
Notes on Notebooks: Is Jupyter the Bringer of Jollity?
Jeremy Singer

University of Glasgow
Glasgow, UK

jeremy.singer@glasgow.ac.uk

Abstract
As the interactive computational notebook becomes a more
prominent code development medium, we examine advan-
tages and disadvantages of this particular source code format.
We specify the structure of a coding notebook layout. We
describe complexities in notebook programming; some of
these are incidental whereas others may be inherent com-
plexities. We outline how we envisage research and devel-
opment might proceed to advance the cause of notebook
programming.

CCS Concepts: • Software and its engineering→Devel-
opment frameworks and environments.

Keywords: computational notebooks, Jupyter
ACM Reference Format:
Jeremy Singer. 2020. Notes on Notebooks: Is Jupyter the Bringer
of Jollity?. In Proceedings of the 2020 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming and Software (Onward! ’20), November 18–20, 2020, Virtual,
USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3426428.3426924

1 Introduction
Over the past decade, we have witnessed a quiet revolution in
the way that software developers interact with source code.
If mainstream software development practice in the nineties
and noughties was dominated by the Integrated Develop-
ment Environment (IDE), then the teens and twenties appear
to be the era of the Computational Notebook. The growth in
popularity of notebook programming coincides largely with
the democratization of software development, considering
concerted advances in school-age computer science as well
as increasing emphasis on end-user software engineering.
It seems that novices and non-specialist developers are the
principal audience for computational notebooks. One still
meets some die-hard, traditionalist, software developers who
have ‘never heard of Jupyter’ and scoff at the idea of ‘coding
in an HTML textbox.’ However, a trivial crawl of GitHub
Onward! ’20, November 18–20, 2020, Virtual, USA
© 2020 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Proceedings of the 2020 ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software (Onward!
’20), November 18–20, 2020, Virtual, USA, https://doi.org/10.1145/3426428.
3426924.

shows around 10 million notebooks have been checked in
[19] over the past decade.

Given that a large number of people are engaged in note-
book programming, many of whom may have never expe-
rienced other source code development modalities, These
people may not know very much about software engineering
and have never seen better source code preparation systems.
How can we characterize the ‘state of the notebook’ and
consider ways to improve it? These are the key motivations
underlying this paper.

Computational notebook programming has its origins in
Knuth’s notion of literate programming [12] in which docu-
mentation and source code are seamlessly interleaved in a
single textual entity that may have multiple views or inter-
pretations.

Software development with interactive notebooks differs
significantly from standard coding practice. Notebooks re-
side in a browser-based coding environmentwith no complex
installation steps required. Typical notebook frameworks fea-
ture direct integration with popular languages and libraries,
avoiding the overheads of user package management and
dependency resolution.
An interactive notebook provides rich inline textual and

graphical commentary on the code, interwoven with the
source code itself. Further, the output of source code execu-
tion is immediately visible in the same inline representation,
by means of live code and interactive interpretation.

1.1 Autoethnography Disclaimer
Where did this paper come from? The research method is
largely autoethnographic [2] based on three kinds of per-
sonal experience.

1. I have a range of individual interactions with notebook
programming in various incarnations of the Jupyter
framework over the past few years, particularly in the
context of university learning and teaching.

2. I was involved in the development and deployment of a
beginner-friendly hosted notebook development envi-
ronment called ErysNotes, used for practical exercises
in a massive open online course ‘Getting Started with
Teaching Data Science in Schools’ which commenced
in April 20201.

3. I have initiated a series of useful workshop discussions
titled ‘Notebook Programming Considered Harmful?’

1 https://www.futurelearn.com/courses/teaching-data-science

https://doi.org/10.1145/3426428.3426924
https://doi.org/10.1145/3426428.3426924
https://doi.org/10.1145/3426428.3426924
https://doi.org/10.1145/3426428.3426924
https://www.futurelearn.com/courses/teaching-data-science


Onward! ’20, November 18–20, 2020, Virtual, USA Jeremy Singer

This conversation commenced with colleagues within
my institution, and later spread to national level, about
the relative merits of notebook programming.

Drawing on these activities, this paper encapsulates the
arguments and points out some potential directions for im-
provement.

