Islands RTS: a Hybrid Haskell Runtime System for

NUMA Machines

Marcin Orczyk
University of Glasgow

May 13, 2011

Marcin Orczyk (University of Glasgow) Islands RTS May 13, 2011



Paralellism

@ CPU clock rates have plateaued
@ the key to increased performance is scalable parallelism

o from multicore CPUs, through NUMA and massively parallel hardware
(GPUs, FPGAs), to clusters and cloud computing
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@ cache coherence is an overhead
100 cores? 500 cores?

@ how high will it be at 20 cores?
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16-core machine composed of 4
quad-core chips

@ cache coherence is an overhead

@ how high will it be at 20 cores?
100 cores? 500 cores?

@ non-coherent or partially cache

coherent architectures
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Islands RTS

@ Haskell runtime system for partially cache coherent machines

@ take advantage of shared memory/coherent cache when available
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Islands RTS

@ Haskell runtime system for partially cache coherent machines
@ take advantage of shared memory/coherent cache when available

@ Islands RTS is a blend of two existing parallel Haskell
implementations:
e GHC: shared memory runtime system with support for parallel
evaluation
e GUM: distributed runtime system based on message passing
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Island

@ island: a set of processing cores
sharing a cache coherent
memory

@ system is composed of a number
In BN of islands
"
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system with 4 cache-coherent islands,
each with 4 processing elements

@ island: a set of processing cores
sharing a cache coherent
memory

@ system is composed of a number
of islands
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system with 4 cache-coherent islands,

each with 4 processing elements

island: a set of processing cores
sharing a cache coherent
memory

system is composed of a number
of islands

one real heap per island

@ virtual shared heap between

islands
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Virtual Shared Heap

o following GUM, Islands RTS provides virtual shared heap
@ closures can transparently reside on different islands
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@ closures can transparently reside on different islands

@ consider evaluation of the expression (case x of ...), where x
exists on a different island

Marcin Orczyk (University of Glasgow) Islands RTS May 13, 2011 6 /16



Virtual Shared Heap

o following GUM, Islands RTS provides virtual shared heap
@ closures can transparently reside on different islands

@ consider evaluation of the expression (case x of ...), where x
exists on a different island

Case xof >

Heap of Island A Heap of Island B
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Virtual Shared Heap

o following GUM, Islands RTS provides virtual shared heap
@ closures can transparently reside on different islands

@ consider evaluation of the expression (case x of ...), where x
exists on a different island

Case xof >

Heap of Island A Heap of Island B

packing/unpacking closures
global addresses
message passing layer and protocol

stub closures
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Global Addresses

o triples

C . )
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Global Addresses

o triples
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Global Addresses

o triples

(island, slot, weight)

@ weighted reference counting
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Global Addresses

o triples

(island, slot, weight)
@ weighted reference counting
@ prevent garbage collection
@ slots are reused

@ similar to stable pointers
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Global Addresses

o triples
(island, slot, weight)
weighted reference counting

prevent garbage collection

slots are reused

similar to stable pointers

Islands RTS calls them “hard links”

@ they are quite heavyweight and the guarantees they provide are often
unnecessary

e e.g. recognising duplicates, speculative evaluation
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Global Addresses

Soft Links
@ analogous to weak pointers

o triples

(island, slot, slot2)

@ do not prevent garbage collection

@ slots never reused
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Global Addresses

Soft Links
@ analogous to weak pointers

o triples

(island, slot, slot2)

do not prevent garbage collection

slots never reused

GUM used only hard links

reasons to distinguish between hard and soft links:
o clarifies implementation
e potentially improves performance
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Message Passing

Meassages
@ virtual shared heap

o FETCH(ga-from, ga-to)
o UPDATE(ga, data)
o FREE(ga)

@ work distribution

e FISH
o SPARK(data)

@ startup, shutdown messages
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Within Island

@ based on GHC 7
@ multiple islands in the same process

@ changes:

e eliminating global data structures

o scheduler loop: hooks for message handling
e garbage collector: hooks for global addresses
@ new closures
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Static Thunks

@ compiler allocates certain closures statically

@ some of them are thunks
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Static Thunks

@ compiler allocates certain closures statically

@ some of them are thunks

@ closure on island B refers to a static thunk

STATIC

Cstatic thunk >
closure >

Heap of Island A Heap of Island B
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Static Thunks

some of them are thunks

island A evaluates the static thunk

compiler allocates certain closures statically

closure on island B refers to a static thunk
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Static Thunks

@ compiler allocates certain closures statically

@ some of them are thunks

@ closure on island B refers to a static thunk
@ island A evaluates the static thunk

@ island B evaluates thunk in A's heap

STATIC

static ind

ind closure

closure

Heap of Island A Heap of Island B
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Static Thunks - Solution

@ a layer of indirection
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@ a layer of indirection

@ closure on island B refers to a static thunk

STATIC
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Static Thunks - Solution

@ a layer of indirection

@ closure on island B refers to a static thunk

@ island A evaluates the static thunk
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Static Thunks - Solution

a layer of indirection
closure on island B refers to a static thunk
island A evaluates the static thunk

island B accesses the static thunk

STATIC

Heap of Island A Heap of Island B
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Static Thunks - Solution

overhead on evaluation and access

memory overhead proportional to the number of local islands

@ additional, nontrivial complexity

@ suggestions for solving this problem are welcomed
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@ parallel hardware becomes hierarchical

@ Islands RTS matches it with the hierarchical architecture of the
runtime itself
e within a cache coherent island - shared memory graph reduction
e between the islands - virtual heap based on message passing

@ enables exploiting most appropriate mechanisms at each level

o future directions
e non-coherent shared memory
e port to Barrelfish
e remote islands
o heterogenous islands
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Questions?

Questions? )
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Uniqueness of Soft Links

we can have tons!
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