
Memory Management
Needs of a

Computational Algebra
System

Steve Linton, St Andrews

Sunday, 15 May 2011

GAP

• The mathematician’s handle
on symmetry

• Key objects in pure and
applied mathematics

• Early adopters of
computation in pure maths

• Groups of interest are often
infinite, or very large indeed

• Study the group by
computing with just a
(carefully selected) few of
its elements

Groups, Algorithms, Programming

“There will be positively no internal
alterations to be made even if we wish
suddenly to switch from calculating the
energy levels of the neon atom to the
enumeration of groups of order 720.”

 Alan Turing (1945)

808017424794512875886459904961710757
005754368000000000

Sunday, 15 May 2011

• Given a concise description of a
group

• generating permutations or
matrices

• finite presentation

• Calculate global properties of group:

• size,

• composition factors,

• membership test

• character table

• Search for elements of the group
with special properties

• “find an element that moves this
to that”

• find all the unipotent matrices in
the group

Rubik’s Cube Group:
• Generated by 5

permutations of 48 small
squares

• Size = 227314537211
• Structure:

(211x37):(A8xA11):2
• No element that just

twists one corner

Groups, Algorithms, Programming

Sunday, 15 May 2011

Groups, Algorithms, Programming

GAP History

• Development began in
Aachen, mid-80s

• Neubüser, Schönert, others

• 1997, Neubüser retired

• international project
coordinated from St
Andrews till 2005

• coordination now shared
with three other centres

• Free Software under GPL

• Widely used and extended

GAP Numbers
• 174K lines of C
• 450K lines of GAP in core

system
• 4000+ operations
• 10000+ methods

• 1M lines of GAP in 92
contributed packages

• 100MB + of data libraries
• 1350 pages in reference

manual
• over 1000 citations

Sunday, 15 May 2011

GAP In Action

gap> AvgOrder :=
> g->Sum(ConjugacyClasses(g),

> c-> Size(c)*Order(Representative(c)))/

> Size(g);

function(g) ... end

gap> AvgOrder(MathieuGroup(11));

53131/7920

gap> ForAny(AllSmallGroups([2..100]),

> g->IsInt(AvgOrder(g)));

false

• Qn: is there a non-trivial group
whose elements have integer
average order?

• Dynamically typed language

• Functions are first class objects

• generic operations like Size and
ConjugacyClasses

• higher-order functions like Sum,
ForAny

• Not functional, but global side-
effects are rare

• single threaded

Sunday, 15 May 2011

GAP Usage

Sunday, 15 May 2011

GAP Usage
• Most GAP usage is interactive

Sunday, 15 May 2011

GAP Usage
• Most GAP usage is interactive

• Extend library with functionality for your problem then solve
problem interactively

Sunday, 15 May 2011

GAP Usage
• Most GAP usage is interactive

• Extend library with functionality for your problem then solve
problem interactively

• advanced users might extend kernel too

Sunday, 15 May 2011

GAP Usage
• Most GAP usage is interactive

• Extend library with functionality for your problem then solve
problem interactively

• advanced users might extend kernel too

• Some calculations run for weeks

Sunday, 15 May 2011

GAP Usage
• Most GAP usage is interactive

• Extend library with functionality for your problem then solve
problem interactively

• advanced users might extend kernel too

• Some calculations run for weeks

• Available memory is often limiting factor

Sunday, 15 May 2011

GAP Usage
• Most GAP usage is interactive

• Extend library with functionality for your problem then solve
problem interactively

• advanced users might extend kernel too

• Some calculations run for weeks

• Available memory is often limiting factor

• Need to allow close to 4GB of workspace on 32 bit systems

Sunday, 15 May 2011

GAP Usage
• Most GAP usage is interactive

• Extend library with functionality for your problem then solve
problem interactively

• advanced users might extend kernel too

• Some calculations run for weeks

• Available memory is often limiting factor

• Need to allow close to 4GB of workspace on 32 bit systems

• Need to allow workspace as large as physical memory

Sunday, 15 May 2011

GAP Usage
• Most GAP usage is interactive

• Extend library with functionality for your problem then solve
problem interactively

• advanced users might extend kernel too

• Some calculations run for weeks

• Available memory is often limiting factor

• Need to allow close to 4GB of workspace on 32 bit systems

• Need to allow workspace as large as physical memory

• Might be handful of huge objects, might be hundreds of
millions of tiny ones

Sunday, 15 May 2011

GASMAN
the GAp Storage Manager

Sunday, 15 May 2011

GASMAN
the GAp Storage Manager

• Written by Martin Schönert as part of a rewrite of GAP in mid-90s

Sunday, 15 May 2011

GASMAN
the GAp Storage Manager

• Written by Martin Schönert as part of a rewrite of GAP in mid-90s

• Two generation conservative mark & sweep GC.

