
Secure Scripting with CHERIoT MicroPython
Duncan Lowther
University of Glasgow

Glasgow, United Kingdom
duncan.lowther@glasgow.ac.uk

Dejice Jacob
University of Glasgow

Glasgow, United Kingdom
dejice.jacob@glasgow.ac.uk

Jacob Trevor
University of Glasgow

Glasgow, United Kingdom
j.trevor.1@research.gla.ac.uk

Jeremy Singer
University of Glasgow

Glasgow, United Kingdom
jeremy.singer@glasgow.ac.uk

Abstract
The lean MicroPython runtime is a widely adopted high-
level programming framework for embeddedmicrocontroller
systems. However, the existing MicroPython codebase has
limited security features, rendering it a fundamentally inse-
cure runtime environment. This is a critical problem, given
the growing deployment of highly interconnected IoT sys-
tems on which society depends. Malicious actors seek to
compromise such embedded infrastructure, using sophisti-
cated attack vectors. We have implemented a novel variant of
MicroPython, adding support for runtime security features
provided in the CHERI RISC-V architecture as instantiated by
the CHERIoT-RTOS system. Our new MicroPython port sup-
ports hardware-enabled spatial memory safety, mitigating a
large set of common runtime memory attacks. We have also
compartmentalized the MicroPython runtime, to prevent
untrusted code from elevating its permissions and taking
control of the entire system.We perform amulti-faceted eval-
uation of our work, involving a qualitative security-focused
case study and a quantitative performance analysis. The case
study explores the full set of five publicly reported MicroPy-
thon vulnerabilities (CVEs). We demonstrate that the en-
hanced security provided by CHERIoTMicroPythonmitigate
two heap buffer overflow CVEs. Our performance analysis
shows a geometric mean runtime overhead of 48% for secure
execution across a set of ten standard Python benchmarks,
although we argue this is indicative of worst-case overhead
on our prototype platform and a realistic deployment over-
head would be significantly lower. This work opens up a new,
secure-by-design approach to IoT application development.

CCS Concepts: • Software and its engineering→ Inter-
preters; Runtime environments; • Security and privacy
→ Embedded systems security.

ACM Reference Format:
Duncan Lowther, Dejice Jacob, Jacob Trevor, and Jeremy Singer.
2025. Secure Scripting with CHERIoT MicroPython. In Proceedings
of the 34th ACM SIGPLAN International Conference on Compiler Con-
struction (CC ’25), March 1–2, 2025, Las Vegas, NV, USA. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3708493.3712694

1 Introduction
There are billions of commodity IoT devices deployed in the
field. In order to make IoT system prototyping and devel-
opment more accessible, many embedded systems support
the MicroPython variant of the Python language. It is a user-
friendly, cut-down, bytecode interpretive implementation of
Python. The MicroPython virtual machine (VM) is designed
primarily for execution on resource-constrained target de-
vices. MicroPython ships with a range of domain-specific
libraries for IoT applications, such as a lightweight bluetooth
low energy driver (uble).

Numerous high-profile cyber security incidents have demon-
strated the requirement for secure-by-design systems in the
IoT domain [14, 32]. The recently released CHERIoT system
[3, 4] is an IoT solution that incorporates the CHERI [28, 34]
concept of capability-based runtime security via direct hard-
ware support. In this paper, we present our work on adapting
the MicroPython runtime for CHERIoT. The compelling ad-
vantage of this combination is the low-level architectural
support for memory safety in managed execution environ-
ments.

We demonstrate effective use of CHERI hardware features.
Specifically, we leverage the spatial memory safety prop-
erties of capabilities to mitigate CVE-2023-7158 [21] and
CVE-2024-8948 [22]. Our MicroPython port also makes use
of the lightweight compartmentalization facilities of CHERI
capabilities, to mitigate library-based software supply chain
vulnerabilities. Compartments mitigate against vulnerabil-
ities by reducing the attack surface reduction as well as
limiting the damage from an exploit.
While we acknowledge that CHERI performance bench-

marking is particularly fraught with difficulty [29], we feel it
is important to present wallclock execution time results. We
compare the CHERIoT RISC-V based Sonata board with a
non-CHERI 32-bit embedded RISC-V configuration running
on the same reconfigurable board.We report a 48% geometric
mean performance overhead compared to the non-CHERI
RISC-V when executing standard MicroPython benchmarks
from its benchmark suite. We argue this is a high-watermark
overhead score, given that the non-CHERI interpreter is run-
ning on bare-metal rather than an RTOS. In addition to this,

https://orcid.org/0009-0004-9310-8092
https://orcid.org/0000-0002-4137-0353
https://orcid.org/0009-0009-8819-0374
https://orcid.org/0000-0001-9462-6802
https://doi.org/10.1145/3708493.3712694

CC ’25, March 1–2, 2025, Las Vegas, NV, USA Duncan Lowther, Dejice Jacob, Jacob Trevor, and Jeremy Singer

the FPGA model for CHERIoT on Sonata is continually be-
ing improved and optimized. The performance evaluation
indicates significant potential for CHERI to be incorporated
in typical IoT platforms.

Our work follows a case study based methodology, with a
multi-faceted exploration of the complexity of CHERI adop-
tion in a real-world scenario. Specifically, we seek to address
the following three research questions in a qualitative man-
ner:

• RQ1: Is the CHERIoT-RTOS software ecosystem an ap-
propriate environment for developing and deploying a
lean programming language interpreter like MicroPy-
thon?

• RQ2: Does the security afforded by the capability
model of CHERIoT-RTOS mitigate any vulnerabili-
ties of the MicroPython interpreter within a standard
threat model scenario?

• RQ3: How does the Arm Morello system compare
with the RISC-V CHERIoT system, in terms of two
deployment platforms at high technology readiness
levels (TRLs) that support the CHERI concept?

2 Technical Background
2.1 CHERI
Capability Hardware Enhanced RISC Instructions (CHERI)
is an extension for conventional processor architectures that
enables memory safe program execution. The key charac-
teristic of CHERI is the extension of pointer values into
capabilities, which are unforgeable fat pointers containing
runtime metadata including bounds, permissions and object
type. Each capability is tagged with a one-bit validity tag that
enforces capability monotonicity. This ensures that valid ca-
pabilities can only be derived from pre-existing capabilities,
transitively depending on the initial ‘root’ capability owned
by the initial OS process at boot time. CHERI monotonicity
enforcement ensures that derived capabilities constructed
by user code can only possess permissions or bounds that
do not exceed those of the source capability.

CHERI capabilities are generally sized as 2𝑛+1 bits, where
𝑛 is the length of an architectural word. The additional bit
is used for the validity tag which is stored out-of-band. The
validity tag is maintained by the architecture and not directly
addressable by user code. The 𝑛-bit pointer is stored in the
first 𝑛 bits of a capability value, and the associated metadata
(bounds, permissions, object type) are stored in a compressed
format in the second 𝑛 bits of the capability [33].
Practical instantiations of the CHERI concept in realistic

architectures include a variant of MIPS (now deprecated),
Arm and RISC-V [31]. These generally work on 64-bit archi-
tectures with 129-bit compressed capabilities. CHERI mod-
els also run under emulation (generally using QEMU) and
on FPGA hardware. The most prevalent high-performance
CHERI implementation is the Arm Morello platform [11],

which is a server-class quad-core 2.5GHz AArch64 processor.
The Morello platform runs commodity OSs including CHERI
variants of FreeBSD and Linux [26].

