
Manchester University
Transactions for Scala

Salman Khan
salman.khan@cs.man.ac.uk

MMNet 2011

Transactional Memory

§  Alternative to locks for handling concurrency
§  Locks

•  Prevent all other threads from accessing shared
variables (pessimistic protection)

§  Transactional Memory
•  Hope that there will be no collisions (optimistic

protection)
•  Records sufficient information to rollback changes in

the event of a collision
•  Manages individual transactions so that to the program

they appear to happen instantaneously or not happen
at all

Software Transactional Memory

§  Mechanism requirements
•  Buffer state changes
•  Detect conflicts
•  Resolve conflicts

The Scala Programming Language

§  Object Oriented
•  All values are objects
•  Classes, traits
•  Mixin based composition replaces multiple inheritance

§  Functional
•  Functions are values
•  Anonymous functions, higher-order functions, the

nesting of functions, and support for currying
•  Side effects possible

Why MUTS

Existing STMs do not allow transactions to be added to code
without restructuring the code.

We want:
§  No difference between transaction syntax and other

language constructs

§  No restrictions on transaction granularity

§  Works with legacy code

§  Maintainability

Why MUTS

Existing STMs do not allow transactions to be added to code
without restructuring the code.

§  User added library calls (tinySTM)

for(int i = 0; i < INCREMENT; i++) {
 int tmp = this->value;
 tmp = tmp + 1;
 this->value = tmp;

}

Why MUTS

Existing STMs do not allow transactions to be added to code
without restructuring the code.

§  User added library calls (tinySTM)

sigjmp_buf *_e = stm_get_env();
stm_tx_attr_t _a = {0, 0};
sigsetjmp(*_e, 0);
stm_start(_e, &_a);
for(int i = 0; i < INCREMENT; i++) {

 int tmp = (int) stm_load((stm_word_t *)
 this->value);
 tmp = tmp + 1;
 stm_store((stm_word_t *) &this->value,

 stm_word_t)tmp);

}
stm_commit();

Why MUTS

§  Libraries taking functions as first class variables (CCSTM)
class IntSet {

 private class Node(val e: Int, next0: Node) {

 val next = Ref(next0)

 }

 private val header = new Node(-1, null)

 def add(e: Int) { atomic { implicit t => loop(e,
header) } }

 private def loop(e: Int, prev: Node)(implicit t:Txn) {

 val cur = prev.next()

 if (cur == null || cur.e > e)

 prev.next() = new Node(e, cur)

 else if (cur.e != e) loop(e, cur)

 }

}

Why MUTS

§  Libraries taking functions as first class variables (CCSTM)
class IntSet {

 private class Node(val e: Int, next0: Node) {

 val next = Ref(next0)

 }

 private val header = new Node(-1, null)

 private def loop(e: Int, prev: Node)(implicit t:Txn) {

 val cur = prev.next()

 if (cur == null || cur.e > e)

 prev.next() = new Node(e, cur)

 else if (cur.e != e) loop(e, cur)

 }

 def add(e: Int) { atomic { implicit t => loop(e,
header) } }

}

Why MUTS

§  Libraries taking functions as first class variables
class IntSet {

 private class Node(val e: Int, next0: Node) {

 val next = Ref(next0)

 }

 private val header = new Node(-1, null)

 private def loop(e: Int, prev: Node)(implicit t:Txn) {

 val cur = prev.next

 if (cur == null || cur.e > e)

 prev.next := new Node(e, cur)

 else if (cur.e != e) loop(e, cur)

 }

 def add(e: Int) { atomic { implicit t => loop(e,
header) } }

}

Why MUTS

§  Libraries using annotations (Deuce STM)

@Atomic
public void transfer
 (Account from, Account to, int amount) {
 from.withdraw(amount)
 to.deposit(amount)
}

§  What happens when just a small part of a method needs to

be transactional?

§  What if that part of the method uses and or modifies many
variables?