Sunday, 15 May 2011

GASMAN
the GAp Storage Manager

• Written by Martin Schönert as part of a rewrite of GAP in mid-90s

• Two generation conservative mark & sweep GC.

• objects references are pointers to “master pointers” which point
to actual objects

Sunday, 15 May 2011

GASMAN
the GAp Storage Manager

• Written by Martin Schönert as part of a rewrite of GAP in mid-90s

• Two generation conservative mark & sweep GC.

• objects references are pointers to “master pointers” which point
to actual objects

• master pointers never move, objects do

Sunday, 15 May 2011

GASMAN
the GAp Storage Manager

• Written by Martin Schönert as part of a rewrite of GAP in mid-90s

• Two generation conservative mark & sweep GC.

• objects references are pointers to “master pointers” which point
to actual objects

• master pointers never move, objects do

• all master pointers in one contiguous area

Sunday, 15 May 2011

GASMAN
the GAp Storage Manager

• Written by Martin Schönert as part of a rewrite of GAP in mid-90s

• Two generation conservative mark & sweep GC.

• objects references are pointers to “master pointers” which point
to actual objects

• master pointers never move, objects do

• all master pointers in one contiguous area

• makes it easy to recognise object references

Sunday, 15 May 2011

GASMAN
the GAp Storage Manager

• Written by Martin Schönert as part of a rewrite of GAP in mid-90s

• Two generation conservative mark & sweep GC.

• objects references are pointers to “master pointers” which point
to actual objects

• master pointers never move, objects do

• all master pointers in one contiguous area

• makes it easy to recognise object references

• objects have a header giving size and low-level type.

Sunday, 15 May 2011

GASMAN
the GAp Storage Manager

• Written by Martin Schönert as part of a rewrite of GAP in mid-90s

• Two generation conservative mark & sweep GC.

• objects references are pointers to “master pointers” which point
to actual objects

• master pointers never move, objects do

• all master pointers in one contiguous area

• makes it easy to recognise object references

• objects have a header giving size and low-level type.

• type determines which parts of the object need to be
scanned for references

Sunday, 15 May 2011

GASMAN
the GAp Storage Manager

• Written by Martin Schönert as part of a rewrite of GAP in mid-90s

• Two generation conservative mark & sweep GC.

• objects references are pointers to “master pointers” which point
to actual objects

• master pointers never move, objects do

• all master pointers in one contiguous area

• makes it easy to recognise object references

• objects have a header giving size and low-level type.

• type determines which parts of the object need to be
scanned for references

• Object references can also be “fake” pointers encoding small
integers or finite field elements

Sunday, 15 May 2011

GASMAN Rules for
kernel programming

Sunday, 15 May 2011

GASMAN Rules for
kernel programming

• global and static variables that might contain object
references must be declared to GASMAN

Sunday, 15 May 2011

GASMAN Rules for
kernel programming

• global and static variables that might contain object
references must be declared to GASMAN

• local variables are picked up in a sweep of the stack

Sunday, 15 May 2011

GASMAN Rules for
kernel programming

• global and static variables that might contain object
references must be declared to GASMAN

• local variables are picked up in a sweep of the stack

• Mustn’t keep an actual pointer into an object across a
potential garbage collection

Sunday, 15 May 2011

GASMAN Rules for
kernel programming

• global and static variables that might contain object
references must be declared to GASMAN

• local variables are picked up in a sweep of the stack

• Mustn’t keep an actual pointer into an object across a
potential garbage collection

• references are fine

Sunday, 15 May 2011

GASMAN Rules for
kernel programming

• global and static variables that might contain object
references must be declared to GASMAN

• local variables are picked up in a sweep of the stack

• Mustn’t keep an actual pointer into an object across a
potential garbage collection

• references are fine

• Call CHANGED_BAG whenever you (might) add a new
object reference to an old object.