2.2 CHERIoT
CHERIoT [3, 4] is a variant of the CHERI micro-architectural
extension, specialized for embedded hardware devices. The
major adaptation is a scaling down to a 32-bit RISC-V em-
bedded platform, with 65-bit capabilities (cf. 128-bit CHERI
capabilities in Morello).
CHERIoT is instantiated as an adaptation of the 32-bit

RISC-V Ibex microcontroller core. The CHERIoT version im-
plements capability extensions in addition to the standard
RV32EMCB instruction set. The 65-bit capability format used
by CHERIoT imposes greater constraints on metadata com-
pared to architectures with 129-bit capabilities. In particular,
the capability offset is always non-negative: if the address
value in the capability drops below the base address, its valid-
ity tag is immediately cleared with no ‘buffer’. Permissions
are also not ‘free’ bitflags but are linked to allow compres-
sion to 6 bits and W^X is architecturally enforced. The object
type bitfield is only 3 bits wide, supporting a maximum 8
distinct object types. CHERIoT also supports tight control
for software compartments.
CHERIoT has been co-designed with a prototype real-

time operating system (CHERIoT RTOS) which provides a
minimal trusted computing base (TCB). The TCB includes
four main components:

1. the loader, which executes initially and configures ca-
pabilities for the rest of the system

2. the context switcher, for switching between threads
(units of compute) and compartments (units of data)

3. the allocator, which allocates runtime memory from a
shared global heap

4. the scheduler, which chooses the next runnable thread

Other components are adapted from open source code,
e.g. FreeRTOS network stack. User applications are compiled
and statically linked with CHERIoT RTOS, using a custom
Clang/LLVM toolchain and an Xmake build configuration.
This is the workflow we use to deploy our MicroPython
interpreter on CHERIoT RTOS, (Section 4).

2.3 Sonata
The Sonata system [16], shown in Figure 1, is a low-cost
microcontroller board featuring a CHERIoT Ibex RISC-VCPU
implemented as an FPGA soft-core. The system features an
extensive range of peripherals including I2C, SPI, GPIO, and
USB. The soft-core is clocked at 30 MHz. It is a 32-bit RISC-V
(RV32EMCB) processor with CHERI extensions for hardware
capability support (65-bit capabilities).
The main goal of Sonata is to be an evaluation board, to

enable embedded systems developers to explore the utility

Secure Scripting with CHERIoT MicroPython CC ’25, March 1–2, 2025, Las Vegas, NV, USA

Figure 1. Sonata development board for CHERIoT

of CHERI in various application contexts. The Sonata micro-
controller board is a deliverable from the Sunburst project
[17] funded by UKRI as part of the Digital Security by Design
(DSbD) programme.

2.4 MicroPython
MicroPython compiles Python source code into a bytecode
representation which is executed with a runtime interpreter.
The system includes a number of core libraries to enable well
known Python modules to be utilised in embedded applica-
tions. MicroPython is primarily intended to target a wide
range of microcontrollers including ESP32, Arm Cortex-M,
and Arduino. There is also a Unix process variant of MicroPy-
thon, which has been adapted for CHERI in prior work on
the 64-bit Arm Morello platform [18, 19], featuring spatial
memory safety enforced by tight bounds.

MicroPython is implemented in C, with the codebase hav-
ing around 750 kSLoC in total. However, the core bytecode
interpreter is only 50 kSLoC with the remainder of the code-
base comprising library implementation code and platform-
specific porting code.

3 Threat Model
In a microcontroller environment with direct physical ad-
dressing, there is no hardwarememory protection of the kind
generally provided in a high-level OS with virtual memory.
For this reason, spatial memory safety via bounds-checked
capabilities is an important security feature. CHERIoT’s low-
overhead compartmentalization can ensure separation be-
tween mutually distrusting application components.

To assess the effectiveness of CHERI features in our threat
model, we need to define an attacker’s methods that can be
used against the target system, along with potential knowl-
edge and resources the attacker has at their disposal.

We are working with a high-level memory safe program-
ming language (i.e. Python) executed by a relatively mature
open-source interpretive runtime (i.e. MicroPython). We as-
sume that an attacker is able to:

• inspect, but not modify, the MicroPython source code
with a view to identifying potential vulnerabilities.

• provide arbitrary Python code to be interpreted in
MicroPython.

• provide compromised C libraries (either at build time
for static linkage or at execution time for dynamic
linkage).

We anticipate possible threat vectors will include:
• exploitation of known security vulnerabilities, such as
publicly disclosed Common Vulnerabilities and Expo-
sures (CVEs) in the MicroPython codebase.

• manipulation of low-level memory using the MicroPy-
thon uctypes raw memory interface.

• manipulation of low-level memory via external C li-
brary code.

In the remainder of this paper, we aim to show that our
CHERIoT MicroPython runtime incorporates mitigations
against these particular threat vectors.

4 CHERIoT Modifications to MicroPython
In this section, we briefly describe the source code changes
that were required to build and execute MicroPython on the
CHERIoT RTOS platform.

4.1 Build System Integration
MicroPython utilizes a moderately complex GNUMake build
system to compile various ports and modules. This allows
the build system to separate various porting efforts and op-
tionally include modules into the MicroPython image file.
However, CHERIoT-RTOS uses Xmake [2], a Lua-based cross-
platform build system that generates build files to be invoked
by native build systems such as Make and Ninja.

IntegratingMicroPython’s build systemwith the CHERIoT-
RTOS build systems involved substantial re-engineering
work. Our pragmatic solution was to invoke CHERIoT’s
XMake build system from the MicroPython Make based
build system after mapping the various VM components
into compartments. The MicroPython build system compiles
the sources of MicroPython to object files and maps them
to their designated compartments. A declarative xmake.lua
build script with directives to link MicroPython object files
along with CHERI-RTOS object files into a single software
image is auto-generated from templates and invoked from
the MicroPython build system.

The schematic in Figure 2 illustrates this workflow. Note
that there are two separate processes: the FPGA softcore
deployment (on the right hand side, which is unmodified) and
the CHERIoT-RTOS and MicroPython deployment, (on the
left hand side, as described above). There are some limitations
with this approach, e.g. the build CFLAGS setting needs to be
pulled manually from Xmake and the board descriptions and
then injected into the Makefile.
There are a few other minor modifications to the build

process. For instance, we need to add the CHERIoT header
file cheriintrin.h to enable usage of CHERI intrinsics in

CC ’25, March 1–2, 2025, Las Vegas, NV, USA Duncan Lowther, Dejice Jacob, Jacob Trevor, and Jeremy Singer

`

C Source
Files

Object files

Compile
with

CHERIoT
LLVM

xmake.lua.top

xmake.lua.bottom

MicroPython
ELF

MicroPython
port code

C Source
Files

CHERIoT
RTOS

MicroPython
uf2

xmake.lua

top fragment

bottom fragment

list of generated
object file names

and compartments

uf2conv

build with
xmake

System
Verilog

Source Files

Sonata
System

Bitstream

Synthesis

Bootloader

list into

Figure 2. Build workflow for MicroPython on CHERIoT RTOS. The left hand side shows MicroPython source code compilation
and integration with the CHERIoT RTOS build process. A software UF2 image which can be flashed to the pre-configured
Sonata FPGA is generated. The right hand side shows how the Sonata/CHERIoT RTL is synthesized to an FPGA bitstream for
deployment on the FPGA.

our MicroPython codebase. We also need to add custom
inline assembler blocks for MicroPython non-local returns
(NLR). Finally, a C++ ‘interface’ file is required to call RTOS
APIs from our C codebase.