1.2 Contributions
This paper makes the following original contributions in the
field of computational notebook research and development:

1. It provides a syntactic definition of notebooks, viewed
from both client and server perspectives.

2. It identifies a number of issues with the current state-
of-the-art in notebook programming.

3. It outlines promising avenues for future enhancements
in the notebook programming model, including sup-
port for modularity, versioning, distribution, and in-
trospection.

2 Popularity of Notebooks
Notebooks are universally popular. There is incontrovertible
evidence for this. For example, the number of notebook files
stored in the GitHub centralized repository is around 10
million (as of Oct 2020) and growing exponentially [19].

In this section, I examine various potential reasons for this
growth in notebook usage.

2.1 Learner Testimony
The appeal of notebooks springs from their apparent simplic-
ity and accessibility [29]. The following verbatim quotes are
all taken from online learners participating in our Teaching
Data Science MOOC. These feedback comments were cap-
tured immediately after their initial exposure to interactive
notebook programming in the first week of the course.
In terms of the exploratory, interactive nature of the live

code blocks with instant feedback, learners felt they were
‘playing around’ (two people said this) and ‘having a go.’
Others commented that ‘it was fun’ and ‘made sense to me.’
In terms of the highly structured notebooks with small

code blocks interspersed by small text blocks, one learner
said they ‘do really like the simplicity.’ Another felt the exer-
cise was ‘very interactive yet supportive at the same time.’
A further participant stated, ‘I like the way you explained
what would happen in each section.’

2.2 Channelling Zeitgeist
Notebook programming appropriately fits contemporary
coding practice. Programmers hunt for useful code snippets
via highly specialized online search. This ‘stack overflow
mentality’ which leads to ‘cut-n-paste coding’ is increasingly
common [3, 28]. It is a natural tendancy in the era of post-
modern programming [18].

The notebook format—small cells containing inline code,
output, and explanatory rich text scaffolding—lends itself to
code borrowing and sharing in an exploratory, interactive
manner. Further, notebooks are a highly shareable format,
particularly with the nbviewer tool enabling a notebook to
be exported as a HTML document.
Notebook programming involves browser-based interac-

tions. In that sense, notebook development is platform ag-
nostic, tapping into the Bring Your Own Device trend for
the different kinds of developers. The next section identifies
where these developers come from.

2.3 Diverse Audience Appeal
While computational notebook usage is widespread, there
appear to be three concentrated domains where notebooks
are particularly prevalent.

2.3.1 NoviceDevelopers. Inexperienced coders generally
appreciate the exploratory nature of interactive interpreters
or read-eval-print-loop (REPL) systems. The notebook is one
step up from that in terms of its structure, but it retains the
immediate feedback of a REPL. Well-designed notebooks are
effectively interactive textbooks for learners.

Typical notebook environments for beginners require min-
imal client-side toolchain installation or they use a hosted
solution with no client-side requirements apart from a web
browser. The familiar browser interface also helps reassure
novices.

One learner from our Teaching Data Science MOOC, who
had never encountered notebooks before, commented: ‘What
a wonderful intro into data science and Jupyter Notebook. I
still love these independent cells. Smart ;)’

2.3.2 Scientific End-userDevelopers. End-user software
developers [13] who work in scientific research [27] are the
original intended audience for Jupyter [11]. For such scien-
tists, their code is not the primary output. They care more
about the results of the analysis. However code is necessary
so a computational notebook acts as a reporting tool, much
like a lab notebook [26].
Reproducibility is a key goal in scientific research. Com-

putational notebooks facilitate reproducible experiments
[21, 23].

2.3.3 Data Scientists. Professional data scientists are in-
tensive ‘power users’ of notebooks [10, 20]. The interactive
nature, coupled with convenient integration to standard li-
braries, enables efficient exploratory data analysis.

3 History of Notebooks
The importance of lab notebooks as a permanent scientific
record is increasingly recognized [7]. There is a slow progres-
sion towards electronic lab notebooks in traditional sciences
[8]. This trend is more rapid in information sciences [26].



Notes on Notebooks: Is Jupyter the Bringer of Jollity? Onward! ’20, November 18–20, 2020, Virtual, USA

Figure 1. Architecture of the Jupyter Notebooks system

The concept of literate programming was introduced by
Knuth to combine source code and rich textual commentary
into a single coherent document [12]. The REPL facility, for
interactive interpretive execution with inline execution feed-
back, was pioneered in LISP [16] with the eval function.
Computational notebooks blend both these notions by pro-
viding interactive code execution with interleaved output,
in context of a richly annotated text document.

