Univefrsity
(@)
St Andrews

Kindergarten Cop:
Dynamic Nursery Resizing for GHC

Vladimir Janjic, Kevin Hammond (University of St Andrews)
Henrique Ferreiro, Laura Castro (University of A Coruna)

E: kevin@kevinhammond.net
T: @khstandrews, @rephrase_eu

University
of

e O —

SEVENTH FRAMEWORK St Andrews
PROGRAMME

ParaPhrase Project: Parallel Patterns for Heterogeneous Multicore Systems
(ICT-288570), 2011-2015, €4.2M budget

13 Partners, 8 European countries
UK, Italy, Germany, Austria, Ireland, Hungary, Poland, Israel

Coordinated by Kevin Hammond St Andrews m m

L
A 0N
b R
=)

\‘ £
W gufeep's University N galtlionalf N UNIVERSITY-ABERDEEN
i [elfas ollegeo
SOLUTIONS H L R I S * ‘ Ire]agnd UNIVERSITA
Mellanox S e nh .4

DEGLISTUDI

DI TORINO
TECHNOLOGIES software competence center
hagenberg

ALMAUNIVERSITAS (sh(amm oy
TAURINENSIS

Univefrsity
(@)
St Andrews

RePhrase Project: Refactoring Parallel Heterogeneous Software
— a Software Engineering Approach
(ICT-644235), 2015-2018, €3.6M budget

8 Partners, 6 European countries
UK, Spain, Italy, Austria, Hungary, Israel

Coordinated by Kevin Hammond St Andrews

evopro

—
h—:4
-
y

UNIVERSITA
DEGLI STUDI
DI TORINO

ALMA UNIVERSITAS
TAURINENSIS

3:PRQA scchl,

0000
® ® ® ® Programming Research software competence center
hagenberg

The Glorious Haskell Compiler (GHC)

* The de-facto standard for Haskell
* the non-strict functional language

* Originally, the Glasgow Haskell Compiler
* now maintained at Microsoft Research

Haskell 98 Language and Libraries, the Revised Report
Simon Peyton Jones (ed.) ... Kevin Hammond ..
Cambridge University Press, 2003

The Glasgow Haskell Compiler
http://www.haskell.org/ghc

RE P/HRASE

Profile) Tweets

@satnamsingh

You want me to code that in a language other than
Haskell?

15/07/2015 10:40

Univefrsity
[
St Andrews

Satnam Singh
Google

Generational garbage collection

Univefrsity
[
St Andrews

* GHC uses Appel-style generational garbage collection
* Assumption: most of the allocated objects die young

* Heap divided into a number of generations
e Usually two generations: young and old
* Young generation divided into the nursery and the survivor area

Nursery

Young generation Old generation

A. W. Appel. Simple Generational Garbage Collection and Fast
Allocation, Software: Practice and Experience,19:2, p. 171-182, 1989.

RE P-RASE

Generational garbage collection (2)

* New objects are (almost) always allocated in the nursery

Nursery

Young generation Old generation

Generational garbage collection (3)

* When the nursery becomes full, minor collection is triggered

* Live data is copied into the survivor area

* Data that survives a number of collections is promoted to the old
generation

* When the old generation becomes full, major collection is
triggered (whole heap is collected)

RE PARASE

Generational garbage collection (4)

Univefrsity
Ol
St Andrews

* Generational collectors are designed to do minor collections
most of the time

* Performance heavily depends on the size of the nursery!
* Smaller nursery size => better cache behaviour

* Larger nursery size => fewer collections, collections less expensive

* Cost of the garbage collection depends on the amount of live data, not garbage
* Imperative languages: make nursery as large as possible!
* Lazy functional languages: small nurseries

RE PHRASE

GHC Garbage Collection

Univefrsity
Ol
St Andrews

Generational garbage collection, two generations
Size of the nursery can be set to a constant (-A <size>)

e or RTS can dynamically change nursery size after each collection (-H)

Dynamic nursery resizing algorithm sets the nursery to have the
largest “reasonable” size that is possible
* After each garbage collection, the nursery size is set to be
H—-N
I1+p