4.2 Global/Local Memory Segregation
CHERI capabilities without global permissions are called
local capabilities. These are written into memory through a
capability that holds the store_local permission. CHERIoT
uses the store_local permission to write to stacks and
the register-save area. CHERIoT enforces a strict global
⊕ store_local permission invariant on writes to different
areas of memory. MicroPython’s NLR-based exception mech-
anism (c.f. setjmp/longjmp(3) buffers on POSIX) are allocated
on the stack because an NLR jump is only valid if it targets a
buffer whose parent function has not yet returned. The NLR
mechanism must faithfully store the stack pointer, which is
a local capability, as well as two saved registers which may
or may not contain local capabilities.

Active NLR buffers are stored as a linked list. Each NLR
buffer also holds a pointer to the previous buffer which can be
legally accessed via local capabilities as all of these are local.
However, MicroPython stores the head of NLR buffer linked-
list in a member of the mp_state_thread_t struct, which
is declared as a global variable for the main thread. Stores
using this variable causes an exception on CHERIoT due to
the lack of a store_local permission for global variables.
Local capabilities may only be stored in registers or on

the stack. Resolution of this issue is difficult due to the strict
enforcement of the permissions invariant by CHERIoT hard-
ware. One workaround at the level of CHERI-C source code
would require every MicroPython C function that can take
an exception to be refactored to accept thread-state context
as an argument.

Instead, we take advantage of the CHERIoT compiler leav-
ing register c4 (aka ctp) untouched. In the standard RISC-V
ABI this is the thread-locals pointer. However, thread-local
variables are not be supported by CHERIoT RTOS. On entry
into theMicroPythonVMcompartment, an mp_state_thread_t

Secure Scripting with CHERIoT MicroPython CC ’25, March 1–2, 2025, Las Vegas, NV, USA

mp_hal_xxx

heap_allocate
heap_free

token_sealed_unsealed_alloc

Micropy VM
(mp_vm)

mp_vminit
mp_exec_xxx
mp_xxx_repl
mp_vmexit

...

(User compartments
may also call HAL

functions if needed)

(Direct to memory-
mapped registers)

HAL
(mp_hal)

CHERIoT
RTOS

Allocator
MMIO regions

User
compartment(s)
(e.g., main)

Figure 3. Relationship between compartments. Arrows rep-
resent cross-compartment function calls mediated by the
CHERIoT RTOS compartment switcher (not shown). Every-
thing above the dotted line is in ‘userspace’, below the line
is the RTOS itself.

struct is allocated on the stack. A pointer to this struct is
stored in ctp. As this register is otherwise unused, it remains
accessible throughout MicroPython execution. However, this
register is zeroed by CHERIoT RTOS on return from any
cross-compartment call. Correct usage of this register would
require its contents to be spilled to the stack before any calls
out of the VM compartment. This is achieved with prepro-
cessor macros resolving to inline assembly.

There were a few other places where the global/store local
restrictions required refactoring. However, in these cases it
was possible to simply allocate the objects on the heap or
declare them as globals.

4.3 Compartmentalization
One of the key principles of CHERIoT is compartmentaliza-
tion. As isolation between compartments is strongly enforced
by the CHERI hardware, the compartmentalization scheme
is an important design consideration. Division of various VM
components into compartments is complicated because Mi-
croPython was designed to be a tightly coupled monolithic
VM. For example, every Python object (with the exception
of ‘unboxed’ objects like small integers) contain a pointer
to a ‘type’ object. These Python ‘type’ objects themselves
contain several function pointers which are invoked by the
core VM loop to perform various operations on the object.

Figure 3 shows the current compartmentalized structure of
CHERIoT MicroPython. There are five compartments shown,

with compartment execution and switching managed by the
CHERIoT RTOS compartment switcher. External C libraries
can be isolated as distinct userspace compartments.

To prevent invasive changes to the object structure, two de-
sign optionswere considered. Applying the cheri_ccallback
attribute to function pointers within the ‘object’ type would
allow them to be called across compartments. However, this
would result in a large number of compartment switches
for all objects including core builtin types. In addition to
the overhead, the mp_state_thread_t struct (Section 4.2)
would not be accessible in the callee, preventing exceptions
from being taken. The alternative design choice is to place
the bulk of the VM in a single compartment. This would ne-
cessitate that Python objects are never accessible outside the
VM compartment (although sealed handles for such objects
may be passed in).
Congruently, VM components that do not require access

to ‘object’ internals, such as the hardware access layer (HAL),
are moved to a separate compartment. Ideally the VM com-
partment should always access drivers and peripherals through
the HAL layer and never directly.
The core VM compartment exposes various entry points

to be called from other compartments. The API includes func-
tions to initialise the MicroPython VM, execute Python code
strings or frozen modules, execute Python code interactively
over UART, or call a named Python function with arguments
converted from C/C++ arguments with the return value con-
verted back into a C/C++ object. Each of these entry points
must set up the thread-state structure mentioned above.
Error handling is a major design consideration in the

CHERI compartmentalization model. The design should al-
low a compartment to react to CHERI capability faults occur-
ring within the compartment. In addition, the error handler
should also be able to handle a ‘forced unwind’ due to a capa-
bility fault in a callee function in another compartment that
fails to handle its own fault. To allow for flexible handling of
such exceptions, it is converted to a Python Exception. This
is done by setting the setting the frame pcc to nlr_jump().
As this function never returns normally, the immediate state
of the faulting function is not a concern.
If there are no active NLR buffers when an Python ex-

ception occurs, a forced unwind is appropriate. However, a
forced unwind cannot be directly triggered except within the
compartment error handler itself. (The nlr_jump() is not
part of the error handler – it is installed by the error handler
returning, or invoked directly when an exception is raised).
The error handler can be intentionally triggered in a number
of ways, (e.g. by executing the EBREAK instruction). In each
case, the error handler needs to differentiate and trigger a
forced-unwind instead of installing the nlr_jump() context
in this case.
The garbage collector (GC) needs to be able to scan ev-

ery thread stack in the VM compartment. On non-CHERI
systems this is trivial in the single-threaded case and on

CC ’25, March 1–2, 2025, Las Vegas, NV, USA Duncan Lowther, Dejice Jacob, Jacob Trevor, and Jeremy Singer

multi-threaded systems involves signalling other threads to
scan their stacks. While CHERIoT does provide a mechanism
to interrupt other threads, it is limited to threads within the
same compartment. In the presence of any calls out of the
VM compartment, the GC can only be implemented in a de-
sign that uses a single thread in a compartment called from
the VM compartment.
The compartmentalization model can be extended to a

design where the VM is ‘owned/called from’ another com-
partment or one where multiple non-interfering VMs can
run. To aid this, all VM global state (largely consisting of
two structures, mp_state_vm_t and mp_state_mem_t) from
global variables into a dynamically allocated VM context
structure. The mp_vm_init() function creates this context
structure and returns a sealed capability handle to it. All
other entry points taking the context handle as an argu-
ment is internally unsealed and stored in the thread-state
structure for use throughout the compartment. Each VM
context is entirely separate, so it is not a violation of the
single-threading constraint for two threads to be executing
in the VM compartment concurrently when using different
VM contexts.

