ORACLE

Specialisation for Allocation Removal
and Constant Folding

MMNet 2015, Glasgow

Chris Seaton
Research Manager
Oracle Labs

chris.seaton@oracle.com

O c ®
R Cl_e CCCCC ight © 2015 , Oracle and /or its affiliates. All rights reserved .

Safe Harbor Statement

The following is intended to provide some insight into a line of research in Oracle Labs. It
is intended for information purposes only, and may not be incorporated into any
contract. It is not a commitment to deliver any material, code, or functionality, and
should not be relied upon in making purchasing decisions. Oracle reserves the right to
alter its development plans and practices at any time, and the development, release, and
timing of any features or functionality described in connection with any Oracle product or
service remains at the sole discretion of Oracle. Any views expressed in this presentation
are my own and do not necessarily reflect the views of Oracle.

: : -
R CI_E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Overview

* Assumption: best way to manage memory is to not allocate it on the heap
— Remove load on the GC
— Reduce pauses, improve locality, generally improve performance

* Techniques available to do this
— Escape analysis, partial escape analysis, scalar replacement, stack allocation...
— They are powerful, but only work for some program structures

* Research problem — how to structure an interpreter so that the existing
techniques are more effective

* Qur solution — AST specialisation for small data structures

o c ®
R CI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

JRuby+Truffle

o c ®
R Cl_e Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Shootout benchmarks

40
35
30

n o 0 o n
AN QY - -

0

(s/s) uoneyuswaldwi suleseq
0} @Aljejal dnpaadg

<
2
g
=
o~
e
O
&
N
o

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | Oracle Confidential — Internal

m
i
%
0

Production benchmarks

— és,
« /7
Ao@.\
o

40

0 o e} o o} n
;M o™ ol ol - 1

(s/s) uoneyuswa|dwi auleseq
0} @Aljeja) dnpeadg

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | Oracle Confidential — Internal

m
i
%
O

0 Language specs
9 3 /0

0 Core library specs
8 9 /0

R CI_E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | Oracle Confidential — Internal

Truffle, Graal and the GraalVM

O c ®
R CI_E Copyright © 2015, Oracle and/or its affiliates. All rights reserved

Truffle Dynamic Optimisation Model

AST Interpreter
Uninitialized Nodes

Node Rewriting

for Profiling Feedback

>

('Node Transitions

String ‘

Uninitialized

Double

.
.
-
-
...........

Generic

Integer

AST Interpreter
Rewritten Nodes

Compilation using
Partial Evaluation

—

Compiled Code

T. Wirthinger, C. Wimmer, A. W6R, L. Stadler, G. Duboscq, C. Humer, G. Richards, D. Simon, and M. Wolczko, “One VM to rule them all,” presented at the Onward! '13: Proceedings of
the 2013 ACM international symposium on New ideas, new paradigms, and reflections on programming & software, New York, New York, USA, 2013, pp. 187-204.

ORACLE

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Truffle Dynamic Deoptimisation Model

Deoptimization Node Rewriting to Update Recompilation using
to AST Interpreter Profiling Feedback Partial Evaluation

A=A= ",

T. Wirthinger, C. Wimmer, A. W6R, L. Stadler, G. Duboscq, C. Humer, G. Richards, D. Simon, and M. Wolczko, “One VM to rule them all,” presented at the Onward! '13: Proceedings of
the 2013 ACM international symposium on New ideas, new paradigms, and reflections on programming & software, New York, New York, USA, 2013, pp. 187-204.

ORACLE

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

GraalVM Structure

Guest Language Application

[)

Guest Language Implementation Language Parser AST Interpreter

Truffle API Framework for Node Rewriting

Truffle Optimizer Partial Evaluation using Graal \ Yot ey ErE

VM Runtime Services Garbage Collector ~ Graal Compiler (slow, for guest language

Stack Walking Deoptimization development and debugging only)
L AOT Optimization: using Graal for static analysis and AOT compilation)\ Hosted on Graal VM
(fast, for integration of guest language
0S code with existing Java applications)

T. Wirthinger, C. Wimmer, A. W6R, L. Stadler, G. Duboscq, C. Humer, G. Richards, D. Simon, and M. Wolczko, “One VM to rule them all,” presented at the Onward! '13: Proceedings of
the 2013 ACM international symposium on New ideas, new paradigms, and reflections on programming & software, New York, New York, USA, 2013, pp. 187-204.

O c ®
R Cl_e Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Patterns of Logical Allocation in Ruby Code

o c ®
R CI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved

def clamp(num, min, max)
[min, num, max].sort[1]
end

O c ®
R Cl_e Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

VALUE psd_native_util_clamp(VALUE self, VALUE r_num, VALUE r_min, VALUE r_max) {

int num = FIX2INT(r_num);
int min = FIX2INT(r_min);
int max = FIX2INT(r_max);

return num > max ? r_max : (num < min ? r_min : r_num);

}

O c ®
R Cl_e Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

AST Specialisation for Small Data Structures

c ®
OR CI_E Copyright © 2015, Oracle and/or its affiliates. All rights reserved

Escape analysis

* Answers the question: is this object accessible to anyone outside this
compilation unit?

