Islands RTS: a Hybrid Haskell Runtime System for

NUMA Machines

Marcin Orczyk
University of Glasgow

May 13, 2011

Marcin Orczyk (University of Glasgow) Islands RTS May 13, 2011



Paralellism

@ CPU clock rates have plateaued
@ the key to increased performance is scalable parallelism

o from multicore CPUs, through NUMA and massively parallel hardware
(GPUs, FPGAs), to clusters and cloud computing

Marcin Orczyk (University of Glasgow) Islands RTS May 13, 2011 2/16



16-core machine composed of 4

quad-core chips

3/16

May 13, 2011

Islands RTS

an
)
o)
o
.
©
>
B
@
<
@
2
=
=)
3
>
N
o
~
o
c
'S
~
s




May 13, 2011 3/16

@ cache coherence is an overhead
100 cores? 500 cores?

@ how high will it be at 20 cores?

Islands RTS

quad-core chips

i
S

SRR

16-core machine composed of 4

_
2
3
50
&

&l

o

el
5
>

B
@
i
b}
>

=

=)

-
>
N
o
~

o
=

S
2
5

=



=

16-core machine composed of 4
quad-core chips

@ cache coherence is an overhead

@ how high will it be at 20 cores?
100 cores? 500 cores?

@ non-coherent or partially cache

coherent architectures

Marcin Orczyk (University of Glasgow)

Islands RTS

May 13, 2011 3/16



Islands RTS

@ Haskell runtime system for partially cache coherent machines

@ take advantage of shared memory/coherent cache when available

Marcin Orczyk (University of Glasgow) Islands RTS May 13, 2011 4/16



Islands RTS

@ Haskell runtime system for partially cache coherent machines
@ take advantage of shared memory/coherent cache when available

@ Islands RTS is a blend of two existing parallel Haskell
implementations:
e GHC: shared memory runtime system with support for parallel
evaluation
e GUM: distributed runtime system based on message passing

Marcin Orczyk (University of Glasgow) Islands RTS May 13, 2011 4/16



Island

@ island: a set of processing cores
sharing a cache coherent
memory

@ system is composed of a number
In BN of islands
"

May 13, 2011 5/16

Marcin Orczyk (University of Glasgow) Islands RTS



system with 4 cache-coherent islands,
each with 4 processing elements

@ island: a set of processing cores
sharing a cache coherent
memory

@ system is composed of a number
of islands

May 13, 2011 5/16

Marcin Orczyk (University of Glasgow) Islands RTS



system with 4 cache-coherent islands,

each with 4 processing elements

island: a set of processing cores
sharing a cache coherent
memory

system is composed of a number
of islands

one real heap per island

@ virtual shared heap between

islands

May 13, 2011 5/16

Marcin Orczyk (University of Glasgow)

Islands RTS



Virtual Shared Heap

o following GUM, Islands RTS provides virtual shared heap
@ closures can transparently reside on different islands

Marcin Orczyk (University of Glasgow) Islands RTS May 13, 2011 6 /16



Virtual Shared Heap

o following GUM, Islands RTS provides virtual shared heap
@ closures can transparently reside on different islands

@ consider evaluation of the expression (case x of ...), where x
exists on a different island

Marcin Orczyk (University of Glasgow) Islands RTS May 13, 2011 6 /16



Virtual Shared Heap

o following GUM, Islands RTS provides virtual shared heap
@ closures can transparently reside on different islands

@ consider evaluation of the expression (case x of ...), where x
exists on a different island

Case xof >

Heap of Island A Heap of Island B

Marcin Orczyk (University of Glasgow) Islands RTS May 13, 2011 6 /16



Virtual Shared Heap

o following GUM, Islands RTS provides virtual shared heap
@ closures can transparently reside on different islands

@ consider evaluation of the expression (case x of ...), where x
exists on a different island

Case xof >

Heap of Island A Heap of Island B

packing/unpacking closures
global addresses
message passing layer and protocol

stub closures

Marcin Orczyk (University of Glasgow) Islands RTS May 13, 2011 6 /16



Global Addresses

o triples

C . )

Marcin Orczyk (University of Glasgow) Islands RTS May 13, 2011 7/16



Global Addresses

o triples

(island, )

Marcin Orczyk (University of Glasgow) Islands RTS May 13, 2011 7/16



Global Addresses

o triples

(island, slot, )

Marcin Orczyk (University of Glasgow) Islands RTS May 13, 2011 7/16



Global Addresses

o triples

(island, slot, weight)

@ weighted reference counting

Marcin Orczyk (University of Glasgow) Islands RTS May 13, 2011 7/16



Global Addresses

o triples

(island, slot, weight)
@ weighted reference counting
@ prevent garbage collection
@ slots are reused