The proprietaryMathematica package introduced the com-
putational notebook in 1988; this has since evolved into the
online Wolfram Computational Notebooks system2.

Notebook-based data analysis is supported in R, with sys-
tems like Sweave [15] and knitr [30].

Currently, themost popular notebook framework is Jupyter
[11]. This system supports a massive range of languages,
using a pluggable kernel framework for language interpreta-
tion. Jupyter is a distributed system:

• the client operates in a web browser, rendering the
notebook and capturing user interaction

• the server is integrated as a web server host, serving
data to one or more clients

• the kernel is responsible for interactive program ex-
ecution, it runs on the server and accumulates state
for each client (e.g. defined variables and dynamically
allocated in-memory data structures)

• the filestore saves notebook files as persistent JSON
records, which are stored on the server but can be
downloaded by the client

Figure 1 gives a schematic overview of the Jupyter system.
Jupyter is available for users to install locally, inwhich case

the client and the server are the samemachine. Commercially

2 https://www.wolfram.com/notebooks/

hosted versions of Jupyter are commonplace: these include
Binder3, Google’s Colab4 and the Noteable system 5.

Our notebook programming course, Getting Started with
Teaching Data Science in Schools, was aimed primarily at
novice coders. We felt that the meandering menu system
of Jupyter was unsuitable (cf. Figure 2) as were some of its
code execution features. We chose to implement a cut-down
hosted notebook execution framework called ErysNotes6.

4 Abstract Description of Notebooks
In this section, we intend to capture the inherent charac-
teristics of interactive notebooks. Section 4.1 describes a
characterization of the structure of a static notebook as a
sequence of consecutive cells, visible on the client-side. Sec-
tion 4.2 outlines the dynamic view of a notebook from the
server-side.

4.1 Notebook Structure
We consider a notebook to be a linear sequence of cells. The
order of cells is specified, so we cannot denote a notebook by
a set of cells, instead we need to use a list. Alternative note-
book geometries are being explored, such as a spreadsheet-
style, two-dimensional grid of cells [17]. However, we restrict
attention to one-dimensional notebooks for now.

Each cell has a specific type, which is either code or mark-
down. A code cell contains source code in a specified pro-
gramming language. A code cell optionally has output as-
sociated with it, if it has been executed and the execution
caused a visible side-effect (such as a print statement). A
markdown cell contains text that can be rendered by a mark-
down formatter. Figure 3 presents a context-free grammar
to express this linear sequence of cells in a notebook.
A Jupyter notebook is encoded as a JSON data structure.

Further cell metadata may be captured, such as the number of
times each code cell has been executed. Notebook metadata
including the source language and version number are stored
as key/value pairs.

This is the static, client-side view of a notebook. The user
may manually edit the structure of the notebook, adding new
cells, rearranging cell order or changing cell type between
code and markdown.

4.2 Dynamic View
When a notebook is executing, it dynamically accumulates
state. A kernel process runs on the server, acting as an in-
teractive interpreter for the client. Execution state builds up
over a sequence of code cell invocations from the notebook.
However this ordering of code cell invocations is arbitrary,

3 https://mybinder.org
4 https://colab.research.google.com
5https://noteable.edina.ac.uk/
6https://github.com/citizendatascience/ErysNotes

https://www.wolfram.com/notebooks/
https://mybinder.org
https://colab.research.google.com
https://noteable.edina.ac.uk/


Onward! ’20, November 18–20, 2020, Virtual, USA Jeremy Singer

Figure 2. Comparison of interface on Jupyter Notebook (left) and ErysNotes (right)

⟨notebook⟩ ::= ⟨cell⟩ *
⟨cell⟩ ::= ⟨codecell⟩ | ⟨textcell⟩

⟨codecell⟩ ::= ⟨codeblock⟩ ⟨outputblock⟩
⟨outputblock⟩ ::= output | ϵ

⟨codeblock⟩ ::= source

⟨textcell⟩ ::= markdown

Figure 3. BNF grammar for static notebook structure as a
sequence of cells

as far as the notebook structure is concerned, since the user
selects cells to execute.

