)

� even within one program!

However,

� incorporating foreign code is costly

� (think JNI, Python C API, Swig, . . .)

� per-language debugging tools are a poor solution

� programmer burden; lack whole-program view

� performance suffers

� reimplementation9 re-optimisation
How to make a VM. . . – p.2

One-slide summary of this talk

For the rest of this talk, I’ll

� describe an approach for tackling these problems

� by changing how we implement higher-level languages

� focusing on the case of dynamic languages

� based on aggressive re-use of existing infrastructure

� . . . esp. of debugging

� “the process is the VM”

� zoom in on the memory management bit

� relate it to my mainline work

This work is ongoing, unfinished, background, hangover, . . .

How to make a VM. . . – p.3

Unifying infrastructures help

“Isn’t this already solved?”

� JVM, CLR et al. unify many languages. . .

� “unify”ing FFI and debugging issues

But we could do better:

� what about native code? C, C++, . . .

� not all languages available on all VMs

� . . . FFI coding is still a big issue

What’s the “most unifying” infrastructure?

How to make a VM. . . – p.4

What’s in a virtual machine?

A virtual machine comprises. . .

� support for language implementors

� GCing allocator; interpreter/JIT of some kind

� object model: “typed”, flat. . .

� . . . on heap only

� support for end programmers, coding

� core runtime library (e.g. reflection, loader, . . .)

� “native interface” / FFI

� support for end programmers, debugging / “reasoning”

� interfaces for debuggers, . . .

� support for users / admins (security, res. man’t, . . .)
How to make a VM. . . – p.5

What’s in a virtual machine? an OS process + minimal libc?

A The “null” virtual machine comprises. . .

� support for language implementors

� GCing allocator; interpreter/JIT of some kind

� object model: “typed”, flat opaque. . .

� . . . on heap only or stack or bss/rodata

� support for end programmers, coding

� core runtime library (e.g. reflection, loader, . . .)

� “native interface” / FFI

� support for end programmers, debugging / “reasoning”

� interfaces for debuggers, . . . at whole process scale

� support for users / admins (security, res. man’t, . . .)
How to make a VM. . . – p.5

Astonishing claim

For most omissions, we can plug in libraries:

� JIT/interpreter. . .

� choose a GC (Boehm; can do better?)

Wha about reflection?

� . . . more generally, “dynamic” features

Debugging infrastructure supports all kinds of dynamism:

� name resolution, dynamic dispatch, . . .

� object schema updates (with some work)

. . . on compiled code, in any (compiled) language!

How to make a VM. . . – p.6

Well, almost. . .

Building “null VM” Python means plugging a few holes:

� . . . that are already problems for debuggers!

� that fit neatly into runtime and/or debugger facilities

I’m going to focus on a “hole”.

� For the rest, ask me (or trust me. . .)

How to make a VM. . . – p.7

Some equivalences

debugging-speak runtime-speak

backtrace stack unwinding

state inspection reflection

memory leak detection garbage collection

altered execution eval function

edit-and-continue dynamic software update

breakpoint dynamic weaving

bounds checking (spatial) memory safety

For each pair, implement using the same infrastructure. . .

How to make a VM. . . – p.8

DwarfPython in one slide

DwarfPython is an implementation of Python which

� uses DWARF debug info to understand native code. . .

� . . . and itself!

� unifies Python object model with native (general) model

� this is key!

� small, uniform changes allow gdb, valgrind, . . .

� as a consequence of above two points

� deals with other subtleties. . .

� I count 19 “somewhat interesting” design points

Not (yet): parallel / high-perf., Python libraries, . . .

How to make a VM. . . – p.9

Implementation tetris (1)

operating system

instruction set architecture

C library

native libs

Python code

CPython or similar

implementation

hand- or tool-generated FFI-

based wrapper code

How to make a VM. . . – p.10

Implementation tetris (2)

operating system

instruction set architecture

C library

VM

Python code

VM libs

native libs

Jython or similar

implementation

some native libraries

inaccessible from Python

How to make a VM. . . – p.11

Implementation tetris (3)

instruction set architecture

Python code

C library

operating system

native libs

DwarfPython

compiler-generated

debugging information

generic support libraries:

libunwind, libffi, libcake

How to make a VM. . . – p.12

Objects are not really opaque. . .

