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« dynamic memory allocation
requires a runtime heap

* use malloc and free to allocate
and deallocate heap space




* Problems with explicit
deallocation

—torgotten free ()

—double free ()




Automatic Memory Management

* a.k.a. Garbage Collection (GC)

Automatically deallocate a block of
memory when it is no longer reachable

* Reachability is conservative approximation
for liveness




When are objects unreachable?

* use reference counting

* use tracing



GC varieties

generational vs non-generational
moving vs hon-moving
copying vs compacting

stop-the-world vs concurrent



Live demo




Lots of possibilities

* How do you find the best settings for
your system? ... for your application?

1. domain expertise
2. exhaustive searching
3. machine learning




1. Domain Expertise

Java -Xmx12g -XX:MaxPermSize=64M -XX:PermSize=32M-XX:MaxNewSize=2g
-XX:NewSize=1g -XX:SurvivorRatio=128 -XX:+UseParNewGC
-XX:+UseConcMarkSweepGC -XX:MaxTenuringThreshold=0
-XX:CMSInitiatingOccupancyFraction=60 -XX:+CMSParallelRemarkEnabled
-XX:+UseCMSInitatingOccupancyOnly -XX:ParallelGCThreads=12
-XX:LargePageSizeInBytes=256m ...



2. Exhaustive Search

The Taming of the Shrew: Increasing Performance by
Automatic Parameter Tuning for Java Garbage Collectors

Philipp Lengauer Hanspeter Méssenbdck
Christian Doppler Laboratory MEVSS Institute for System Software
Johannes Kepler University Linz, Austria Johannes Kepler University Linz, Austria
philipp.lengauer@jku.at hanspeter.moessenboeck@jku.at
ABSTRACT However, while object allocations produce a direct and

easy to understand performance impact, the costs of garbage
collections are easily overlooked. Programmers are often un-

Garbage collection, if not tuned properly, can considerably
impact application performance. Unfortunately, configur-

* around GC parameters
» search parameter space for

* select configuration



3. Machine Learning

* it we can characterise application
workloads in a general way, we can
correlate these with appropriate GC
configurations

* my ISMM 2007 paper “Intelligent
Selection of Application-Specific Garbage
Collectors”
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Intelligent Selection of Application-Specific Garbage Collectors

Jeremy Singer  Gavin Brown
Ian Watson

University of Manchester, UK
{jsinger,gbrown,iwatson}@cs.man.ac.uk

Abstract

Java program execution times vary greatly with different
garbage collection algorithms. Until now, it has not been
possible to determine the best GC algorithm for a particu-

John Cavazos

University of Edinburgh, UK
jcavazos@inf.ed.ac.uk

1. Introduction
1.1 Importance of GC

In managed runtime environments such as the Java Vir-
tual Machine (JVM) and the Common Language Runtime




Feature vector

characterizes a single Java application

static (e.g. CK metrics, source code
metrics)

dynamic (e.g. object demographics)
VM (e.g. #GCs in reterence collector)



Training Phase

» Build a predictor based on performance
of known benchmarks

» Tournament predictor, a forest of decision
trees



GC5 wins -

GC2 wins J]



Single Decision Tree

dynamic_num_bytes <= 91306040
static_lack_of_cohesion_of_methods <= 5: Gen
static_lack_of_cohesion_of_methods > 5
|dynamic_num_minor_gcs <= 6: NonGen
|dynamic_num_minor_gcs > 6: Gen
dynamic_num_bytes > 91306040
static_lack_of_cohesion_of_methods <= 47371
dynamic_arrays_size_ul28B <= 0.11: Gen
dynamic_arrays_size_ul28B > 0.11
|ratio_curr_to_min_heap <= 15.515152: Gen
|ratio_curr_to_min_heap > 15.515152: NonGen
static_lack_of_cohesion_of_methods > 47371: NonGen




Results

» Mean application speedup of 5% over set
of 20 Java benchmarks.

» Oracle predictor suggested 17% speedup
was possible.



We have characterized a GC/
application interaction using
statistics

Can we understand the interaction
using an analogy?
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The Economics of Garbage Collection

Jeremy Singer Richard Jones Gavin Brown  Mikel Lujan ™
University of Manchester University of Kent University of Manchester
United Kingdom United Kingdom United Kingdom
jsinger@cs.man.ac.uk R.E.Jones@kent.ac.uk

mailto:R.E.Jones@kent.ac.uk

Abstract To the best of our knowledge, this is the first time that economic
theory has been used in the context of automatic memory manage-
ment. There are two main aims to our work. First, we intend to use
economic theory to improve our understanding of memory man-
agement, by identifying parallels between concepts in each domain.

This paper argues that economic theory can improve our under-
standing of memory management. We introduce the allocation
curve, as an analogue of the demand curve from microeconomics.




economic demand curve

Price
(p)

Quantity demanded (q)



GC allocation curve
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Effect of taxation

» product tax shifts demand curve up price
axis



heap size (MB)
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Analogy

» price is like heap size
— cost incurred

 consumer demand is like GC overhead

— direct impact on actual consumer

* tax is like object header size
— hidden overhead on every allocation



Why are analogies helpful?

* you help mel




We have characterized a GC/

application interaction using
statistics

and understood the interaction

using an analogy

— NOW —

Can we control the interaction
using a mathematical model?
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Control Theory for Principled Heap Sizing

David R. White Jeremy Singer Jonathan M. Aitken Richard E. Jones
School of Computing Science Department of Computer Science School of Computing
University of Glasgow University of York University of Kent
{david.r.white,jeremy.singer} @glasgow.ac.uk jonathan.aitken@york.ac.uk r.e.jones@kent.ac.uk
Abstract paging [36]. Setting a large static heap size is an inefficient use of
o . - 7; this should be avoided.
We propose a new, principled approach to adaptive heap sizing memory, . _ )
based on control theory. We review current state-of-the-art heap This paper proposes the use of control theory [24] to adjust heap

sizine mechanisms. as deploved in Jikes RVM and HotSpot. We sizes dynamically. In contrast to existing, heuristic-based tech-
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Figure 3: A closed-loop control system




process: application running in JVM
controlled variable: GC overhead [0, 1]
reference: target GC overhead

— set by user / sysadmin

error: difference between observed
overhead and target overhead

control: heap size
— increase heap size => reduce GC overhead



Mathematical Model: PID

u(t) = K. (e(t) + % /Ot e(t) dt + Ty d;(tt)) +b




Tune to determine parameters

Tuning: bloat gain=10
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Examples of controlled systems
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(a) GC Overhead for DaCapo 2009 pmd
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(d) Heap Size for DaCapo 2009 pmd
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(c) GC Overhead for DaCapo 2009 xalan
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(f) Heap Size for DaCapo 2009 xalan



Heap Size (MB)
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(k) Heap Size for DaCapo 2006 eclipse




Conclusions




Garbage Collectors are
Complex Software Systems

» Possible to characterize them and
control them, using standard techniques

» statistical (machine learning, ISMM
2007)

» mathematical analogy (economics,
ISMM 2010)

» differential equations (control theory,
ISMM 2013)




Concluding Challenge

* | have looked at Garbage Collection

* For the complex software systems you
study, which mathematical abstractions
would be appropriate for characterization

and control?