Notebook execution appears to be a sequence of code block
executions, which is simply a series of lines of source code
interpreted consecutively to accumulate program state, con-
sisting of variables, data structures, etc. Observable outputs
such as graphics and print statement results are transmitted
back from the kernel to the server using the standard IPython
messaging protocol7 and then relayed from the server to the
client as HTML for display in output blocks.

When the client is ‘attached’ to a server (more precisely, to
a kernel) then state can be queried by and communicated to
the executing notebook on the client. However this program
state is transient, so when the notebook instance is discon-
nected from the server (perhaps due to a network issue) then
all the underlying runtime state is lost. The notebook is still
visually complete, in terms of output cells previously com-
puted. This output may be persisted by saving the notebook
locally. However once the notebook is disconnected, no fur-
ther incremental execution is possible. When the notebook
is reconnected to the kernel, or reloaded in a new Jupyter
context, execution recommences with an empty runtime
state.

7 https://jupyter-client.readthedocs.io/en/latest/messaging.html

5 Notebook Complexity
This section examines some of the difficulties associated
with notebook programming, particularly in the context
of the Jupyter Notebook framework. I divide complexities
into incidental (Section 5.1) and intrinsic (Section 5.2) and
describe them separately below.

5.1 Incidental Complexities of Notebooks
These presentational worries aremostly caused by the Jupyter
Notebook user interface. Our ErysNotes system bypassed
these complexities in a refactored interface, while preserving
the underlying JSON-based notebook file format.

5.1.1 Cell Execution Order. A key problem with compu-
tational notebooks where source code is split across multiple
cells is that these cells may be executed by the user in an
arbitrary order. A non-linear execution sequence is possible,
including multiple executions of the same, non-idempotent
cell. Although the order of cell execution can sometimes
be inferred from Jupyter (see sequencing labels on left of
executed cells), in the case where multiple cells are executed
multiple times then the execution order is no longer appar-
ent.
Generally, notebook developers follow standard conven-

tions like expecting cells should be executed in sequential
(top-to-bottom) order. In our online course for Teaching Data
Science, we respected this sequential cell execution conven-
tion in all template notebooks for learners, and also ensured
that that all cells had idempotent code so multiple execu-
tions of the same code block would not change the notebook
behaviour.
It seems that other educators adopt similar self-imposed

constraints on their notebooks. For instance, one colleague
told me: ‘I put all the code in a single block to avoid sequenc-
ing issues.’ Another said: ‘I click ’Run all’ when first open a
notebook.’
There is an open issue8 on GitHub for the Jupyter Note-

book project to ‘enforce a top-down order of execution’

8https://github.com/jupyter/notebook/issues/3229

https://jupyter-client.readthedocs.io/en/latest/messaging.html
https://github.com/jupyter/notebook/issues/3229


Notes on Notebooks: Is Jupyter the Bringer of Jollity? Onward! ’20, November 18–20, 2020, Virtual, USA

which imposes the behaviour educators are trying to en-
courage.

Some extensions to Jupyter Notebook support an explicit
dependence graph for cell execution encoded directly into
the notebook structure, providing users with a clear view of
inter-cell dependences [14].
An alternative solution might involve a script manage-

ment system like Proof General [4]. This system handles
interactive execution of scripts for theorem proving, distin-
guishing between code already executed and code remaining
to be executed. It manages the dialogue between a user and
an interactive text-based shell interface, which is entirely
unconstrained in Jupyter at present.

5.1.2 Decoupled Persistence. As outlined in Section 4.2,
it is possible for a notebook to be disconnected from a server
kernel, at which point that notebook loses its runtime state.
This occurs when a client is disconnected from a server or
when a notebook file is saved and reloaded in a different
server context.

The confusion arises because outputs from executed code
cells are retained, so a user intuitively (but incorrectly) as-
sumes that any state which generated these outputs is still
available.

Our ErysNotes system incrementally serializes the Python
interpreter kernel state on the server immediately after each
code block execution. Thus the notebook state and the back-
end kernel state are both persisted and synchronized. This
requires unique user identification (we used LTI9) to serve
each user with their own saved notebook and interpreter
state. In the worst case, it means there is lots of duplicated
data on the server. In practice we did not find this to be a
problem: for our beginner course, we had 500 learners and
only 2.3MB of pickled Python state in total across all learner
profiles. Admittedly, all our course notebooks were short
and simple to suit the novice audience.