H — heap size, N — 2x size of the live data,
p — percentage of data copied from the nursery in the last collection

RE EHRASE

Allocation size increases throughout program execution

RE PARASE

Binary-trees memory behaviour

10

ot

Live data (MiB)

0 5 10 15 20 25 30
Time (s)

2.4GHz Intel i7 processor, 4Mb L2 Cache, 4GB RAM

RE(F)—IRASE

Binary-trees with Constant-sized
nurseries
™ GC time

!

x
128KiB 1MiB 8MiB 64MiB 512MiB
Nursery size

B Mutator time

\V)

[

Execution time (s)

* The bigger the nursery, the less time is spent in garbage collection

* however, evaluation (mutator) time is also increased

RE P-RASE

Why does mutator time increase?

Mutator time (s)

1.6

=
=

=
N

0.8

128KiB

|
2MiB 8MiB 64MiB 512MiB
Nursery size

RE PARASE

Univefrsity
Ol
St Andrews

12

10

Binary-trees phase analysis

StAnélrews
| | , | | | | |
150 |- [—-A1m 300 1 Alm
-A64m -A64m
@ 100 @ 200
S 2
2 =
& G
o 50 -
100
0 |
| ' : ! ‘ () | | | ! |
(0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 0.2 0.4 0.6 0.8 1 1.2 1.4
Allocation (GiB) Allocation (GiB)

(Nursery) Size Matters!

GC configuration Speedup

-A2m 1.44
-A8m 1.69
-A64m 1.78

Speedup against default of 0.5MB fixed nursery (-A500k)

RE PHRASE

What can we conclude?

Univefrsity
St Andrews

Unlike imperative programming, a bigger nursery does not
necessarily mean better performance

In programs with irregular memory behaviour, nursery size plays
a crucial role in the overall performance

Having the same nursery size for the whole execution may be
suboptimal

In the phases of the program execution where not much data is
copied, a smaller nursery size is better

In the phases where a large amount of data is copied, go for a
bigger nursery

* In this case garbage collection, rather than cache behaviour, is the main
performance bottleneck

RE P-1RASE

Varying the Nursery Size (GHC —H)

10

8
m
Z
o 6
N
> o)
3 4
5
Z

0

0 200 400 600 800
GC no.

RE PHRASE

20

Effect of Varying the Nursery Size

GC configuration Speedup

-A2m 1.44
-A8m 1.69
-A64m 1.78

< -H 138 >

Speedup against default of 0.5MB fixed nursery (-A500k)

REfP)—lRASE

TAA Dynamic Resizing Algorithm

Univefrsity
St Andrews

* TPBM_ - Time per Byte Metric

* time taken by the nt" garbage collection divided by the nursery size S_ for
that collection

* Target: reduce TPBM as much as possible
* Set the initial nursery size, S,, to be the size of L2 cache
* After each garbage collection, calculate a new size S_

* Fast method: Half the nursery size, i.e. setS =S_, /2

* If fast method gives worse TPBM, i.e. if TPBM, > TPBM, ; use the slow
method instead

* Slow method: Good nursery size is between S_, and S_, or between S, ,
and S, —do a binary search to find the optimal value

T.A. Anderson. Optimizations in a Private Nursery-based Garbage Collector. Proc. 2010 International
Symposium on Memory Management, ISMM ’10, pages 21-30.

RE P-HRASE

TAA Dynamic Resizing Algorithm (2)

fun fast update()
Sn—'.! - Sn—l
Sn-1= 395,
TPBM,, = GCTime,, /S,
if TPBM,, < TPBM,,: then

S, =8S,/2
else
S, =slow_update(S, 2, S,-1, S,\)
end
return S,,
end

TAA Dynamic Resizing Algorithm (3)

Univefrsity
[
St Andrews

fun slow.update(S,-2, Su-1, Sn)
if abs(S,,-S,,_2) < threshold then
returnS,,
end
Se = (Sn-1+Sn-2)/2
[...execution with nursery size S, ...]
TPBM, = GCTime, /S,
if TPBM, < TPBM,, _, then
return slow.update(S,-2, Sz, Su-1)
else
Sy = (Sn +5n-1)/2
[...execution with nursery size S, ...]
TPBM, = GCTime, /S,
if TPBM,, < TPBM,, _, then
return slow update(S, 1, S,, S,.)
else
return slow-update(S., S,—1, Sy)
end
end