Deuce STM

§  Implemented using a Java Agent to rewrite the
Byte-Code at runtime

§  Rewritten code has a duplicate of every method
with:
•  A context as an extra method parameter
•  A call to this context for every field load and store
•  The context as an extra parameter to every method call

§  Methods marked as @Atomic are replaced with
methods that create a context and call the
respective duplicate method

Deuce STM

h()

f(Context c)

g(int i, context c) g(int i)

h(context c)

f()

MUTS Syntax

§  atomic {
 body

 }

§  atomic {
 body

 } retry;

§  atomic {
 body

 } orElse {
 elseBody
 }

§  atomic(test) {
 body

 }

§  atomic(test) {
 body

 } retry;

§  atomic(test) {
 body

 } orElse {
 elseBody
 }

MUTS Syntax

class IntSet {
 private class Node(val e: Int, next: Node)

 private val header = new Node(-1, null)

 private def loop(e: Int, prev: Node) {

 val cur = prev.next

 if (cur == null || cur.e > e)

 prev.next = new Node(e, cur)

 else if (cur.e != e) loop(e, cur)

 }

 def add(e: Int) { atomic { loop(e, header) } }

}

Why MUTS

§  Libraries taking functions as first class variables (CCSTM)
class IntSet {

 private class Node(val e: Int, next0: Node) {

 val next = Ref(next0)

 }

 private val header = new Node(-1, null)

 private def loop(e: Int, prev: Node)(implicit t:Txn) {

 val cur = prev.next()

 if (cur == null || cur.e > e)

 prev.next() = new Node(e, cur)

 else if (cur.e != e) loop(e, cur)

 }

 def add(e: Int) { atomic { implicit t => loop(e,
header) } }

}

Scala Compiler

Parser
JVM

Byte-Code
generator

§  Scala compiler consists of 21 stage pipeline
§  The Parser takes a file and returns an abstract syntax tree
§  The remaining phases incrementally transform this tree

until Byte-Code can be generated

§  User constructed phases can be added, but...
•  The data structures are poorly documented
•  Multiple phases may need to be added
•  Adding phases makes the system very sensitive to

change

Implementing MUTS

§  Two phases
•  Modifications to the parser
•  Java Agent to instrument the Byte-Code

§  Both of these work with well defined interfaces
•  Scala
•  JVM Byte-Code

Parser Modifications

§  Add new keywords
§  When an atomic section is detected:

•  Add the control logic using existing tree constructs

•  Encase the transactional code with an try/catch
-  Handle exceptions thrown by the body
-  Mark the code that is transactional
-  Allow transactions to abort

•  Create a context to store transaction data

•  Copy method variables so that active updates can be
used on them by the body

Byte-Code Rewrite

Modifying the Deuce Java Agent

§  Add Duplicate Methods

§  Detect atomic sections of methods
•  Detect the location of the context
•  Instrument field accesses
•  Augment method calls
•  Remove the marker exception

Protecting Against Code Reordering

§  Compiler reordering means that transactional
byte-code needs tagging

§  Exception handlers scope is adjusted to reflect
reordering

§  Creating a special class of exception allows for
the tracking of transactional code

Protecting Against Code Reordering
try {

 System.out.println("This is the start of the test");

 try{ foo(); }

 catch(IOException e) { System.out.println("IO exception"); }

 catch(NullPointerException e) { System.out.println("Null Pointer

 Exception"); }

 System.out.println("This is the end of the test");

}

catch(Exception e) { System.out.println("The final Exception"); }

Exception table:
 from to target type

 8 11 14 Class java/io/IOException

 8 11 26 Class java/lang/NullPointerException

 0 43 46 Class java/lang/Exception

What Have We Gained?

User:
§  Native Constructs
§  No change of syntax
§  No restrictions on the granularity of transactions
§  No restrictions on the use of legacy code
§  Interoperable with Java

Implementer:
§  Working against well defined interfaces
§  Native constructs with minimal changes to the

compiler

Conclusions

§  MUTS is a much more intuitive and flexible STM
for users

§  Interoperable with Java
§  Implemented with minimal changes to the parser,

and no other changes to the compiler
§  Exception handler overcomes code reordering
§  This 2-phase approach can be applied to

implementing other native constructs
§  Part of a suite of Scala STM’s at Manchester

Produced as part of the Teraflux
Project http://www.teraflux.eu Daniel.Goodman@Manchester.ac.uk

Strong vs Weak Isolation

§  MUTS, Deuce STM and CCSTM all provide weak isolation

§  CCSTM uses the type system which enforces strong
isolation IF objects are only ever accessed through
reference objects
•  Forces all transactional variables to be wrapped in reference

objects

•  Possible to use non transactional variables inside transactions

§  Inference of transactional types would be better than using
the type system