>>> import ellipse # dlopen()s libellipse.so

>>> my ellipse = native new ellipse()

>>> print my ellipse

Invariant 1: all objects have DWARF layout descriptions. . .

����������	
����

���
���������

���
������	��

���������

	����

�����
����������

��������

�

���

���

����		
���

�
�

�
�

��� ��

�

�

�

2d: DW TAG structure type

DW AT name : point

39: DW TAG member

DW AT name : x

DW AT type : <0x52>

DW AT location: (DW OP plus uconst: 0)

45: DW TAG member

DW AT name : y

DW AT type : <0x52>

DW AT location: (DW OP plus uconst: 8)

52: DW TAG base type

DW AT byte size : 8

DW AT encoding : 4 (float)

DW AT name : double

59: DW TAG structure type
How to make a VM. . . – p.13

Calling functions

>>> import c # libc.so already loaded

>>> def bye(): print "Goodbye, world!"

...

>>> atexit(bye)

Invariant 2: all functions have ≥ 1 “native” entry point

� for Python code these are generated at run time

DwarfPython uses libffi to implement all calls

How to make a VM. . . – p.14

Object models

Dynamic dispatch means finding object metadata. Problem!

����������	
����

���
���������

���
������	��

���������

	����

�����
����������

��������

�

���

���

����		
���

�
�

�
�

��� ��

�

�

�

Native objects are trees; no descriptive headers, whereas. . .

VM-style objects: “no interior pointers” + custom headers
How to make a VM. . . – p.15

Wanted: fast metadata lookup

How can we locate an object’s DWARF info

� . . . without object headers?

� . . . given possibly an interior pointer?

Solution:

� is object on stack, heap or bss/rodata? ask memory map

� if static or stack, just use debug info (+ stack walker)

In the heap (difficult) case:

� we’ll need some malloc() hooks. . .

� . . . and a memtable.

� read: efficient address-keyed associative structure
How to make a VM. . . – p.16

Indexing chunks

Inspired by free chunk binning in Doug Lea’s (old) malloc.

How to make a VM. . . – p.17

Indexing chunks

Inspired by free chunk binning in Doug Lea’s (old) malloc.

As well as indexing free chunks binned by size,

. . . index allocated chunks binned by address
How to make a VM. . . – p.17

How many bins?

Each bin is a linked list of chunks

� thread next/prev pointers through allocated chunks. . .

� hook can add space, if no spare bits

� also store allocation site (key to DWARF info)

� can compress all this quite small (48 bits)

Q: How big should we make the bin index?

A: As big as we can!

� given an interior pointer, finding chunk is O(binsize)

Q: How big can we make the bin index?

A: Really really huge!

How to make a VM. . . – p.18

Really, how big?

Exploit

� sparseness of address space usage

� lazy memory commit on “modern OSes” (Linux)

Bin index resembles a linear page table.

After some tuning. . .

� 32-bit AS requires 222 bytes of VAS for bin index

� covering n-bit AS requires 2n−10-byte bin index. . .

� use bigger index for smaller expected bin size How to make a VM. . . – p.19

What’s the benefit?

Faster and more space-efficient than a hash table

� also better cache and demand-paging behaviour?

Some preliminary figures (timed gcc, 3 runs):

� gcc uninstrumented: 1.70, 1.76, 1.72

� gcc + no-op hooks: 1.73, 1.76, 1.72

� gcc + vgHash index: 1.83, 1.82, 1.85

� gcc + memtable index: 1.77, 1.78, 1.77

Memtables are not limited to this application!

� e.g. Cake “corresponding objects” look-up

� . . . your idea here
How to make a VM. . . – p.20

Status of DwarfPython

Done: first-pass simplified implementation

� DWARF-based foreign function access

� no dynamic lang. features, debugger support, . . .