Example of TAA

TPBM

Nursery size

RE PARASE

Example of TAA

TPBM

Nursery size

RE PARASE

Example of TAA

TPBM

1 1
T)
SZ Sl

Nursery size

RE PARASE

TPBM

Example of TAA

1
T
SZ

Nursery size

RE PARASE

TPBM

Example of TAA

1 1
i U
S3 SZ

Nursery size

RE PARASE

TPBM

Example of TAA

1 1
i U
S3 SZ

Nursery size

RE PARASE

TPBM

Example of TAA

1 | Il
T il il
S, S, S,

Nursery size

RE PARASE

TPBM

Example of TAA

1 1
U U
S3 SZ

Nursery size

RE PARASE

Example of TAA

TPBM

Nursery size

RE PARASE

Example of TAA

TPBM

Nursery size

RE PARASE

Example of TAA

A
O

s O
o
[a
=

O

O
O
O
1 —>

Nursery size

RE PARASE

Example of TAA

A
O
s O
o
[a
=
O
O
O
[]
.Q
1 —>

Nursery size

RE PARASE

TPBM

Example of TAA

Nursery size

RE PARASE

(")
()
()
()
)
()
° ()
.o
59 S1o

Il Il Il 1 1 1 1 Il Il Il
I I I T 1T 17h I I I

Univefrsity
[
St Andrews

Binary-trees under different algorithms
(compared to GHC default)

GC configuration Speedup

-A2m 1.44
-A8m 1.69
-A64m 1.78
-H 1.38
< TAA .72 >

Speedup against default of 0.5MB fixed nursery (-A500k)

R Eif@-lRASE

Improving TAA (TAA")

* Key assumption is that collection time is a good measure of cache
locality

 However, we have seen that this is not always the case

* Simple modification:
Instead of just collection time, let

TPBM = collection time + mutator time

where mutator time is time elapsed from the last collection to
the current one

RE@RASE

Binary-trees under different algorithms
(compared to GHC default)

GC configuration Speedup

-A2m 1.44
-A8m 1.69
-A64m 1.78
-H 1.38
TAA 1.72
< TAA* 1.79

Speedup against default of 0.5MB fixed nursery (-A500k)

R Eif@-lRASE

Drawbacks of TAA and TAA?

* Reacts to changes in program memory behaviour by guessing
whether to increase or decrease nursery

* Reacts after these changes happen
* Can be very slow in responding to changes

* Nursery size may have to be adjusted several times in order to
get the right value

RE PHRASE

Copying-based algorithm (SLR)

Use the amount of copied data in each collection (in relation to
the nursery size) to estimate the performance

Objective: find the optimum ratio of nursery size to live data, and
then use it to calculate the nursery size

* Nursery Size to Live Data Ratio (SLR)

Starting with the initial SLR, modify it slightly after each garbage
collection (and update the nursery size appropriately), until we
find the right value

RE PHRASE

SLR algorithm

fun resize()
TPBM,,, = TPBM,,

TPBM,, = (MUTTime,, + GCTime,,)/S.

if abs(TPBM,,- TPBM,, 1) < threshold then
update_factor = update_factor, // reset value
SLR,, = SLR,,

else
// if performance is worse, reverse

update direction
if TPBM,, ., > TPBM,, then

update_factor = —0.9 x update_factor
end
SLR, = SLR,-1 % (1 + update-factor)
end
return SLR,, x copied,,

end

Univefrsity
[
St Andrews

Example of SLR

SLR=0.5

TPBM

Nursery size

RE PHRASE

Example of SLR

e SLR = 05

TPBM

Nursery size

RE PHRASE

TPBM

Example of SLR

Nursery size

RE P-RASE

U e
iRy

SLR=0.5
S1=1MB
SLR=0.45,C=0.5MB
S2=1.11MB

TPBM

Example of SLR

Nursery size

RE P-RASE

. SLR=0.5
S1=1MB
SLR = 0.45, C = 0.5MB
$2=1.11MB
-t
S1 SZ

Example of SLR

University
StAnocflrews
A
[)
. SLR=0.5
S1=1MB
2 SLR = 0.45, C = 0.5MB
= $2=1.11MB
SLR =0.55, C = 0.3MB
S3 = 550k
-+
S, S,