4.4 Minor Bug Fixes
Our port to CHERIoT RTOS exposed two latent bugs in the
MicroPython codebase, which we were able to identify and
fix.

1. The nlr_push function requires a return-twice at-
tribute

2. The mp_quicksort function has an out-of-bounds pointer,
which results in undefined behaviour. This is caught
by CHERIoT since the capability value becomes invalid
when it is taken out of bounds.

4.5 Peripheral Support
Development boards running MicroPython generally sup-
port a wide range of low-level protocols, for interfacing with
external hardware components. The Sonata board is par-
ticularly well-equipped—given its status as a demonstrator
platform, it has a much richer set of connectors than normal.
We added support for GPIO pins, SPI, I2C and UART, all

exposed via standard MicroPython idioms, e.g. machine.Pin
for GPIO, machine.SPI for SPI and machine.I2C for I2C. In
this way, we provide high-level facilities for interfacing with
commodity third party sensors, common breakout boards,
etc.

The key point to note is that, in CHERIoT, such devices are
memory-mapped, and must be addressed by valid capabilities
which are automatically synthesized from the declarative
board specification JSON file which defines the physical
memorymap. Each I/O device block is allocated a 4 KiB range
in the address space. The spatial memory safety property of
CHERI means it is not possible to offset from one I/O block

CVE Bug Severity Mitigated?
2024-8948 heap buffer overflow medium yes
2024-8947 use after free medium no
2024-8946 heap buffer overflow high n/a
2023-7158 heap buffer overflow high yes
2023-7152 use after free medium n/a

Table 1. Vulnerabilities mitigated by CHERIoT

into another, to access a different I/O device. The bounded
capabilities prevent this, in the C source code underlying the
MicroPython machine interface.

5 Evaluation
In this section, we describe our multifaceted evaluation,
which includes an assessment of the extent of source code
modifications required to support a CHERIoT MicroPython
port (Section 5.1), a qualitative consideration of real-world
security involving CVE mitigation (Section 5.2), and a quan-
titative performance evaluation across a set of Python bench-
marks (Section 5.3).

5.1 Code Modifications
Our port of MicroPython to CHERIoT-RTOS was based on
the pre-existingMorello port [18, 19]. Many our new changes
involve the addition of target-specific files for the Sonata
board. A simple git diff reports 2455 additional and 190
deleted lines of code, relative to the Morello port.
The ports/cheriot-rtos directory contains the major-

ity of changes, specifically 23 new files comprising 2134 new
source lines of code (SLoC). This is a relatively small port
for MicroPython. By way of comparison, the ESP32 port di-
rectory contains 17.5 kSLoC and the STM32 port contains
99.6 kSLoC. One key consideration for CHERIoT is that the
binary object file for the interpreter along with memory al-
located for heap space is constrained to fit within the 256
KiB internal SRAM, limiting the MicroPython libraries and
features that can be supported.

5.2 Security Mitigation
To assess the security of MicroPython on CHERIoT RTOS, we
deploy relevant memory related vulnerabilities reported for
MicroPython (Table 1) and check if CHERI features mitigate
against their exploitation. We analyze two specific vulnera-
bilities, CVE-2023-7158 [21] and CVE-2024-8948 [22].

CVE-2023-7158 [21], classified as ‘critical’, is a heap buffer
overflow bug in MicroPython. A minimum working exam-
ple of Python code to exploit this vulnerability is shown in
Listing 4. The underlying issue is that the indices function
expects an integer value but we pass in a floating point value.
The indices function checks to see if the bitpattern it re-
ceives is an unboxed small integer (i.e. an integer encoded
directly in a pointer field). If not, it assumes the value is a

Secure Scripting with CHERIoT MicroPython CC ’25, March 1–2, 2025, Las Vegas, NV, USA

class A:

def __getitem__(self , idx):

return idx

print(A()[:]. indices (.0))

Figure 4. Python code to exploit CVE-2023-7158

boxed integer and dereferences relevant fields in the boxed
integer object type to calculate the integer value. When the
object is a float, it is only 8 bytes long (4 bytes for the type tag
capability and another 4 bytes for the single-precision float
bitpattern). However when we treat it as a boxed integer, we
read values beyond the end of the 8 bytes, since the boxed
integer data structure is longer. Reading past the end of the
allocated object results in a heap buffer overflow.

In CHERIoT MicroPython, this type confusion problem is
indirectly mitigated by the hardware bounds checking. Float-
ing point object capabilities *MP_OBJ_FLOAT have a hard-
coded length of 8 bytes, so any dereference of a value beyond
this upper limit will result in a capability protection error,
causing Python interpretation to halt.
A MicroPython patch has since been issued to address

CVE-2023-7158 [10]. The patch involves an explicit type
check to ensure the parameter supplied to the indices func-
tion is of the appropriate integer type. We observe that the
CHERIoT RTOS version of MicroPython, even without this
mitigation, did not suffer from heap buffer overflow problems
due to the hardware bounds checking.

CVE-2023-8948 [22], is a heap buffer underflow bug. List-
ing 5 shows aminimal working example to trigger the exploit.
When the “big” integer is converted back to bytes, Python
should raise an exception OverflowError. However, execut-
ing the to_bytes() method on the integer caused a heap
buffer underflow and trampled memory.

The underlying cause in this case was a bounds check for
buffer underflow erroneously utilized a “(𝑙𝑒𝑛 < 0)” guard
condition to raise an exception. When the argument passed
to the method is 0, this guard condition was bypassed and
control would eventually pass to a loop copying data starting
at the end of the buffer to the beginning. The Loop terminated
when the pointer used to copy was equal to the buffer start.
In the vulnerable code, the terminating condition used a
pre-decrement operator (*ptr--). When the initial length is
zero, the first pointer underflows causing the exploit.
CHERIoT mitigated against the underflow attack by pro-

tecting against dereferencing memory through an out-of-
bounds capability before any data was leaked. A fix for CVE-
2023-8948 has now been merged into MicroPython [9].

5.3 Performance Characterization
The CHERIoT core implements the CHERI extensions on
a RISC-V RV32E [27] profile. RV32E uses only 16 registers

b = bytes(range (20))

ib = int.from_bytes(b, "big")

print(ib.to_bytes(0, "big"))

Figure 5. Python code to exploit CVE-2023-8948

instead of the 32 registers used by the RV32I instruction set.
As the floating-point registers typically used in an RV32I
CPU have been removed, a soft-float calling convention is
required. Soft-float support is added into the image in the
MicroPython VM. The performance evaluation is performed
on the Sonata board version 0.4. The CPU core is config-
ured to execute at 30 MHz on a Xilinx ARTIX 7TM XC7A50T
FPGA[5].
To understand the overheads incurred by CHERIoT Mi-

croPython, we compare its performance against a baseline
single threaded MicroPython interpreter ported to execute
on a single core RISC-V (RV32E) processor. To ensure that the
hardware is closely matched, the CHERI features are disabled
in the CHERIoT RTL before the FPGA bitstream is loaded
onto the FPGA rather than using a different RISCV R32E im-
plementation. This has the effect of executing loads, stores
and pointer arithmetic using 32-bit integer pointers in the
baseline RV32E platform while the CHERIoT-MicroPython
interpreter uses 64-bit capabilities for the same. The ICache
and SRAM sizes in both instances are maintained at 4 KiB
and 256 KiB respectively.
In the case of the baseline RV32EMicroPython, the inter-

preter loop is executed on bare metal, without the support of
any underlying RTOS. The evaluation utilizes benchmarks
that do not require support from OS-level IO or system calls.
Since both the baseline and CHERIoT MicroPython inter-
preters are single-threaded, any performance overhead mea-
sured would be the upper bound of the differences between
the two instances.

