14 Universit
of Glasgovvy

Mathematical
Memory Management

Jeremy.Singer@glasgow.ac.uk
@jsinger compsci

« dynamic memory allocation
requires a runtime heap

* use malloc and free to allocate
and deallocate heap space

* Problems with explicit
deallocation

—torgotten free ()

—double free ()

Automatic Memory Management

* a.k.a. Garbage Collection (GC)

Automatically deallocate a block of
memory when it is no longer reachable

* Reachability is conservative approximation
for liveness

When are objects unreachable?

* use reference counting

* use tracing

GC varieties

generational vs non-generational
moving vs hon-moving
copying vs compacting

stop-the-world vs concurrent

Live demo

Lots of possibilities

* How do you find the best settings for
your system? ... for your application?

1. domain expertise
2. exhaustive searching
3. machine learning

1. Domain Expertise

Java -Xmx12g -XX:MaxPermSize=64M -XX:PermSize=32M-XX:MaxNewSize=2g
-XX:NewSize=1g -XX:SurvivorRatio=128 -XX:+UseParNewGC
-XX:+UseConcMarkSweepGC -XX:MaxTenuringThreshold=0
-XX:CMSInitiatingOccupancyFraction=60 -XX:+CMSParallelRemarkEnabled
-XX:+UseCMSInitatingOccupancyOnly -XX:ParallelGCThreads=12
-XX:LargePageSizeInBytes=256m ...

2. Exhaustive Search

The Taming of the Shrew: Increasing Performance by
Automatic Parameter Tuning for Java Garbage Collectors

Philipp Lengauer Hanspeter Méssenbdck
Christian Doppler Laboratory MEVSS Institute for System Software
Johannes Kepler University Linz, Austria Johannes Kepler University Linz, Austria
philipp.lengauer@jku.at hanspeter.moessenboeck@jku.at
ABSTRACT However, while object allocations produce a direct and

easy to understand performance impact, the costs of garbage
collections are easily overlooked. Programmers are often un-

Garbage collection, if not tuned properly, can considerably
impact application performance. Unfortunately, configur-

* around GC parameters
» search parameter space for

* select configuration

3. Machine Learning

* it we can characterise application
workloads in a general way, we can
correlate these with appropriate GC
configurations

* my ISMM 2007 paper “Intelligent
Selection of Application-Specific Garbage
Collectors”

[ISMM 2007/]

Intelligent Selection of Application-Specific Garbage Collectors

Jeremy Singer Gavin Brown
Ian Watson

University of Manchester, UK
{jsinger,gbrown,iwatson}@cs.man.ac.uk

Abstract

Java program execution times vary greatly with different
garbage collection algorithms. Until now, it has not been
possible to determine the best GC algorithm for a particu-

John Cavazos

University of Edinburgh, UK
jcavazos@inf.ed.ac.uk

1. Introduction
1.1 Importance of GC

In managed runtime environments such as the Java Vir-
tual Machine (JVM) and the Common Language Runtime

Feature vector

characterizes a single Java application

static (e.g. CK metrics, source code
metrics)

dynamic (e.g. object demographics)
VM (e.g. #GCs in reterence collector)

Training Phase

» Build a predictor based on performance
of known benchmarks

» Tournament predictor, a forest of decision
trees

GC5 wins -

GC2 wins J]

Single Decision Tree

dynamic_num_bytes <= 91306040
static_lack_of_cohesion_of_methods <= 5: Gen
static_lack_of_cohesion_of_methods > 5
|dynamic_num_minor_gcs <= 6: NonGen
|dynamic_num_minor_gcs > 6: Gen
dynamic_num_bytes > 91306040
static_lack_of_cohesion_of_methods <= 47371
dynamic_arrays_size_ul28B <= 0.11: Gen
dynamic_arrays_size_ul28B > 0.11
|ratio_curr_to_min_heap <= 15.515152: Gen
|ratio_curr_to_min_heap > 15.515152: NonGen
static_lack_of_cohesion_of_methods > 47371: NonGen

Results

» Mean application speedup of 5% over set
of 20 Java benchmarks.

» Oracle predictor suggested 17% speedup
was possible.

We have characterized a GC/
application interaction using
statistics

Can we understand the interaction
using an analogy?

ISMM 2010]

The Economics of Garbage Collection

Jeremy Singer Richard Jones Gavin Brown Mikel Lujan ™
University of Manchester University of Kent University of Manchester
United Kingdom United Kingdom United Kingdom
jsinger@cs.man.ac.uk R.E.Jones@kent.ac.uk

mailto:R.E.Jones@kent.ac.uk

Abstract To the best of our knowledge, this is the first time that economic
theory has been used in the context of automatic memory manage-
ment. There are two main aims to our work. First, we intend to use
economic theory to improve our understanding of memory man-
agement, by identifying parallels between concepts in each domain.