Nursery size

RE PARASE

TPBM

Example of SLR

University
StAnocflrews
(]
. SLR = 0.5
S1=1MB
SLR=0.45,C=0.5MB
$2=1.11MB
SLR =0.55,C=0.3MB
S3 =550k
i — >
S; 5105,

Nursery size

RE PARASE

TPBM

Example of SLR

Univefrsity
Ol
St Andrews

. SLR=0.5

S1=1MB
SLR=0.45,C=0.5MB
S2=1.11MB
SLR=0.55,C=0.3MB
S3 = 550k
SLR=0.60,C=0.3MB
S4 = 500k

53

Nursery size

RE PARASE

TPBM

Example of SLR

Univefrsity
Ol
St Andrews

. SLR=0.5

S1=1MB
SLR=0.45,C=0.5MB
S2=1.11MB
SLR=0.55,C=0.3MB
S3 = 550k
SLR=0.60,C=0.3MB
S4 = 500k

Nursery size

RE PARASE

Example of SLR

Univefrsity
Ol
St Andrews

. . SLR=0.5
S1=1MB
o SLR = 0.45, C=0.5MB
S2=1.11MB
SLR =0.55, C=0.3MB
S3 = 550k
SLR =0.60, C = 0.3MB
S4 = 500k
SLR=0.57,C=0.2MB
S5 = 350k

TPBM

Nursery size

RE@RASE

Improvement with SLA

GC configuration Speedup

_A2m 1.44
-A8m 1.69
_A64m 1.78
H 1.38
TAA 1.72
TAA* 1.79
<__SLR 196 >

Speedup against default of 0.5MB fixed nursery (-A500k)

RE(F)—IRASE

Evaluation of TAA, TAA* and SLR

Evaluated on the nofib benchmark suite of 63 Haskell benchmarks
(real, spectral, imaginary)

Performance TAA TAA™ SLR

unaffected 58.0 51.6 61.3
positive 19.4 30.6 339
negative 22.6 17.7 4.8

SLR is the best default option
* Average improvement in runtime of 10%
* The best improvement 88.5%
* Worst case gives slowdown of 44.5% (in just one example)
e compared with 52.0% for TAA, 28.2% for TAA*
RE \P/HRASE

Main Affected Benchmarks

Univefrsity
[
St Andrews

|
W
O

\

\

Runtime (A%)
|
| \)
o S
|
=3
O
L
| I—
————1
—
C—1
———— 1
1
—

Nl H

20
0o TAA
401 0pTaAt i
o SLR "
60 L -
&
P LS FFT & & &S &
F TP T I TS
Y @ & > Q\r&‘
43° od

SLRv. TAA

Both can suffer from “initial slowdown”, where nursery size is
incorrectly guessed at the beginning

Relevant information (TPBM) calculated after collections, and
cannot be obtained beforehand

SLR adapts better to memory usage changes, since nursery size is
always modified in proportion to the amount of copied data

RE P+ARASE

Conclusions

Univefrsity
Ol
St Andrews

Nursery size can have a significant impact on the performance of
functional programs

We have established a relation between nursery size and the
execution time of a program

* The interplay between cache locality and the amount of data copied
during the collection

Introduced two novel algorithms for dynamic tuning of the
nursery size: TAA* and SLR

e SLR gives the best overall performance, and is a sensible default for GHC

RE EHRASE

Future Work

Quantify memory irregularity and relate it to improvements in
execution time

Study influence of other factors on GC performance and include
these in more sophisticated

e e.g. amount of data accessed

Investigate TAA* and SLR for imperative languages

* e.g.C++, Java

Dynamic nursery resizing algorithms for parallel programs

RE P-1RASE

THANK YOU'!

http://rephrase-ict.eu

@rephrase_eu