— ‘Compilation unit’ could be method, loop body, control flow trace
— Likely include inlining of at least methods called on the object

* Algorithms such as Choi et al 1999
— Applied in C2

J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, and S. Midkiff, “Escape analysis for Java,” presented at the OOPSLA '99: Proceedings of the 14th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, New York, New York, USA, 1999, vol. 34, no. 10, pp. 1-19.

o c ®
R CI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

What to do with escape analysis results?

* If an object doesn’t escape, it doesn’t need to be visible to anyone else
— Allocate explicitly on the stack (like alloca instead of malloc)
— Scalar replacement (represent fields in the object as local variables)
— Turn the fields into dataflow edges in the IR

°* No need to involve the GC

* Enables other optimisations
— Partial evaluation
— Constant folding

o c ®
R CI_E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Partial escape analysis

* Weakens the requirement for ‘not accessible outside the compilation unit’
to ‘not accessible on a subset of control flow paths’

— Common / uncommon paths
— Fast path / slow path

* Algorithms such as Stadler et al 2014
— Applied in the Graal dynamic compiler

L. Stadler, T. Wirthinger, and H. Mossenbdck, “Partial Escape Analysis and Scalar Replacement for Java,” presented at the Proceedings of the Symposium on Code Generation and
Optimization (CGO), 2014.

o c ®
R CI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Limitations in practice

* It doesn’t take much to cause an object to escape
* Limited ability to inline

* Unbounded loops

* Unbounded recursion

» Standard library methods

o c ®
R CI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

private IRubyObject sortInternal(final ThreadContext context, final Block block) {
IRubyObject[] newValues = new IRubyObject[realLength];
int length = reallLength;

safeArrayCopy(values, begin, newValues, 0, length);
Qsort.sort(newValues, 0, length, (ol, 02) - {
IRubyObject objl = (IRubyObject) o1l;
IRubyObject obj2 = (IRubyObject) o02;
IRubyObject ret = block.yieldArray(context,
getRuntime().newArray(obj1, obj2), null);
//TODO: ary_sort_check should be done here
return RubyComparable.cmpint(context, ret, objl, obj2);

1)

values = newValues;
begin = 0;
realLength = length;
return this;

O c ®
R Cl_e Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

@ExplodelLoop
@Specialization(guards = {"isIntArray(array)", "isSmall(array)"})
public RubyBasicObject sortVeryShortIntegerFixnum(
VirtualFrame frame, RubyBasicObject array, NotProvided block) {
final int[] store = (int[]) getStore(array);
final int[] newStore = new int[store.length];

final int size = getSize(array);

for (int i = 0; i < ARRAYS SMALL; i++) A
if (i < size) {
for (int j = i + 1; j < ARRAYS_SMALL; j++) {
if (j < size) {
if (castSortValue(compareDispatchNode
.call(frame, storel[jl, "<=>", null, storel[il)) < 0) {
final int temp = storeljl;
store[j] = storelil;
store[i] = temp;

by
by

newStore[i] = storelil;

}

return createArray(newStore, size);

}

e ®
OR Cl—e Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

@Exp lodelLoop
@Specialization(guards = {"isIntArray(array)", "isSmall(array)"})
public RubyBasicObject sortVeryShortIntegerFixnum(

c ®
OR Cl_e Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

final int size = getSize(array);

for (int i = 0; i < ARRAYS SMALL; i++) A
if (i < size) {
for (int j = i + 1; j < ARRAYS _SMALL; j++) {
if (j < size) {
if (castSortValue(compareDispatchNode
.call(frame, store[jl, "<=>", null, storel[il)) < 0) {
final int temp = storeljl;
store[j] = storelil;
store[i] = temp;
I3
¥

newStore[i] = storelil];

®
ORACLG Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Impact on the Bottom-Line

c ®
OR CI_E Copyright © 2015, Oracle and/or its affiliates. All rights reserved

ORACLE

loop do
start = Time.now
100 000 000.times do
[3, 1, 2].sort[0]
end
puts Time.now - start
end

With Without Conventional
specialisation specialisation JRuby
Time per 100mm iteration 0.06s 1.85s 14 s
Allocations per iteration 5 KB/s 1.6 MB/s 1.2 GB/s

ORACLE

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Production benchmarks

— és,
« /7
Ao@.\
o

40

0 o e} o o} n
;M o™ ol ol - 1

(s/s) uoneyuswa|dwi auleseq
0} @Aljeja) dnpeadg

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. | Oracle Confidential — Internal

m
i
%
O

Conclusions

* The JVM already has the ability to remove allocations
* The GraalVM is more powerful still, with partial escape analysis

* But these techniques can’t always be applied — tends to fall down pretty
quickly

o c ®
R CI—E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement

The preceding is intended to provide some insight into a line of research in Oracle Labs. It
is intended for information purposes only, and may not be incorporated into any
contract. It is not a commitment to deliver any material, code, or functionality, and
should not be relied upon in making purchasing decisions. Oracle reserves the right to
alter its development plans and practices at any time, and the development, release, and
timing of any features or functionality described in connection with any Oracle product or
service remains at the sole discretion of Oracle. Any views expressed in this presentation
are my own and do not necessarily reflect the views of Oracle.

: : -
R CI_E Copyright © 2015, Oracle and/or its affiliates. All rights reserved. |

Hardware and Software
Engineered to Work Together

c ®
OR Cl_e CCCCC ight © 2015 , Oracle and/or its affiliates. All rights reserved .|

ORACLE