The MicroPython interpreter is compiled with a heap size
of 64 KiB. This was the maximum heap size that could be pro-
vided after the RTOS, MicroPython interpreter core and basic
MicroPython modules required were added to the image.
The largest parameters for each benchmark that would

terminate and finish execution given the constraint of the 64
KiB heap size was chosen. Benchmark results are the arith-
metic mean of 20 iterations. Each iteration was performed
after re-booting the Sonata board to prevent any anomalies
from caching or string interning.

Execution time for each benchmark is measured from the
start of execution of compiled byte-code. The time taken by
the MicroPython compiler to compile code to byte code is
excluded from themeasurements. Only time spent in garbage
collection (GC) during execution of the actual benchmark is
included. Time spent during a final GC phase executed by the
REPL after the benchmark is executed is excluded.We take 20
measurements for each benchmark and record the arithmetic

CC ’25, March 1–2, 2025, Las Vegas, NV, USA Duncan Lowther, Dejice Jacob, Jacob Trevor, and Jeremy Singer

bm_fannkuch
bm_fft

bm_nqueens

bm_pidigits

bm_wordcount

core_locals
core_qstr

core_str
misc_

aes

misc_
pystone

benchmark

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

CH
ER

Io
T

ov
er

he
ad

134 1449

411
363

661 705 155 1348

454 492

MicroPython benchmark execution

Figure 6. Overheads of CHERI execution for MicroPython
benchmarks. Baseline (non-CHERI) interpreter is depicted
as 1.0x. Arithmetic mean absolute execution time for each
benchmark (in ms) is shown at the top of each bar.

mean. Variance is minimal, since there is limited hardware
noise or OS interaction. We report relative performance as
the ratio of the arithmetic means for each benchmark, on the
CHERI and non-CHERI configurations of the Sonata board.

TheMicroPython benchmark suite[1] is amixture of string
manipulation programs along with integer and floating point
numerical computation benchmarks. Amongst the bench-
marks chosen by the benchmark execution suite, fannkuch,
nqueens, pidigits, aes and pystone are integer computa-
tion benchmarks while bm_fft is a floating point computa-
tion benchmark. core_qstr, core_str, core_locals and
wordcount are string manipulation and search benchmarks.

Figure 6 shows the relative performance of CHERIoT –
MicroPython compared to the baseline RV32E baseline. Mea-
sured slowdowns in CHERIoTMicroPython range from 1.35x
(pidigits) to 1.61x (fft). The geometric mean slowdown
across all benchmarks of CHERIoT-MicroPython compared
to the baseline is 1.48x.
Benchmarks for CHERIoT-MicroPython were executed

with software revocation enabled for temporal safety. We
also ran the benchmarks without revocation but there was
minimal observable difference. The worst case was 14 µs
(0.004%) with seven out of ten benchmarks showing a differ-
ence of less that 1 µs (the resolution of our measurements).
Software revocation is not a major performance factor for
the MicroPython VM since it allocates a single large chunk
of memory for the heap, which is then managed internally
by the MicroPython runtime allocator.
These performance benchmark results should be inter-

preted while keeping in mind that CHERI hardware plat-
forms in general and specifically the CHERIoT platform are
experimental hardware. They are in active development and

many optimizations are being implemented to increase per-
formance. Lowther et al. [18, 19] report similar normalised
benchmark overheads of 1.5x–2x on the MicroPython unix
port executing on the ARM based Morello [11] platform
which is a desktop class processor. A separate study by Bram-
ley et al. [6] compiled C/C++ benchmarks targetting memory
allocator performance on the ARM Morello platform also
report mean overheads of 1.56x – 1.61x.

Watson et al. [29] report certain CHERI hardware related
overheads and attribute these to factors such as conservative
branch prediction required because of unavailable bounds
information of the PC. Their experiments point to a best
estimate of 1.8% – 3.0% overheads in an optimized design,
which is an order of magnitude lower than our measured
overheads for CHERIoT MicroPython.

6 Platform Reflections
In this section, we consider the maturity of the CHERIoT
platform in terms of its toolchain. We also compare CHERIoT
to the other high TRL CHERI system, i.e. Arm Morello.

6.1 Ecosystem Maturity
The CHERIoT RTOS/Sonata system consists of multiple com-
ponents in varying states of maturity, all under active devel-
opment throughout the duration of our work. These include
the CHERIoT Clang/LLVM C/C++ compiler, the several com-
ponents of the CHERIoT RTOS, and the firmware for the
Sonata board itself.
The compiler is a fork of the CTSRD CHERI LLVM fork

used for Morello. Aside from the obvious backend changes
to handle the CHERIoT ISA and ABI, there seem to be two
significant new features. The first is the addition of a set of at-
tributes to annotate functions which may be the targets of di-
rect cross-compartment calls (cheri_compartment), indirect
cross-compartment calls (cheri_callback), and compartment-
to-library calls (cheri_libcall). Any function which does
not bear one of these attributes is only callable from the
compartment in which it is defined. The second is a series
of changes to the linker to suit the CHERIoT RTOS compart-
mentalization model. In our experience, the compiler seems
to be relatively stable, despite the lack of an official release
schedule. On the one occasion we encountered a bug, it was
fixed within a day of our bug report.
The CHERIoT RTOS itself consists of an Xmake-based

build system, C and C++ header files (no headers shipped
with Clang are used), core RTOS components (allocator,
switcher, loader, and scheduler), and libraries.

The header files and libraries are minimal: the supported
subsets of the C and C++ standard libraries focus on only the
‘core’ features expected to be used in an embedded setting.
For instance, there is no floating point support or math.h,
and C++ exceptions are not supported either. It is also notable
that the macros defined in the CHERIoT cheri.h header

Secure Scripting with CHERIoT MicroPython CC ’25, March 1–2, 2025, Las Vegas, NV, USA

is completely incompatible with the header of the same
name on previous CHERI systems. Macros wrapping CHERI
Clang builtins are instead defined in cheri-builtins.h,
and the names do not correspond with the standard CHERI
names for the same operations (e.g. cgetlen() instead of
cheri_length_get()). It is unclear why the CHERIoT de-
velopers changed the macros wrapping these builtins.

When we started the CHERIoT RTOS/Sonata port of Mi-
croPython, the Sonata board had just been released with
firmware v0.1. The firmware was (as expected) very incom-
plete. Since then, several newer versions have been released.
All evaluation in this paper is done on firmware version
v0.4.1. The firmware (and the Sonata-specific CHERIoT RTOS
components) have certainly seen the most changes of any
component over the span of our project. It is not clear that
they could be considered stable. However, as of publication of
this paper, v1.0 has been released which is labelled as stable
in the release notes. Breaking changes to the Sonata system
that we have had to adapt to include a change to loadable
binary format used by the bootloader (raw binary-in-UF2 to
ELF-in-UF2) and changes to the MMIO layout.
In general, the CHERI ecosystem is fragmented as it has

evolved over the last decade. MIPS, Arm and RISC-V variants
of CHERI are all available, often with subtly different feature
sets and header files. This fragmentation can be confusing
for developers coming into the community, but is expected
in a quickly improving project.
CHERIoT is much more narrowly focused as there is a

single implementation with less time for legacy material to
accumulate [3, 4]. The documentation is up-to-date, appro-
priately detailed, and user-friendly, e.g. see the CHERIoT
Programmers’ Guide [7].