Full implementation in progress. . .

� including proof-of-concept extension of LLDB

� + feedback into DWARF standards!

How to make a VM. . . – p.21

Tenuous link. . .

What’s the big picture behind DwarfPython?

� habilitation of new / dynamic / unusual languages

� . . . into a mainstream toolchain

� language-independent notion of “API”

� orthogonalise language from tool support

What other neat tools might now be applicable to Python?

� tracers (e.g. ltrace)

� race detectors (helgrind or similar)

� heap profilers (massif, . . .)

What about verification / bug-finding tools?
How to make a VM. . . – p.22

Very quick summary

Wanted: a tool that can answer questions of the form:

� “how does my program exercise this API?” (general)

� e.g. “how does my program use the filesystem API?”

� what data will it write? delete/overwrite?

� what data will it not write? lose on crash?

How? Using Klee, a “dynamic symbolic execution” engine.

� works on binaries (LLVM bitcode as it happens)

� is it a static or a dynamic analysis? Hmm!

Ask me for more about this. . .

How to make a VM. . . – p.23

Conclusions & work in progress

Language implementors can do more to

� make using foreign code easier;

� orthogonalise language from tool support.

Questions for the audience:

� pessimal cases / bad GC interactions?

� can we do better?

� other uses of memtables? (“less conservative” GC?)

Still to do: implementation, benchmarks. . .

Thanks for listening. Any questions?

How to make a VM. . . – p.24

Taster: wrapper-free FFI (2)

Calling native functions:

� instantiate the data types the function expects

� call using libffi

In Parathon, an earlier effort, we had:

ParathonValue∗ FunctionCall::evaluate(ParathonContext& c)

{ return call function (this→base phrase→evaluate(c),

/∗ invokes libffi ˆ ∗/ this→parameter list→asArgs(c)); }

Now we have:

val FunctionCall ::evaluate() // ←− only context is the ∗process∗ i.e. stack

{ return call function (this→base phrase→evaluate(),

this→parameter list→asArgs()); }

The interpreter context is the process context!
How to make a VM. . . – p.25

Primitive values

objects

singleton

objects

value-unique

objects

immutable

objects

in this region, object references

are interchangeable with values

How to make a VM. . . – p.26

Out-of-band metadata

1.5

1.0

my_ellipse

maj

min

ctr

header

maj

min

ctr

class ellipse

...

...

...

field:

field:

field:

drawmethod

movemethod

y

x

class point

...

...field:

field:
ell_centre

-1

8

x

y

header

object metadata object data

traditional

approach: in-band

headers point to

object metadata

1.5

1.0

@0x00c0ffee:

my_ellipse

maj

min

ctr

maj

min

ctr

class ellipse

...

...

...

field:

field:

field:

drawmethod

movemethod

y

x

class point

...

...field:

field:

@0xdeadbeef:

ell_centre

-1

8

x

y

object metadata object data

DwarfPython approach:

metadata kept out-of-band

and looked up

associatively

look-up function

0x00c0ffee

0xdeadbeef

How to make a VM. . . – p.27

	Programming languagesldots {}
	One-slide summary of this talk
	Unifying infrastructures help
	What's in onlySlide *{1}{a virtual machine?}onlySlide *{2}{sout {a virtual machine?} an OS process + minimal libc?}
	What's in onlySlide *{1}{a virtual machine?}onlySlide *{2}{sout {a virtual machine?} an OS process + minimal libc?}

	Astonishing claim
	Well, almostldots {}
	Some equivalences
	DwarfPython in one slide
	Implementation tetris (1)
	Implementation tetris (2)
	Implementation tetris (3)
	Objects are not really opaqueldots {}
	Calling functions
	Object models
	Wanted: fast metadata lookup
	Indexing chunks
	Indexing chunks

	How many bins?
	Really, how big?
	What's the benefit?
	Status of DwarfPython
	Tenuous linkldots {}
	Very quick summary
	Conclusions & work in progress
	Taster: wrapper-free FFI (2)
	Primitive values
	Out-of-band metadata