This paper argues that economic theory can improve our under-
standing of memory management. We introduce the allocation
curve, as an analogue of the demand curve from microeconomics.

economic demand curve

Price
(p)

Quantity demanded (q)

GC allocation curve

total
allocation

Heap
size

max livesiz

Number of GCs

heap size (MB)

400
350

300
250 |
200
150
100
50

allocation curve —s—
elasticity @

4

6 8 10 12 14 16 1

number of GCs

(a) antlr

8

elasticity

heap size (MB)

400 _ — t 4
allocation curve —e—

350 | elasticity @ 3
300 | | 5
250 s 1
200 F | o
150 F p
100 | P
50 a

. | ' ' ' -4

10 15 20 25 30

number of GCs

(e) luindex

elasticity

Effect of taxation

» product tax shifts demand curve up price
axis

heap size (MB)

600

large objects —s—
normal objects @

500 L
400 .=
300 :'
200 .-

100 |

0 20 40 60 80 100 120 140
number of GCs

(b) bloat

heap size (MB)

600

500 |
400 I _
300 |
200 |

100

large objects —s—
normal ob]ects 8o

number of GCs

(e) luindex

30

Analogy

» price is like heap size
— cost incurred

 consumer demand is like GC overhead

— direct impact on actual consumer

* tax is like object header size
— hidden overhead on every allocation

Why are analogies helpful?

* you help mel

We have characterized a GC/

application interaction using
statistics

and understood the interaction

using an analogy

— NOW —

Can we control the interaction
using a mathematical model?

ISMM 201 3]

Control Theory for Principled Heap Sizing

David R. White Jeremy Singer Jonathan M. Aitken Richard E. Jones
School of Computing Science Department of Computer Science School of Computing
University of Glasgow University of York University of Kent
{david.r.white,jeremy.singer} @glasgow.ac.uk jonathan.aitken@york.ac.uk r.e.jones@kent.ac.uk
Abstract paging [36]. Setting a large static heap size is an inefficient use of
o . - 7; this should be avoided.
We propose a new, principled approach to adaptive heap sizing memory, . _)
based on control theory. We review current state-of-the-art heap This paper proposes the use of control theory [24] to adjust heap

sizine mechanisms. as deploved in Jikes RVM and HotSpot. We sizes dynamically. In contrast to existing, heuristic-based tech-

Disturbance Disturbance

error

o Y Y
Ref) Input ’+ sngn,a » » _ Controlled
Signal Transducer _® Ll ® ® > Variable
Output
‘

Figure 3: A closed-loop control system

process: application running in JVM
controlled variable: GC overhead [0, 1]
reference: target GC overhead

— set by user / sysadmin

error: difference between observed
overhead and target overhead

control: heap size
— increase heap size => reduce GC overhead

Mathematical Model: PID

u(t) = K. (e(t) + % /Ot e(t) dt + Ty d;(tt)) +b

Tune to determine parameters

Tuning: bloat gain=10

o
0.06 0.08 0.10 g D.12 0.14 0.16 0.18
Ue)

1000 2000 3000 4000 5000

Time {MB)

Examples of controlled systems

© | oo0
o
0
o
<
o
@
o
N
o
- o
o —e ,'
@
] I I |
0 5000 10000 15000
Time (MB)

(a) GC Overhead for DaCapo 2009 pmd

1
15000

0-0° °°
o=
OIO
OOI
8o
OnIO\.I.O
OIO
oo%
%
@0
~-0°
o=¢§
O-g 500
o S0
=0
O =,
2.
oWooo
DL‘O
o] — o
W— 0
Oﬂ& °
@ﬂ.\\\\ 20
O =
O‘ e — o]
o =0
oorb
o o —=®
1 | 1 | |
00S 00 00E 00e 00t

({aw) 0215 deayy

Time (MB)

(d) Heap Size for DaCapo 2009 pmd

0.05
|

0.04
Lo

0.03
1

0.02
]

0 2000 4000 6000 8000 10000 12000

Time (MB)

(c) GC Overhead for DaCapo 2009 xalan

(awW) 8215 desy

T
oSt

T
OOL

0§

4000 6000 8000 10000 12000

2000

Time (MB)

(f) Heap Size for DaCapo 2009 xalan

Heap Size (MB)

§- 000 WO o
| o |
= 1 o/\o o
g 7 / o ’o
. I /\ I\ .3
OO S0
(- red
0 \
‘8’- r | % o \OQ)OO c:/ © %
Oo © é} o] \ \/ °
o
§- ol % © | @
2 ol ®
o
8 4 o
J
|
0 5000 10000 15000
Time (MB)

(k) Heap Size for DaCapo 2006 eclipse

Conclusions

Garbage Collectors are
Complex Software Systems

» Possible to characterize them and
control them, using standard techniques

» statistical (machine learning, ISMM
2007)

» mathematical analogy (economics,
ISMM 2010)

» differential equations (control theory,
ISMM 2013)

Concluding Challenge

* | have looked at Garbage Collection

* For the complex software systems you
study, which mathematical abstractions
would be appropriate for characterization

and control?