5.1.3 Schrödinger’s Notebook. The simple operation of
loading and inspecting a notebook has the potential to mod-
ify it. At the very least, it can change OS timestamps on a
file’s access times. More significantly, the notebook metadata
might be updated. Once the user begins to make changes to
the notebook cells, then any rolling back of edits is subject
to the vagaries of the web browser undo facility or check-
pointed saves of the notebook state.

In our ErysNotes system, we implemented a readonly cell
feature, to prevent user editing of fixed cells (instructional
text cells or essential library imports, for instance). Further,
we provided a ‘reset’ button on the toolbar to allow users
to roll back the notebook state to a default ‘clean’ notebook,
which is predefined by the course educator for each notebook
activity.

9 http://www.imsglobal.org/activity/learning-tools-interoperability

5.2 Intrinsic Complexities of Notebooks
In this section, I examine some intrinsic notebook complexi-
ties. Solving these challenges will require more significant
engineering effort. Possibly this is a subjective assessment
on my part, but no satisfactory solutions for these problems
exist to date.
Mature programming language systems must facilitate

appropriate encapsulation, efficient software process inte-
gration and reflective programmatic interaction.

5.2.1 No Modularity. Notebooks support basic scripting
activity, but it is unclear how to grow notebooks to handle
large-scale software engineering projects. Each program is
contained in a single notebook; it is not straightforward to
construct notebooks that contain other notebooks.

The standard programming language approach to building
larger scale systems is modularity. Notebooks might support
modularity, e.g. it is possible to import Python modules into
a Jupyter notebook; however, notebooks cannot be directly
mapped onto Python modules themselves. How can we im-
port one notebook’s code into another notebook? The most
common approach appears to be a copy-and-paste operation
[22]. It is impossible to inherit a notebook, to use object-
oriented parlance, and simply override one part. Instead we
must clone the notebook and modify the required cells in
place.
The key issue is that the notebook is designed to be the

top-level orchestration script for a computation; anything
underneath should be developed and deployed using tradi-
tional code preparation techniques. It’s not fractally recur-
ring notebooks, or ‘notebooks all the way down,’ in terms of
the source code. The notebook contains the top-level script;
currently it is only practical for this purpose.

There are complex workarounds like the ipynb module10
and registering callbacks for Python import hooks11. Neither
is a particularly satisfactory solution.

5.2.2 No Concurrency. The idea that there is a single
thread of execution, with code executing in one place at one
time, is ideal for beginner programmers using notebooks.

In a Jupyter notebook, it is only possible to execute a single
cell at once, or to queue a sequence of cells for consecutive
execution.

What would a distributed system look like when written
as a notebook, or a set of notebooks? Could it be developed
and coordinated easily in a notebook framework?

There are some specialized systems for data parallel com-
puting. For example, ipyparallel12 coordinates a cluster of
indexed kernels to compute Python code on a set of server

10 https://ipynb.readthedocs.io/en/latest/
11 https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/
ImportingNotebooks.html
12 https://ipyparallel.readthedocs.io/en/latest/

http://www.imsglobal.org/activity/learning-tools-interoperability
https://ipynb.readthedocs.io/en/latest/
https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Importing Notebooks.html
https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Importing Notebooks.html
https://ipyparallel.readthedocs.io/en/latest/


Onward! ’20, November 18–20, 2020, Virtual, USA Jeremy Singer

nodes. However, this maps awkwardly onto the single note-
book model.

5.2.3 NoVersioning. Since notebooks are structured JSON
documents, it is difficult to use standard text-based source
code management tools like diff and patch. This difficulty
extends to version control systems like git that operate prin-
cipally on text-based source code artifacts.

Typical advice on git version control for Jupyter [25] seems
simplistic. It involves scrubbing outputs, reverting to HTML
or Python, then saving text files. This is a ‘lowest common
denominator’ approach. There is no version control infor-
mation for Jupyter encoded in notebook metadata.
Specialist tools are coming into play, such as nbdime13.

This supports ‘intelligent’ diffing of notebooks, since it can
show differences in code blocks and highlight differences in
outputs. Is it necessary for every source code processing tool
(e.g. diff, patch) to be ‘ported’ to a version that parses JSON
format explicitly? If this is the case, the tools will be closely
coupled with the notebook format.

