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The Glorious Haskell Compiler (GHC)

* The de-facto standard for Haskell
* the non-strict functional language

* Originally, the Glasgow Haskell Compiler
* now maintained at Microsoft Research

Haskell 98 Language and Libraries, the Revised Report
Simon Peyton Jones (ed.) ... Kevin Hammond ..
Cambridge University Press, 2003

The Glasgow Haskell Compiler
http://www.haskell.org/ghc
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Profile ) Tweets

@satnamsingh

You want me to code that in a language other than
Haskell?

15/07/2015 10:40
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Generational garbage collection
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* GHC uses Appel-style generational garbage collection
* Assumption: most of the allocated objects die young

* Heap divided into a number of generations
e Usually two generations: young and old
* Young generation divided into the nursery and the survivor area

Nursery

Young generation Old generation

A. W. Appel. Simple Generational Garbage Collection and Fast
Allocation, Software: Practice and Experience,19:2, p. 171-182, 1989.
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Generational garbage collection (2)

* New objects are (almost) always allocated in the nursery

Nursery

Young generation Old generation




Generational garbage collection (3)

* When the nursery becomes full, minor collection is triggered

* Live data is copied into the survivor area

* Data that survives a number of collections is promoted to the old
generation

* When the old generation becomes full, major collection is
triggered (whole heap is collected)
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Generational garbage collection (4)
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* Generational collectors are designed to do minor collections
most of the time

* Performance heavily depends on the size of the nursery!
* Smaller nursery size => better cache behaviour

* Larger nursery size => fewer collections, collections less expensive

* Cost of the garbage collection depends on the amount of live data, not garbage
* Imperative languages: make nursery as large as possible!
* Lazy functional languages: small nurseries
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GHC Garbage Collection
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Generational garbage collection, two generations
Size of the nursery can be set to a constant (-A <size>)

e or RTS can dynamically change nursery size after each collection (-H)

Dynamic nursery resizing algorithm sets the nursery to have the
largest “reasonable” size that is possible
* After each garbage collection, the nursery size is set to be
H—-N
I1+p

H — heap size, N — 2x size of the live data,
p — percentage of data copied from the nursery in the last collection
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Allocation size increases throughout program execution
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Binary-trees memory behaviour
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2.4GHz Intel i7 processor, 4Mb L2 Cache, 4GB RAM
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Binary-trees with Constant-sized
nurseries
™ GC time

!
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* The bigger the nursery, the less time is spent in garbage collection

* however, evaluation (mutator) time is also increased
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Why does mutator time increase?

Mutator time (s)
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Binary-trees phase analysis
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(Nursery) Size Matters!

GC configuration Speedup

-A2m 1.44
-A8m 1.69
-A64m 1.78

Speedup against default of 0.5MB fixed nursery (-A500k)
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What can we conclude?
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Unlike imperative programming, a bigger nursery does not
necessarily mean better performance

In programs with irregular memory behaviour, nursery size plays
a crucial role in the overall performance

Having the same nursery size for the whole execution may be
suboptimal

In the phases of the program execution where not much data is
copied, a smaller nursery size is better

In the phases where a large amount of data is copied, go for a
bigger nursery

* In this case garbage collection, rather than cache behaviour, is the main
performance bottleneck
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Varying the Nursery Size (GHC —H)
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Effect of Varying the Nursery Size

GC configuration Speedup

-A2m 1.44
-A8m 1.69
-A64m 1.78

< -H 138 >

Speedup against default of 0.5MB fixed nursery (-A500k)
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TAA Dynamic Resizing Algorithm
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* TPBM_ - Time per Byte Metric

* time taken by the nt" garbage collection divided by the nursery size S_ for
that collection

* Target: reduce TPBM as much as possible
* Set the initial nursery size, S,, to be the size of L2 cache
* After each garbage collection, calculate a new size S_

* Fast method: Half the nursery size, i.e. setS =S_, /2

* If fast method gives worse TPBM, i.e. if TPBM, > TPBM, ; use the slow
method instead

* Slow method: Good nursery size is between S_, and S_, or between S, ,
and S, —do a binary search to find the optimal value

T.A. Anderson. Optimizations in a Private Nursery-based Garbage Collector. Proc. 2010 International
Symposium on Memory Management, ISMM ’10, pages 21-30.
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TAA Dynamic Resizing Algorithm (2)

fun fast update()
Sn—'.! - Sn—l
Sn-1= 395,
TPBM,, = GCTime,, /S,
if TPBM,, < TPBM,,: then

S, =8S,/2
else
S, =slow_update(S, 2, S,-1, S,\)
end
return S,,
end




TAA Dynamic Resizing Algorithm (3)
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fun slow.update(S,-2, Su-1, Sn)
if abs(S,,-S,,_2) < threshold then
returnS,,
end
Se = (Sn-1+Sn-2)/2
[...execution with nursery size S, ... ]
TPBM, = GCTime, /S,
if TPBM, < TPBM,, _, then
return slow.update(S,-2, Sz, Su-1)
else
Sy = (Sn +5n-1)/2
[...execution with nursery size S, ... ]
TPBM, = GCTime, /S,
if TPBM,, < TPBM,, _, then
return slow update(S, 1, S,, S,.)
else
return slow-update(S., S,—1, Sy)
end
end