Sunday, 15 May 2011

GASMAN Rules for
kernel programming

• global and static variables that might contain object
references must be declared to GASMAN

• local variables are picked up in a sweep of the stack

• Mustn’t keep an actual pointer into an object across a
potential garbage collection

• references are fine

• Call CHANGED_BAG whenever you (might) add a new
object reference to an old object.

• Don’t use malloc too much.

Sunday, 15 May 2011

GASMAN Rules for
kernel programming

• global and static variables that might contain object
references must be declared to GASMAN

• local variables are picked up in a sweep of the stack

• Mustn’t keep an actual pointer into an object across a
potential garbage collection

• references are fine

• Call CHANGED_BAG whenever you (might) add a new
object reference to an old object.

• Don’t use malloc too much.

• GASMAN uses sbrk and likes a contiguous workspace

Sunday, 15 May 2011

A Few More Features

Sunday, 15 May 2011

A Few More Features

• Save & load workspace -- number all the
objects, store references as numbers

Sunday, 15 May 2011

A Few More Features

• Save & load workspace -- number all the
objects, store references as numbers

• saved workspaces not safe across
endianness or wordsize changes, or any
change to the system.

Sunday, 15 May 2011

A Few More Features

• Save & load workspace -- number all the
objects, store references as numbers

• saved workspaces not safe across
endianness or wordsize changes, or any
change to the system.

• Weak pointers -- not used a lot, but
valuable where they are used

Sunday, 15 May 2011

Pros and Cons

Sunday, 15 May 2011

Pros and Cons
• we have it, it works

Sunday, 15 May 2011

Pros and Cons
• we have it, it works

• highly tuned for our
needs

Sunday, 15 May 2011

Pros and Cons
• we have it, it works

• highly tuned for our
needs

• highly portable

Sunday, 15 May 2011

Pros and Cons
• we have it, it works

• highly tuned for our
needs

• highly portable

• UNIX, cygwin, MacOS

Sunday, 15 May 2011

Pros and Cons
• we have it, it works

• highly tuned for our
needs

• highly portable

• UNIX, cygwin, MacOS

• No dependency on
OS/hardware features
(almost)

Sunday, 15 May 2011

Pros and Cons
• we have it, it works

• highly tuned for our
needs

• highly portable

• UNIX, cygwin, MacOS

• No dependency on
OS/hardware features
(almost)

Sunday, 15 May 2011

Pros and Cons
• we have it, it works

• highly tuned for our
needs

• highly portable

• UNIX, cygwin, MacOS

• No dependency on
OS/hardware features
(almost)

• a bit more time spent in
GC than we’d really like

Sunday, 15 May 2011

Pros and Cons
• we have it, it works

• highly tuned for our
needs

• highly portable

• UNIX, cygwin, MacOS

• No dependency on
OS/hardware features
(almost)

• a bit more time spent in
GC than we’d really like

• Not friendly to FOS
libraries

Sunday, 15 May 2011

Pros and Cons
• we have it, it works

• highly tuned for our
needs

• highly portable

• UNIX, cygwin, MacOS

• No dependency on
OS/hardware features
(almost)

• a bit more time spent in
GC than we’d really like

• Not friendly to FOS
libraries

• we have to maintain it

Sunday, 15 May 2011

Pros and Cons
• we have it, it works

• highly tuned for our
needs

• highly portable

• UNIX, cygwin, MacOS

• No dependency on
OS/hardware features
(almost)

• a bit more time spent in
GC than we’d really like

• Not friendly to FOS
libraries

• we have to maintain it

• Cost of double
indirections

Sunday, 15 May 2011

Pros and Cons
• we have it, it works

• highly tuned for our
needs

• highly portable

• UNIX, cygwin, MacOS

• No dependency on
OS/hardware features
(almost)

• a bit more time spent in
GC than we’d really like

• Not friendly to FOS
libraries

• we have to maintain it

• Cost of double
indirections

• Awkward kernel
programming discipline

Sunday, 15 May 2011

Pros and Cons
• we have it, it works

• highly tuned for our
needs

• highly portable

• UNIX, cygwin, MacOS

• No dependency on
OS/hardware features
(almost)

• a bit more time spent in
GC than we’d really like

• Not friendly to FOS
libraries

• we have to maintain it

• Cost of double
indirections

• Awkward kernel
programming discipline

• Not thread-safe!