@ similar to stable pointers

Marcin Orczyk (University of Glasgow) Islands RTS May 13, 2011 7/16



Global Addresses

o triples
(island, slot, weight)
weighted reference counting

prevent garbage collection

slots are reused

similar to stable pointers

Islands RTS calls them “hard links”

@ they are quite heavyweight and the guarantees they provide are often
unnecessary

e e.g. recognising duplicates, speculative evaluation

Marcin Orczyk (University of Glasgow) Islands RTS May 13, 2011 7/16



Global Addresses

Soft Links
@ analogous to weak pointers

o triples

(island, slot, slot2)

@ do not prevent garbage collection

@ slots never reused

Marcin Orczyk (University of Glasgow) Islands RTS May 13, 2011 8 /16



Global Addresses

Soft Links
@ analogous to weak pointers

o triples

(island, slot, slot2)

do not prevent garbage collection

slots never reused

GUM used only hard links

reasons to distinguish between hard and soft links:
o clarifies implementation
e potentially improves performance

Marcin Orczyk (University of Glasgow) Islands RTS May 13, 2011



Message Passing

Meassages
@ virtual shared heap

o FETCH(ga-from, ga-to)
o UPDATE(ga, data)
o FREE(ga)

@ work distribution

e FISH
o SPARK(data)

@ startup, shutdown messages

Marcin Orczyk (University of Glasgow) Islands RTS May 13, 2011 9 /16



Within Island

@ based on GHC 7
@ multiple islands in the same process

@ changes:

e eliminating global data structures

o scheduler loop: hooks for message handling
e garbage collector: hooks for global addresses
@ new closures

Marcin Orczyk (University of Glasgow) Islands RTS May 13, 2011 10 / 16



Static Thunks

@ compiler allocates certain closures statically

@ some of them are thunks

Marcin Orczyk (University of Glasgow) Islands RTS May 13, 2011 11 /16



Static Thunks

@ compiler allocates certain closures statically

@ some of them are thunks

@ closure on island B refers to a static thunk

STATIC

Cstatic thunk >
closure >

Heap of Island A Heap of Island B

Marcin Orczyk (University of Glasgow) Islands RTS May 13, 2011 11 /16



Static Thunks

some of them are thunks

island A evaluates the static thunk

compiler allocates certain closures statically

closure on island B refers to a static thunk

Marcin Orczyk (University of Glasgow)

STATIC
static ind
thunk closure
Heap of Island A Heap of Island B
Islands RTS

May 13, 2011

11/ 16



Static Thunks

@ compiler allocates certain closures statically

@ some of them are thunks

@ closure on island B refers to a static thunk
@ island A evaluates the static thunk

@ island B evaluates thunk in A's heap

STATIC

static ind

ind closure

closure

Heap of Island A Heap of Island B

Marcin Orczyk (University of Glasgow) Islands RTS May 13, 2011 11 /16



Static Thunks - Solution

@ a layer of indirection

Marcin Orczyk (University of Glasgow) Islands RTS May 13, 2011 12 /16



Static Thunks - Solution

@ a layer of indirection

@ closure on island B refers to a static thunk

STATIC

Heap of Island A Heap of Island B

Marcin Orczyk (University of Glasgow) Islands RTS May 13, 2011 12 /16



Static Thunks - Solution

@ a layer of indirection

@ closure on island B refers to a static thunk

@ island A evaluates the static thunk

Marcin Orczyk (University of Glasgow)

STATIC
IndIsland static ind
A
B NULL
thunk closure
Heap of Island A Heap of Island B
Islands RTS

May 13, 2011

12/ 16



Static Thunks - Solution

a layer of indirection
closure on island B refers to a static thunk
island A evaluates the static thunk

island B accesses the static thunk

STATIC

Heap of Island A Heap of Island B

Marcin Orczyk (University of Glasgow) Islands RTS May 13, 2011 12 /16



Static Thunks - Solution

overhead on evaluation and access

memory overhead proportional to the number of local islands

@ additional, nontrivial complexity

@ suggestions for solving this problem are welcomed

Marcin Orczyk (University of Glasgow) Islands RTS May 13, 2011 13 /16



@ parallel hardware becomes hierarchical

@ Islands RTS matches it with the hierarchical architecture of the
runtime itself
e within a cache coherent island - shared memory graph reduction
e between the islands - virtual heap based on message passing

@ enables exploiting most appropriate mechanisms at each level

o future directions
e non-coherent shared memory
e port to Barrelfish
e remote islands
o heterogenous islands

Marcin Orczyk (University of Glasgow) Islands RTS May 13, 2011 14 / 16



Questions?

Questions? )

Marcin Orczyk (University of Glasgow) Islands RTS May 13, 2011 15 / 16



Uniqueness of Soft Links

we can have tons!

Marcin Orczyk (University of Glasgow) Islands RTS May 13, 2011 16 / 16



	Questions?
	Appendix