A fundamental problem is that text-based check-in of ver-
sions does not fit well with the interactive nature of notebook
development. Users might prefer some kind of sophisticated
checkpointing and rollback, like the time travel feature of
Cocalc14. While there are plugin modules to supply this fa-
cility for Jupyter, none are integrated by default and they are
complex to configure.

5.2.4 No Introspection. In some senses, a HTML docu-
ment with its associated Document Object Model (DOM), is
like a computational notebook. Both HTML documents and
computational notebooks contain interwoven marked up
text and executable source code. The distinguishing feature
of HTML is that Javascript, when executed, can modify the
DOM dynamically. In that sense, the document structure is
exposed to the Javascript, and therefore can be subject to
live programmatic updates.

On the other hand, notebook code—although more visible
than Javascript in a web page—does not have any direct
links between the documentation (markdown cells) and the
source code. There is no dynamic interaction between them.
For instance, there is no way Python code in a notebook
can determine which cell block it belongs to. There is some
limited introspection capability with the inspect module in
Python and the get_ipython method. However these relate
to Python code that has been executed by the kernel, and
do not provide meaningful handles back to the client-side
notebook structure.

Each code block effectively exists in independent isolation.
The kernel on the server is unaware of the overall notebook
structure. Unfortunately this makes the notebooks somehow

13https://nbdime.readthedocs.io/en/stable/
14 https://cocalc.com/doc/jupyter-notebook.html

static and unresponsive. The notebook is not reified at run-
time, so cannot be introspected or updated programmatically.
In the same way as Smalltalk popularized the concept of re-
flective programming [9] we need a meta notebook protocol
to enable reflective programming for Notebooks.
The last resort is to use Jupyter magic directives. This

is a kludge to support specific hard-coded kernel runtime
behaviour. However end-users should never need to resort
to magic; they should be able to accomplish elegant, rich
reflective programming in their source code language of
choice.

6 Related Work
Grus [6] identified some of these shortcomings before me:
notably problems with out-of-order code block execution,
lack of modularity, and lack of version control. These pitfalls
are documented elsewhere [1] but without proposals for
solutions. There are many online blog articles with titles
like ‘Why I don’t like Jupyter Notebooks’ containing similar
arguments.
Pimentel et al [22] report on a study of over 1 million

Jupyter notebook files downloaded from GitHub; they dis-
cover that only 4% of these notebooks generated reproducible
results.

Rule et al [24] report on a different study of over 1 million
Jupyter notebook files downloaded from GitHub; they dis-
cover that only 25% of these notebooks contain explanatory
text cells—the remainder consist entirely of source code and
saved outputs.

Chattopadhyay et al [5] highlight nine ‘pain points’ with
contemporary computational notebook platforms, based on a
rigorous mixed-methods user study. Their user base consists
of expert data scientists with established workflow tech-
niques. The problems identified by the study overlap with
some of our issues, including preservation of state, version-
ing, modularity and distribution of notebook code.

7 Conclusions
We have outlined the ‘state of the notebook’ at present, par-
ticularly focusing on the Jupyter Notebook ecosystem.
We have examined a range of challenges facing compu-

tational notebook users and have pointed out promising
solutions, some of which have commenced in development
already. Note there is no extant solution to the problem of
notebook reflection; there is no meaningful notion of meta
notebook programming. This could be a rewarding area for
future investigation.

Acknowledgments
The online course development associated with this work
was funded by The Data Lab in Scotland. The ErysNotes
systemwas created byNiall Barr at the University of Glasgow.

https://nbdime.readthedocs.io/en/stable/
https://cocalc.com/doc/jupyter-notebook.html


Notes on Notebooks: Is Jupyter the Bringer of Jollity? Onward! ’20, November 18–20, 2020, Virtual, USA

I gratefully acknowledge these and other collaborators who
helped to shape my thoughts on this topic.

References
[1] Aalto Science. 2020. Pitfalls of Jupyter Notebooks. https://scicomp.

aalto.fi/scicomp/jupyter-pitfalls.
[2] Tony E. Adams, Stacy Holman Jones, and Carolyn Ellis. 2015. Au-

toethnography (Understanding Qualitative Research). Oxford University
Press.