Sunday, 15 May 2011

HPC-GAP

Sunday, 15 May 2011

HPC-GAP
• EPSRC project 2009-2013

Sunday, 15 May 2011

HPC-GAP
• EPSRC project 2009-2013

• Deliver a version of GAP capable of exploiting
full range of parallel hardware

Sunday, 15 May 2011

HPC-GAP
• EPSRC project 2009-2013

• Deliver a version of GAP capable of exploiting
full range of parallel hardware

• From multicore to supercomputers

Sunday, 15 May 2011

HPC-GAP
• EPSRC project 2009-2013

• Deliver a version of GAP capable of exploiting
full range of parallel hardware

• From multicore to supercomputers

• Now have multi-threaded GAP

Sunday, 15 May 2011

HPC-GAP
• EPSRC project 2009-2013

• Deliver a version of GAP capable of exploiting
full range of parallel hardware

• From multicore to supercomputers

• Now have multi-threaded GAP

• Temporarily replaced GASMAN by Boehm
GC

Sunday, 15 May 2011

HPC-GAP
• EPSRC project 2009-2013

• Deliver a version of GAP capable of exploiting
full range of parallel hardware

• From multicore to supercomputers

• Now have multi-threaded GAP

• Temporarily replaced GASMAN by Boehm
GC

• significant performance loss -- c 15%

Sunday, 15 May 2011

HPC-GAP
• EPSRC project 2009-2013

• Deliver a version of GAP capable of exploiting
full range of parallel hardware

• From multicore to supercomputers

• Now have multi-threaded GAP

• Temporarily replaced GASMAN by Boehm
GC

• significant performance loss -- c 15%

• and some bugs on 64 bit.

Sunday, 15 May 2011

Dataspaces

Sunday, 15 May 2011

Dataspaces

• Introduced in HPCGAP to make it easier to write
thread-safe programs

Sunday, 15 May 2011

Dataspaces

• Introduced in HPCGAP to make it easier to write
thread-safe programs

• we hope

Sunday, 15 May 2011

Dataspaces

• Introduced in HPCGAP to make it easier to write
thread-safe programs

• we hope

• Three kinds:

Sunday, 15 May 2011

Dataspaces

• Introduced in HPCGAP to make it easier to write
thread-safe programs

• we hope

• Three kinds:

• thread-local -- one of these associated with each
thread

Sunday, 15 May 2011

Dataspaces

• Introduced in HPCGAP to make it easier to write
thread-safe programs

• we hope

• Three kinds:

• thread-local -- one of these associated with each
thread

• global -- one of these

Sunday, 15 May 2011

Dataspaces

• Introduced in HPCGAP to make it easier to write
thread-safe programs

• we hope

• Three kinds:

• thread-local -- one of these associated with each
thread

• global -- one of these

• shared -- possibly many of these, typically each with
just a few objects

Sunday, 15 May 2011

Dataspaces

• Introduced in HPCGAP to make it easier to write
thread-safe programs

• we hope

• Three kinds:

• thread-local -- one of these associated with each
thread

• global -- one of these

• shared -- possibly many of these, typically each with
just a few objects

• Newly created mutable objects in thread-local dataspace

Sunday, 15 May 2011

Dataspaces

• Introduced in HPCGAP to make it easier to write
thread-safe programs

• we hope

• Three kinds:

• thread-local -- one of these associated with each
thread

• global -- one of these

• shared -- possibly many of these, typically each with
just a few objects

• Newly created mutable objects in thread-local dataspace

• Can we use this for GC?

Sunday, 15 May 2011

What would we like?