Example of TAA

TPBM

Nursery size
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Example of TAA

TPBM

Nursery size
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Example of TAA

TPBM
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TPBM
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TPBM

Example of TAA
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Example of TAA
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TPBM

Example of TAA
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TPBM
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Example of TAA

TPBM

Nursery size
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Example of TAA

TPBM

Nursery size
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Example of TAA
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Example of TAA
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TPBM

Example of TAA

Nursery size
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Binary-trees under different algorithms
(compared to GHC default)

GC configuration Speedup

-A2m 1.44
-A8m 1.69
-A64m 1.78
-H 1.38
< TAA .72 >

Speedup against default of 0.5MB fixed nursery (-A500k)
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Improving TAA (TAA")

* Key assumption is that collection time is a good measure of cache
locality

 However, we have seen that this is not always the case

* Simple modification:
Instead of just collection time, let

TPBM = collection time + mutator time

where mutator time is time elapsed from the last collection to
the current one
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Binary-trees under different algorithms
(compared to GHC default)

GC configuration Speedup

-A2m 1.44
-A8m 1.69
-A64m 1.78
-H 1.38
TAA 1.72
< TAA* 1.79

Speedup against default of 0.5MB fixed nursery (-A500k)
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Drawbacks of TAA and TAA?

* Reacts to changes in program memory behaviour by guessing
whether to increase or decrease nursery

* Reacts after these changes happen
* Can be very slow in responding to changes

* Nursery size may have to be adjusted several times in order to
get the right value
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Copying-based algorithm (SLR)

Use the amount of copied data in each collection (in relation to
the nursery size) to estimate the performance

Objective: find the optimum ratio of nursery size to live data, and
then use it to calculate the nursery size

* Nursery Size to Live Data Ratio (SLR)

Starting with the initial SLR, modify it slightly after each garbage
collection (and update the nursery size appropriately), until we
find the right value
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SLR algorithm

fun resize()
TPBM,,, = TPBM,,

TPBM,, = (MUTTime,, + GCTime,,)/S.

if abs(TPBM,,- TPBM,, 1) < threshold then
update_factor = update_factor, // reset value
SLR,, = SLR,,

else
// if performance is worse, reverse

update direction
if TPBM,, ., > TPBM,, then

update_factor = —0.9 x update_factor
end
SLR, = SLR,-1 % (1 + update-factor)
end
return SLR,, x copied,,

end
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Example of SLR

SLR=0.5

TPBM

Nursery size
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Example of SLR

e SLR = 05

TPBM

Nursery size
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TPBM

Example of SLR

Nursery size
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SLR=0.45,C=0.5MB
S2=1.11MB



TPBM

Example of SLR

Nursery size
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Example of SLR
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TPBM

Example of SLR
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TPBM

Example of SLR
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. SLR=0.5

S1=1MB
SLR=0.45,C=0.5MB
S2=1.11MB
SLR=0.55,C=0.3MB
S3 = 550k
SLR=0.60,C=0.3MB
S4 = 500k
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TPBM

Example of SLR
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. SLR=0.5

S1=1MB
SLR=0.45,C=0.5MB
S2=1.11MB
SLR=0.55,C=0.3MB
S3 = 550k
SLR=0.60,C=0.3MB
S4 = 500k

Nursery size
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Example of SLR
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. . SLR=0.5
S1=1MB
o SLR = 0.45, C=0.5MB
S2=1.11MB
SLR =0.55, C=0.3MB
S3 = 550k
SLR =0.60, C = 0.3MB
S4 = 500k
SLR=0.57,C=0.2MB
S5 = 350k

TPBM

Nursery size
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Improvement with SLA

GC configuration Speedup

_A2m 1.44
-A8m 1.69
_A64m 1.78
H 1.38
TAA 1.72
TAA* 1.79
<__SLR 196 >

Speedup against default of 0.5MB fixed nursery (-A500k)
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Evaluation of TAA, TAA* and SLR

Evaluated on the nofib benchmark suite of 63 Haskell benchmarks
(real, spectral, imaginary)

Performance TAA TAA™ SLR

unaffected 58.0 51.6 61.3
positive 19.4 30.6 339
negative 22.6 17.7 4.8

SLR is the best default option
* Average improvement in runtime of 10%
* The best improvement 88.5%
* Worst case gives slowdown of 44.5% (in just one example)
e compared with 52.0% for TAA, 28.2% for TAA*
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Main Affected Benchmarks
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SLRv. TAA

Both can suffer from “initial slowdown”, where nursery size is
incorrectly guessed at the beginning

Relevant information (TPBM) calculated after collections, and
cannot be obtained beforehand

SLR adapts better to memory usage changes, since nursery size is
always modified in proportion to the amount of copied data
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Conclusions
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Nursery size can have a significant impact on the performance of
functional programs

We have established a relation between nursery size and the
execution time of a program

* The interplay between cache locality and the amount of data copied
during the collection

Introduced two novel algorithms for dynamic tuning of the
nursery size: TAA* and SLR

e SLR gives the best overall performance, and is a sensible default for GHC
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Future Work

Quantify memory irregularity and relate it to improvements in
execution time

Study influence of other factors on GC performance and include
these in more sophisticated

e e.g. amount of data accessed

Investigate TAA* and SLR for imperative languages

* e.g.C++, Java

Dynamic nursery resizing algorithms for parallel programs
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