6.2 Comparison with Morello
The CHERIoT platform is highly constrained compared to
Morello. This is to be expected, given CHERIoT is an embed-
ded platform whereas Morello is server-class. Despite this,
there is an obvious conceptual coherence and elegance to
CHERIoT, in terms of the design decisions and the retention
of the core CHERI principles.

The most striking thing when comparing CHERIoT RTOS
on Sonata to CheriBSD on Morello are the constraints im-
posed both at the OS and architectural levels. At the archi-
tectural level, most of these constraints are a direct result of
the limited space for capability metadata (32 bits rather than
64). The compression of capability permissions has not af-
fected our work with MicroPython. However, the reduction
in bounds mantissa bits leads to coarser capability bounds
compared to Morello. Validity tag clearance when pointer
arithmetic goes out-of-bounds is eager while on Morello,
validity tag clearance occurs on when dereferencing the out-
of-bounds capability. This relaxation better fits with loop
computation idioms. More striking is the three-bit otype
field and consequent reservation of ‘real’ sealing capabilities

to the RTOS. User compartments request ‘virtual’ sealing
capabilities (from the RTOS) to allocate a buffer with a sealed
‘token’ to it, or to unseal a ‘token’. This differs from CheriB-
SD/Morello where user code can request a sealing capability
and then use the architectural seal/unseal instructions di-
rectly.
The IoT domain is ideal for CHERI-fication [8] due to

the additional security vulnerabilities that occur in such
resource constrained bare-metal software execution environ-
ments. The user-friendly ecosystem and low-cost develop-
ment boards suggest that CHERIoT may have a greater de-
ployment footprint than the desktop or server class Morello
platform.

7 Related Work
In a recent and comprehensive taxonomy of hardware se-
curity presented by Zhao et al. [35], the features provided
by the CHERIoT system are extensions that support runtime
protection.

In terms of porting to CHERI, the MicroPython interpreter
was originally adapted for the Morello/CheriBSD platform
[18, 19]. In our work, we have modified this CHERI port
to deal with the 32-bit RISC-V embedded architecture on
which CHERIoT is based—somewhat different to the 64-bit
server-class Arm architecture of Morello. Further, we have
integrated our code fully with the compartment model of
CHERIoT-RTOS, whereas the Unix process-based Morello
MicroPython interpreter executes in a single, process-wide
compartment by default.

TheMicrovium JavaScript interpreter [13] has been ported
to CHERIoT [4]. Microvium supports a cut-down subset of
JavaScript, with heap snapshots for partial evaluation. Un-
like our MicroPython work, the Microvium port required
no source code changes in the interpreter codebase, since
the runtime engine is implemented in an entirely platform-
neutral dialect of C [23]. A single representative IoT bench-
mark application is characterized on CHERIoT, controlling
an on-board LED via MQTT. No large scale performance
benchmarking of JavaScript applications is reported.
Gutstein [12] evaluates the feasibility of porting a lan-

guage runtime to CHERI, with a case study of the JavaScript-
Core engine. Relevant changes, which we also needed to
consider for CHERIoT MicroPython, include (i) the need to
extend the core JSValue runtime object representation to
accommodate double word capabilities, and (ii) changes to
the C/C++ codebase to handle the change in the size and
semantics of capability pointers. Gutstein considers server-
class CHERI platforms but presents no performance results
due to lack of hardware availability.
MSWasm [20] is an extension to WebAssembly (Wasm)

that enforces runtime memory safety within the linear mem-
ory region. Given Wasm is often presented as appropriate

CC ’25, March 1–2, 2025, Las Vegas, NV, USA Duncan Lowther, Dejice Jacob, Jacob Trevor, and Jeremy Singer

for IoT deployment, MSWasm seems to be a reasonable com-
parison point with MicroPython on CHERIoT. The authors
report geometric mean overheads of around 50% for execut-
ing PolyBenchC with spatial and temporal memory safety,
for ahead-of-time compiledWasm code, relative to a baseline
with no runtime safety checks. Again, this is roughly in line
with our overhead figures for MicroPython execution on
CHERIoT.
There is much active research on compartmentalization

for CHERI, including the FlexOS work from Manchester [15]
and the Cap-VMs work from Imperial [24]. Both these sys-
tems are evaluated with real-world applications on server-
class Morello hardware. They show the performance advan-
tages of fine-grained lightweight compartmentalization sup-
ported natively in the CPU, which avoids paying a ‘memory
management unit tax’ for isolation. In contrast, we evalu-
ate compartments in the embedded domain. Here, where
direct physical addressing is common, compartmentalization
mechanisms are essential for secure runtime isolation.
Ullah and Rashid [25] present a systematic analysis of

transitioning legacy systems software to Morello, emphasiz-
ing a need for ‘heightened developer vigilance’ since many
vulnerabilities may be introduced or preserved when porting
C code to CHERI platforms.
Watson et al. [30] describe a three-month project to port

a major open-source codebase to Morello, involving a large
user-centric desktop system. However their work explic-
itly excludes language runtimes, which (they assert) would
‘require both non-trivial changes, and also would benefit
from greater understanding as to how CHERI can improve
their robustness’. Our work shows the necessary changes
are significant but achievable, and that CHERI does enhance
runtime system resilience.

8 Conclusion
In summary, theMicroPython port fromMorello to CHERIoT
is relatively straightforward from a technical perspective.
While challenges arise in the specific details of porting, the
groundwork laid by the existing Morello CHERI implemen-
tation eases the transition to CHERIoT. This adaptability sug-
gests that CHERI enhancements could be helpful for porting
systems software to a range of future memory safety mech-
anisms and platforms, i.e. the first port to a memory-safe
platform makes subsequent memory-safe ports much easier.

The memory safety and compartmentalization features of
CHERI bring significant security benefits by reducing the
attack surface, exemplifying a secure-by-design approach to
virtual machine engineering.

We now revisit the three research questions posed in Sec-
tion 1, based on the experience of our case study.

• RQ1:We confirm the CHERIoT-RTOS ecosystem of-
fers a conducive environment for secure language run-
time development. We can state this with some confi-
dence since there are now two open-source embedded
language runtimes (Microvium and MicroPython) that
run on CHERIoT.

• RQ2: Our work shows that the enhanced security fea-
tures of CHERIoT-RTOS improve the overall security
of the MicroPython interpreter. For instance, we have
demonstrated the mitigation of a heap buffer over-
flow CVE through spatial memory safety. Addition-
ally, CHERIoT’s compartmentalization model prevents
unrestricted access to the microcontroller’s physical
address space.

• RQ3:While Morello currently has a broader deploy-
ment base (approximately 1000 machines), the Sonata
platform, being open-source hardware that runs on
FPGAs, is poised for rapid adoption. Its streamlined de-
sign, sensible documentation and reasonable toolchain
are as developer-friendly as in the Morello ecosystem.
Further, the IoT domain represents a promising route
to market for CHERI [8]. We anticipate that MicroPy-
thon on CHERIoT will play a significant role in this
expansion, given its widespread use in IoT projects.