[3] L. An, O. Mlouki, F. Khomh, and G. Antoniol. 2017. Stack Overflow: A
code laundering platform?. In 2017 IEEE 24th International Conference
on Software Analysis, Evolution and Reengineering (SANER). 283–293.
https://doi.org/10.1109/SANER.2017.7884629

[4] David Aspinall. 2000. Proof General: A generic tool for proof devel-
opment. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. 38–43. https://doi.org/10.1007/3-
540-46419-0_3

[5] Souti Chattopadhyay, Ishita Prasad, Austin Z. Henley, Anita Sarma,
and Titus Barik. 2020. What’s Wrong with Computational Notebooks?
Pain Points, Needs, and Design Opportunities. In Proceedings of the
2020 CHI Conference on Human Factors in Computing Systems. 1–12.
https://doi.org/10.1145/3313831.3376729

[6] Joel Grus. 2018. I don’t like notebooks. Presentation at JupyterCon,
slides at https://t.co/30peBFwTbv?amp=1.

[7] Frederic Lawrence Holmes, Jürgen Renn, and Hans-Jörg Rheinberger.
2006. Reworking the bench: Research notebooks in the history of science.
Springer.

[8] Samantha Kanza, CerysWilloughby, Nicholas Gibbins, RichardWhitby,
Jeremy Graham Frey, Jana Erjavec, Klemen Zupančič, Matjaž Hren,
and Katarina Kovač. 2017. Electronic lab notebooks: can they replace
paper? Journal of Cheminformatics 9, 1 (2017), 31. https://doi.org/10.
1186/s13321-017-0221-3

[9] Alan C. Kay. 1996. The Early History of Smalltalk. In History of Pro-
gramming Languages—II. 511–598. https://doi.org/10.1145/234286.
1057828

[10] Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E. John,
and Brad A. Myers. 2018. The Story in the Notebook: Exploratory
Data Science Using a Literate Programming Tool. In Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems. 1–11.
https://doi.org/10.1145/3173574.3173748

[11] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E
Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B
Hamrick, Jason Grout, Sylvain Corlay, et al. 2016. Jupyter Notebooks-
a publishing format for reproducible computational workflows. In
ELPUB. 87–90.

[12] Donald Ervin Knuth. 1984. Literate programming. Comput. J. 27, 2
(1984), 97–111. https://doi.org/10.1093/comjnl/27.2.97

[13] Andrew J. Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Mar-
garet Burnett, Martin Erwig, Chris Scaffidi, Joseph Lawrance, Henry
Lieberman, Brad Myers, Mary Beth Rosson, Gregg Rothermel, Mary
Shaw, and Susan Wiedenbeck. 2011. The State of the Art in End-User
Software Engineering. ACM Comput. Surv. 43, 3, Article 21 (2011),

44 pages. https://doi.org/10.1145/1922649.1922658
[14] David Koop and Jay Patel. 2017. Dataflow notebooks: encoding and

tracking dependencies of cells. In 9th USENIX Workshop on the Theory
and Practice of Provenance (TaPP 2017).

[15] Friedrich Leisch. 2002. Sweave: Dynamic generation of statistical
reports using literate data analysis. In Compstat. 575–580. https:
//doi.org/10.1007/978-3-642-57489-4_89

[16] John McCarthy. 1978. History of LISP. SIGPLAN Not. 13, 8 (Aug. 1978),
217–223. https://doi.org/10.1145/960118.808387

[17] Hisham Muhammad. 2019. Userland: creating an integrated dataflow
environment for end-users.

[18] James Noble and Robert Biddle. 2004. Notes on Notes on Postmodern
Programming: Radio Edit. In Companion to the 19th Annual ACM SIG-
PLAN Conference on Object-Oriented Programming Systems, Languages,
and Applications. 112–115. https://doi.org/10.1145/1028664.1028710

[19] Peter Parente. 2014. Estimate of Public Jupyter Notebooks on GitHub.
https://github.com/parente/nbestimate.