Sunday, 15 May 2011

What would we like?
• Get back at least the performance we had before

Sunday, 15 May 2011

What would we like?
• Get back at least the performance we had before

• Thread-safe

Sunday, 15 May 2011

What would we like?
• Get back at least the performance we had before

• Thread-safe

• Tolerant of malloc

Sunday, 15 May 2011

What would we like?
• Get back at least the performance we had before

• Thread-safe

• Tolerant of malloc

• Allows at least some objects not to move around

Sunday, 15 May 2011

What would we like?
• Get back at least the performance we had before

• Thread-safe

• Tolerant of malloc

• Allows at least some objects not to move around

• Memory efficient

Sunday, 15 May 2011

What would we like?
• Get back at least the performance we had before

• Thread-safe

• Tolerant of malloc

• Allows at least some objects not to move around

• Memory efficient

• Still portable and reasonably easy to build

Sunday, 15 May 2011

What would we like?
• Get back at least the performance we had before

• Thread-safe

• Tolerant of malloc

• Allows at least some objects not to move around

• Memory efficient

• Still portable and reasonably easy to build

• Some way to handle smallints etc. efficiently

Sunday, 15 May 2011

What would we like?
• Get back at least the performance we had before

• Thread-safe

• Tolerant of malloc

• Allows at least some objects not to move around

• Memory efficient

• Still portable and reasonably easy to build

• Some way to handle smallints etc. efficiently

• Will scale to TB sized workspaces

Sunday, 15 May 2011

Some Numbers

Sunday, 15 May 2011

Some Numbers

• Starting Workspace: 375K objects, 30.5MB

Sunday, 15 May 2011

Some Numbers

• Starting Workspace: 375K objects, 30.5MB

• First test to GC spontaneously in 70MB:

Sunday, 15 May 2011

Some Numbers

• Starting Workspace: 375K objects, 30.5MB

• First test to GC spontaneously in 70MB:

• young generation: 8429 objects/0.5MB
survive, 593K objects/15MB dead

Sunday, 15 May 2011

Some Behaviour

G12 8RZ.

#G PART 2613/ 3630kb+live 142728/ 3986kb+dead 8799/ 71680kb free
#G PART 5/ 8000kb+live 0/ 0kb+dead 4194103/ 71680kb free

#G FULL 504940/ 50604kb live 844139/ 34697kb dead 8550/ 76288kb free
#G PART 3/ 8000kb+live 3/ 0kb+dead 4192854/ 76288kb free
#G FULL 504938/ 54604kb live 5/ 0kb dead 9718/ 83456kb free
#G PART 3/ 12000kb+live 0/ 0kb+dead 4192022/ 83456kb free
#G FULL 504938/ 60604kb live 0/ 0kb dead 10374/ 90112kb free
#G PART 2/ 12000kb+live 3/ 0kb+dead 4188678/ 90112kb free
#G FULL 504938/ 66604kb live 3/ 0kb dead 11638/ 101376kb free
#G PART 2/ 16000kb+live 0/ 0kb+dead 4189942/ 101376kb free
#G FULL 504938/ 74604kb live 0/ 0kb dead 12854/ 110592kb free
#G PART 2/ 16000kb+live 9/ 0kb+dead 4183158/ 110592kb free
#G FULL 504938/ 82604kb live 9/ 0kb dead 15286/ 129024kb free
#G PART 1/ 16000kb+live 0/ 0kb+dead 4193590/ 129024kb free
#G FULL 504938/ 90604kb live 0/ 0kb dead 16502/ 138240kb free
#G PART 2/ 32000kb+live 0/ 0kb+dead 4178806/ 138240kb free
#G FULL 504938/ 106604kb live 0/ 0kb dead 18422/ 156160kb free
#G PART 43/ 33125kb+live 495/ 8kb+dead 1045/ 156160kb free

#G FULL 504941/ 43729kb live 533/ 80009kb dead 13079/ 72192kb free

Sunday, 15 May 2011

Conclusion

Sunday, 15 May 2011

Conclusion

• We need a new Garbage Collector

Sunday, 15 May 2011

Conclusion

• We need a new Garbage Collector

• We’d rather not write it

Sunday, 15 May 2011

Conclusion

• We need a new Garbage Collector

• We’d rather not write it

• We have lots of varied real workloads

Sunday, 15 May 2011

Conclusion

• We need a new Garbage Collector

• We’d rather not write it

• We have lots of varied real workloads

• We are interested in research cooperation,
or in being pointed to a good GPL GC

Sunday, 15 May 2011

Conclusion

• We need a new Garbage Collector

• We’d rather not write it

• We have lots of varied real workloads

• We are interested in research cooperation,
or in being pointed to a good GPL GC

• Can you help?

Sunday, 15 May 2011

Distributed Memory

• Also building infrastructure for distributed
memory computing in GAP

• Building higher-level skeletons and data
structured on top of MPI

• Some data structures might need some
form of GC?

Sunday, 15 May 2011