In conclusion, CHERIoT’s secure-by-design principles, in-
cluding memory safety, and compartmentalization, provide a
robust foundation for developing language runtimes for em-
bedded systems, reinforcing CHERI’s potential for success
in secure IoT solutions.

Acknowledgments
This work was funded by UKRI’s Digital Security by De-
sign (DSbD) programme (including grants EP/V000349/1 and
EP/X015831/1), and also through a UK Defence and Security
Accelerator contract ACC6037520.

References
[1] 2024. The MicroPython benchmark suite. https://github.com/

micropython/micropython/tree/master/tests/perf_bench.
[2] 2024. XMake: A cross-platform build utility based on Lua. https:

//github.com/xmake-io/xmake/.
[3] Saar Amar, Tony Chen, David Chisnall, Felix Domke, Nathaniel Filardo,

Kunyan Liu, Robert Norton-Wright, Yucong Tao, Robert NM Watson,
and Hongyan Xia. 2023. CHERIoT: Rethinking security for low-cost
embedded systems. Technical Report. Microsoft.

[4] Saar Amar, David Chisnall, Tony Chen, Nathaniel Wesley Filardo, Ben
Laurie, Kunyan Liu, Robert Norton, Simon W. Moore, Yucong Tao,
Robert N. M. Watson, and Hongyan Xia. 2023. CHERIoT: Complete
Memory Safety for Embedded Devices. In Proceedings of the 56th An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO
’23). 641–653. doi:10.1145/3613424.3614266

[5] AMD. 2024. AMD ArtixTM 7 FPGAs. https://www.amd.com/en/
products/adaptive-socs-and-fpgas/fpga/artix-7.html#product-table.

https://github.com/micropython/micropython/tree/master/tests/perf_bench
https://github.com/micropython/micropython/tree/master/tests/perf_bench
https://github.com/xmake-io/xmake/
https://github.com/xmake-io/xmake/
https://doi.org/10.1145/3613424.3614266
https://www.amd.com/en/products/adaptive-socs-and-fpgas/fpga/artix-7.html#product-table
https://www.amd.com/en/products/adaptive-socs-and-fpgas/fpga/artix-7.html#product-table

Secure Scripting with CHERIoT MicroPython CC ’25, March 1–2, 2025, Las Vegas, NV, USA

[6] Jacob Bramley, Dejice Jacob, Andrei Lascu, Jeremy Singer, and Lau-
rence Tratt. 2023. Picking a CHERI Allocator: Security and Perfor-
mance Considerations. In Proceedings of the 2023 ACM SIGPLAN In-
ternational Symposium on Memory Management (Orlando, FL, USA)
(ISMM 2023). Association for Computing Machinery, New York, NY,
USA. doi:10.1145/3591195.3595278

[7] David Chisnall. 2024. CHERIoT Programmers’ Guide. https://cheriot.
org/book/.

[8] Dept for Science, Innovation and Technology. 2024. CHERI adop-
tion and diffusion research. https://www.gov.uk/government/
publications/cheri-adoption-and-diffusion-research/cheri-adoption-
and-diffusion-research.

[9] Damien George. 2024. py/objint: Fix int.to_bytes() buffer size checks.
https://github.com/micropython/micropython/pull/13087.

[10] Damien George. 2024. Validate that the argument to indices() is an
integer. https://github.com/micropython/micropython/pull/13039.

[11] Richard Grisenthwaite, Graeme Barnes, Robert NM Watson, Simon W
Moore, Peter Sewell, and Jonathan Woodruff. 2023. The Arm Morello
evaluation platform—validating CHERI-based security in a high-
performance system. IEEE Micro 43, 3 (2023), 50–57.

[12] Brett Gutstein. 2022. Memory safety with CHERI capabilities: security
analysis, language interpreters, and heap temporal safety. Technical
Report UCAM-CL-TR-975. University of Cambridge, Computer Labo-
ratory. doi:10.48456/tr-975

[13] Michael Hunter. 2020. Microvium. https://github.com/coder-mike/
microvium/.

[14] Shashi Jayakumar. 2020. Cyber Attacks by Terrorists and other
Malevolent Actors: Prevention and Preparedness With Three Case
Studies on Estonia, Singapore, and the United States. In Hand-
book of Terrorism Prevention and Preparedness, Alex P. Schmid (Ed.).
871–930. https://www.icct.nl/sites/default/files/2023-01/Chapter-29-
Handbook-.pdf.

[15] John Alistair Kressel, Hugo Lefeuvre, and Pierre Olivier. 2023. Soft-
ware Compartmentalization Trade-Offs with Hardware Capabilities.
In Proceedings of the 12th Workshop on Programming Languages and
Operating Systems. 49–57. doi:10.1145/3623759.3624550

[16] LowRISC. 2024. Sonata Board Reference. https://lowrisc.github.io/
sonata-system/doc/architecture/board.html.

[17] LowRISC. 2024. Sunburst Project. https://www.sunburst-project.org/.
[18] Duncan Lowther, Dejice Jacob, and Jeremy Singer. 2023. CHERI Per-

formance Enhancement for a Bytecode Interpreter. In Proceedings of
the 15th ACM SIGPLAN International Workshop on Virtual Machines
and Intermediate Languages. 1–10. doi:10.1145/3623507.3623552

[19] Duncan Lowther, Dejice Jacob, and Jeremy Singer. 2023. Morello
MicroPython: A Python Interpreter for CHERI. In Proceedings of the
20th ACM SIGPLAN International Conference on Managed Programming
Languages and Runtimes. 62–69. doi:10.1145/3617651.3622991

[20] Alexandra E. Michael, Anitha Gollamudi, Jay Bosamiya, Evan Johnson,
Aidan Denlinger, Craig Disselkoen, Conrad Watt, Bryan Parno, Marco
Patrignani, Marco Vassena, and Deian Stefan. 2023. MSWasm: Soundly
EnforcingMemory-Safe Execution of Unsafe Code. Proc. ACM Program.
Lang. 7, POPL, Article 15 (Jan. 2023), 30 pages. doi:10.1145/3571208

[21] NIST. 2023. CVE-2023-7158. https://nvd.nist.gov/vuln/detail/CVE-
2023-7158.

[22] NIST. 2024. CVE-2024-8948. https://nvd.nist.gov/vuln/detail/CVE-
2024-8948.

[23] Robert Norton-Wright. 2023. CHERIoT. https://www.dcs.gla.ac.uk/
~jsinger/cheritech23_slides/rnortonwright_cheritech.pdf.

[24] Vasily A. Sartakov, Lluís Vilanova, David Eyers, Takahiro Shinagawa,
and Peter Pietzuch. 2022. CAP-VMs: Capability-Based Isolation and

Sharing in the Cloud. In 16th USENIX Symposium on Operating Sys-
tems Design and Implementation. 597–612. https://www.usenix.org/
conference/osdi22/presentation/sartakov

[25] Sami Ullah and Awais Rashid. 2024. Porting to Morello: An In-depth
Study on Compiler Behaviors, CERTGuideline Violations, and Security
Implications. In IEEE 9th European Symposium on Security and Privacy.
381–397. doi:10.1109/EuroSP60621.2024.00028

[26] Kui Wang, Dmitry Kasatkin, Vincent Ahlrichs, Lukas Auer, Konrad
Hohentanner, Julian Horsch, and Jan-Erik Ekberg. 2024. Cherifying
Linux: A Practical View on using CHERI. In Proceedings of the 17th
European Workshop on Systems Security. 15–21. doi:10.1145/3642974.
3652282

[27] Waterman, Andrew and Asanović, Krste. 2017. The RISC-V instruction
set manual Volume I:User-Level ISA. https://riscv.org/wp-content/
uploads/2017/05/riscv-spec-v2.2.pdf.