[20] Jeffrey M Perkel. 2018. Why Jupyter is data scientists’ computational
notebook of choice. Nature 563, 7732 (2018), 145–147. https://doi.org/
10.1038/d41586-018-07196-1

[21] Stephen R Piccolo andMichael B Frampton. 2016. Tools and techniques
for computational reproducibility. GigaScience 5, 1 (07 2016). https:
//doi.org/10.1186/s13742-016-0135-4

[22] J. F. Pimentel, L. Murta, V. Braganholo, and J. Freire. 2019. A Large-
Scale Study About Quality and Reproducibility of Jupyter Notebooks.
In 2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR). 507–517. https://doi.org/10.1109/MSR.2019.00077

[23] Adam Rule, Amanda Birmingham, Cristal Zuniga, Ilkay Altintas, Shih-
Cheng Huang, Rob Knight, Niema Moshiri, Mai H Nguyen, Sara Brin
Rosenthal, Fernando Pérez, et al. 2019. Ten simple rules for writing and
sharing computational analyses in Jupyter Notebooks. PLoS computa-
tional biology 15, 7 (2019). https://doi.org/10.1371/journal.pcbi.1007007

[24] Adam Rule, Aurélien Tabard, and James D. Hollan. 2018. Exploration
and Explanation in Computational Notebooks. In Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems. 1–12.
https://doi.org/10.1145/3173574.3173606

[25] David Schmüdde. 2019. How to Version Control Jupyter Notebooks.
https://nextjournal.com/schmudde/how-to-version-control-jupyter.

[26] Helen Shen. 2014. Interactive notebooks: Sharing the code. Nature
515, 7525 (2014), 151–152. https://doi.org/10.1038/515151a

[27] James Somers. 2018. The scientific paper is obsolete. The Atlantic
(2018).

[28] B. Vasilescu, V. Filkov, and A. Serebrenik. 2013. StackOverflow and
GitHub: Associations between Software Development and Crowd-
sourced Knowledge. In 2013 International Conference on Social Com-
puting. 188–195. https://doi.org/10.1109/SocialCom.2013.35

[29] Greg Wilson, Fernando Perez, and Peter Norvig. 2014. Teaching Com-
puting with the IPython Notebook (Abstract Only). In Proceedings of
the 45th ACM Technical Symposium on Computer Science Education.
740. https://doi.org/10.1145/2538862.2539011

[30] Yihui Xie. 2013. knitr: A general-purpose Tool for dynamic report
generation in R.

https://scicomp.aalto.fi/scicomp/jupyter-pitfalls
https://scicomp.aalto.fi/scicomp/jupyter-pitfalls
https://doi.org/10.1109/SANER.2017.7884629
https://doi.org/10.1007/3-540-46419-0_3
https://doi.org/10.1007/3-540-46419-0_3
https://doi.org/10.1145/3313831.3376729
https://t.co/30peBFwTbv?amp=1
https://doi.org/10.1186/s13321-017-0221-3
https://doi.org/10.1186/s13321-017-0221-3
https://doi.org/10.1145/234286.1057828
https://doi.org/10.1145/234286.1057828
https://doi.org/10.1145/3173574.3173748
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1145/1922649.1922658
https://doi.org/10.1007/978-3-642-57489-4_89
https://doi.org/10.1007/978-3-642-57489-4_89
https://doi.org/10.1145/960118.808387
https://doi.org/10.1145/1028664.1028710
https://doi.org/10.1038/d41586-018-07196-1
https://doi.org/10.1038/d41586-018-07196-1
https://doi.org/10.1186/s13742-016-0135-4
https://doi.org/10.1186/s13742-016-0135-4
https://doi.org/10.1109/MSR.2019.00077
https://doi.org/10.1371/journal.pcbi.1007007
https://doi.org/10.1145/3173574.3173606
https://nextjournal.com/schmudde/how-to-version-control-jupyter
https://doi.org/10.1038/515151a
https://doi.org/10.1109/SocialCom.2013.35
https://doi.org/10.1145/2538862.2539011

	Abstract
	1 Introduction
	1.1 Autoethnography Disclaimer
	1.2 Contributions

	2 Popularity of Notebooks
	2.1 Learner Testimony
	2.2 Channelling Zeitgeist
	2.3 Diverse Audience Appeal

	3 History of Notebooks
	4 Abstract Description of Notebooks
	4.1 Notebook Structure
	4.2 Dynamic View

	5 Notebook Complexity
	5.1 Incidental Complexities of Notebooks
	5.2 Intrinsic Complexities of Notebooks

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