[28] Robert N. M. Watson, David Chisnall, Jessica Clarke, Brooks Davis,
Nathaniel Wesley Filardo, Ben Laurie, Simon W. Moore, Peter G. Neu-
mann, Alexander Richardson, Peter Sewell, Konrad Witaszczyk, and
Jonathan Woodruff. 2024. CHERI: Hardware-Enabled C/C++ Mem-
ory Protection at Scale. IEEE Security & Privacy 22, 4 (2024), 50–61.
doi:10.1109/MSEC.2024.3396701

[29] Robert N. M. Watson, Jessica Clarke, Peter Sewell, Jonathan Woodruff,
Simon W. Moore, Graeme Barnes, Richard Grisenthwaite, Kathryn
Stacer, Silviu Baranga, and Alexander Richardson. 2023. Early perfor-
mance results from the prototype Morello microarchitecture. Technical
Report UCAM-CL-TR-986. University of Cambridge, Computer Labo-
ratory. doi:10.48456/tr-986

[30] Robert N. M. Watson, Ben Laurie, and Alex Richardson. 2021. As-
sessing the Viability of an Open-Source CHERI Desktop Software
Ecosystem. https://www.capabilitieslimited.co.uk/_files/ugd/f4d681_
e0f23245dace466297f20a0dbd22d371.pdf

[31] Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Michael
Roe, Hesham Almatary, Jonathan Anderson, John Baldwin, Graeme
Barnes, David Chisnall, Jessica Clarke, Brooks Davis, Lee Eisen,
Nathaniel Wesley Filardo, Franz A. Fuchs, Richard Grisenthwaite,
Alexandre Joannou, Ben Laurie, A. Theodore Markettos, Simon W.
Moore, Steven J. Murdoch, Kyndylan Nienhuis, Robert Norton, Alexan-
der Richardson, Peter Rugg, Peter Sewell, Stacey Son, and Hongyan
Xia. 2023. Capability Hardware Enhanced RISC Instructions: CHERI
Instruction-Set Architecture (Version 9). Technical Report UCAM-CL-TR-
987. University of Cambridge, Computer Laboratory. doi:10.48456/tr-
987

[32] White House. 2024. Back to the Building Blocks: A path toward
secure and measurable software. https://www.whitehouse.gov/wp-
content/uploads/2024/02/Final-ONCD-Technical-Report.pdf.

[33] Jonathan Woodruff, Alexandre Joannou, Hongyan Xia, Anthony
Fox, Robert M Norton, David Chisnall, Brooks Davis, Khilan Gudka,
Nathaniel W Filardo, A Theodore Markettos, et al. 2019. Cheri con-
centrate: Practical compressed capabilities. IEEE Trans. Comput. 68, 10
(2019), 1455–1469.

[34] Jonathan Woodruff, Robert N.M. Watson, David Chisnall, Simon W.
Moore, Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neu-
mann, Robert Norton, and Michael Roe. 2014. The CHERI Capability
Model: Revisiting RISC in an Age of Risk. In Proceedings of the 41st
Annual International Symposium on Computer Architecture. 457–468.
doi:10.1145/2678373.2665740

[35] Lianying Zhao, He Shuang, Shengjie Xu, Wei Huang, Rongzhen Cui,
Pushkar Bettadpur, and David Lie. 2024. A Survey of Hardware Im-
provements to Secure Program Execution. ACM Comput. Surv. 56, 12,
Article 311 (Oct. 2024), 37 pages. doi:10.1145/3672392

Received 2024-11-13; accepted 2024-12-21

https://doi.org/10.1145/3591195.3595278
https://cheriot.org/book/
https://cheriot.org/book/
https://www.gov.uk/government/publications/cheri-adoption-and-diffusion-research/cheri-adoption-and-diffusion-research
https://www.gov.uk/government/publications/cheri-adoption-and-diffusion-research/cheri-adoption-and-diffusion-research
https://www.gov.uk/government/publications/cheri-adoption-and-diffusion-research/cheri-adoption-and-diffusion-research
https://github.com/micropython/micropython/pull/13087
https://github.com/micropython/micropython/pull/13039
https://doi.org/10.48456/tr-975
https://github.com/coder-mike/microvium/
https://github.com/coder-mike/microvium/
https://www.icct.nl/sites/default/files/2023-01/Chapter-29-Handbook-.pdf
https://www.icct.nl/sites/default/files/2023-01/Chapter-29-Handbook-.pdf
https://doi.org/10.1145/3623759.3624550
https://lowrisc.github.io/sonata-system/doc/architecture/board.html
https://lowrisc.github.io/sonata-system/doc/architecture/board.html
https://www.sunburst-project.org/
https://doi.org/10.1145/3623507.3623552
https://doi.org/10.1145/3617651.3622991
https://doi.org/10.1145/3571208
https://nvd.nist.gov/vuln/detail/CVE-2023-7158
https://nvd.nist.gov/vuln/detail/CVE-2023-7158
https://nvd.nist.gov/vuln/detail/CVE-2024-8948
https://nvd.nist.gov/vuln/detail/CVE-2024-8948
https://www.dcs.gla.ac.uk/~jsinger/cheritech23_slides/rnortonwright_cheritech.pdf
https://www.dcs.gla.ac.uk/~jsinger/cheritech23_slides/rnortonwright_cheritech.pdf
https://www.usenix.org/conference/osdi22/presentation/sartakov
https://www.usenix.org/conference/osdi22/presentation/sartakov
https://doi.org/10.1109/EuroSP60621.2024.00028
https://doi.org/10.1145/3642974.3652282
https://doi.org/10.1145/3642974.3652282
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://doi.org/10.1109/MSEC.2024.3396701
https://doi.org/10.48456/tr-986
https://www.capabilitieslimited.co.uk/_files/ugd/f4d681_e0f23245dace466297f20a0dbd22d371.pdf
https://www.capabilitieslimited.co.uk/_files/ugd/f4d681_e0f23245dace466297f20a0dbd22d371.pdf
https://doi.org/10.48456/tr-987
https://doi.org/10.48456/tr-987
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://doi.org/10.1145/2678373.2665740
https://doi.org/10.1145/3672392

	Abstract
	1 Introduction
	2 Technical Background
	2.1 CHERI
	2.2 CHERIoT
	2.3 Sonata
	2.4 MicroPython

	3 Threat Model
	4 CHERIoT Modifications to MicroPython
	4.1 Build System Integration
	4.2 Global/Local Memory Segregation
	4.3 Compartmentalization
	4.4 Minor Bug Fixes
	4.5 Peripheral Support

	5 Evaluation
	5.1 Code Modifications
	5.2 Security Mitigation
	5.3 Performance Characterization

	6 Platform Reflections
	6.1 Ecosystem Maturity
	6.2 Comparison with Morello

	7 Related Work
	8 Conclusion
	References

