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Abstract. Virtualization is ubiquitous, with the global availability of
the Java Virtual Machine and other similar virtual machine platforms.
Higher-order virtualization involves building a stack of virtual machine
layers. This provides obvious advantages such as: flexibility; separation
of concerns; reuse of existing functionality; support for legacy platforms.
However, the benefits of higher-order virtualization come at a price in
terms of efficiency. This paper examines different techniques to increase
the efficiency of higher-order virtualization on chip multiprocessor ar-
chitectures. These techniques embrace hardware, software and virtual
machine interaction. Some techniques (such as just-in-time compilation)
are employed in existing virtual machine systems. Other techniques (such
as hints-based speculative parallelism) have not been previously consid-
ered. We examine how to use these performance-enhancing techniques in
the context of stacked virtual machine layers.

1 Introduction

This paper introduces the subject of higher-order virtualization (HOV), which
involves creating a stack of virtual machine (VM) layers for program execution.
Each self-contained layer may address a different aspect of the system, in the
same way that each layer of a network protocol stack addresses a different com-
munication issue. The individual layers are generally small enough to facilitate
software maintenance and re-engineering. The HOV phenomenon is not new.
For instance, Smith and Nair [SN05] and Be Dope [Dop98] describe examples
of VMs executing on top of other VM environments. However until now, HOV
has not been considered as a discipline in its own right. This paper presents
some guiding principles. It explores the tension between efficiency and isolation
of adjacent layers in the stack. It highlights the recent growth in popularity of
both virtualization (with systems such as Java and .NET) and parallelism (with
architectural features such as hyperthreading and dual-core). There is a (perhaps
accidental) synergy between virtualization and parallelism. This synergy should
be exploited in the context of HOV, in order to amortize inefficiency.

The HOV principles presented in this paper are demonstrated by means of
a simple, proof-of-concept, stacked VM system. Figure 1 illustrates the system.
A primitive stack-based bytecode interpreter executes on top of an adaptive
parallelizing Java VM, which executes on top of an experimental (simulated)



chip multiprocessor (CMP) platform. (Note that, in a sense, the simulator is
also a VM that executes on top of real hardware, namely a Linux IA32 system.
However for the purposes of this paper, we ignore the fact that the CMP is
simulated, and treat it as though it were the physical layer. This is a compelling
beauty of the HOV view. When one takes a top-down view of the system, it is
possible to be myopic!)

Fig. 1. Overview of HOV system (stacked VM)

Execution speed of bytecode interpreted by the top-level VM can be improved
using standard interpretive techniques as well as standard parallel techniques.
At each stage, the top-level interpreter uses hooks provided by the host JVM to
communicate information directly to the lower-level. In our case, the host JVM
is Jikes RVM, which provides a disciplined API to break through the abstracted
Java view of the world. This approach is similar to the paravirtualization tech-
nique for virtualized OSs [BDF+03]. OSs that are to be paravirtualized require
source code changes to hook into the underlying host VM monitor. In the same
way, our top-level interpreter requires source code changes to hook into the un-
derlying host JVM.

1.1 Contributions

This paper makes four contributions.

1. It introduces, motivates and clarifies the concept of higher-order virtualiza-
tion (HOV).

2. It highlights the synergy between virtualization and parallelism. This syn-
ergy should be exploited for HOV.

3. It provides techniques for improving the efficiency of higher-order virtualized
systems, particularly in the context of a demonstration interpreter running
atop Jikes RVM on the experimental Jamaica CMP platform.

4. It discusses the uneasy tension between efficiency and isolation of stacked
VM layers. It advocates a middle way, that exposes some host features to



the guest. However that exposure is carefully encapsulated by a well-defined
API, which acts as a managed trapdoor to lower-level features.

1.2 Outline

The rest of this paper is structured as follows. Section 2 details the motivation
for HOV, from both software and hardware considerations. Section 3 describes
implementation techniques to improve the efficiency of a stack-based interpreter,
particularly in the context of an HOV system. Section 4 outlines the prototype
system used to demonstrate the principles outlined in this paper. Section 5
presents results from the prototype system. These results should extrapolate
to larger, more realistic HOV systems. Section 6 examines related work. Finally
Section 7 concludes.

2 Motivation

Higher-order virtualization (HOV) abstracts a virtual entity, rather than a phys-
ical entity. In the context of HOV for runtime environments, there are numerous
motivating factors for creating a stack of VM layers.

2.1 Software engineering reasons

Separation of concerns: In the same way that different layers of a network
protocol stack provide different facilities (such as error correction) different
layers of a virtual machine stack can provide different facilities. This paper
introduces a VM layer that builds speculative parallelism on top of tradi-
tional thread-level parallelism. In this way, speculation can be implemented
easily (virtually!) on a platform that does not support speculative execution
natively.

Portability: This is the greatest advantage of virtualization. When retargetting
to a new platform, only the platform-specific components need to be ported,
since the remainder of the virtualized code does not contain platform-specific
assumptions. Of course there is an additional consideration in the case of
a stacked VM system, since VM layers may also migrate up or down the
stack. Portability is no longer merely a horizontal issue (change of underlying
platform) but also vertical (move VM up or down the stacked VM system).

Legacy code support: Legacy platforms can be virtualized and run as part of
a stacked VM system. Such VMs can use facilities provided by lower layers
(such as sandboxing to localize program failures).

Flexibility: In an HOV system, user applications should be able to run at any
level of the system. Some applications may run at high levels, taking advan-
tage of abstractions provided by underlying VM layers. Other applications
may run at lower levels, for reasons of efficiency or other application-specific
requirements that cannot be satisfied by higher-level layers. Flexibility pro-
vides choice and tradeoffs for user applications.



2.2 Architectural reasons

Until now, HOV has not been feasible due to its inefficiency. As with all ab-
straction, extra layers incur execution overhead. This paper shows that some
of the overhead may be eliminated. However, the tremendous processing power
of modern commodity hardware ensures that there is scope for a measure of
residual inefficiency.

Another recent advance is the widespread availability of parallel resources.
Parallelism (that may otherwise be redundant) is able to soak up some of the
inefficiency introduced by HOV, as this paper demonstrates.

The underlying message is that it is feasible to pay a price in terms of per-
formance in order to improve usability. Since physical processor cycles are so
cheap, we can afford to expend many of them in the quest for virtualized pro-
cessor cycles.

3 Interpretation Techniques

The two opposite ends of the spectrum of bytecode execution environments
are interpretation and just-in-time compilation (JIT). In general, interpreta-
tion executes bytecode programs from 10 to 1000 times slower than native
code [EGKP02]. On the other hand, JIT executes bytecode programs at near-
equivalent speeds to compiled code executing directly on the host platform
[Ayc03]. Clearly execution speed is the major advantage of JIT. One advantage
of interpretation is that the interpreter needs to know almost nothing about its
host platform. This clear abstraction layer between host and guest facilitates
interpreter portability. In contrast, the JIT system needs to know almost every-
thing about its host platform, in order to generate correct code. The abstraction
layer between host and guest is rather blurred, if it exists at all.

This study focuses entirely on interpreters, since they are suitable for rapid
prototyping and easy experimentation. Section 3.1 describes a simple interpreter
model that is completely insulated from the host platform. Then Sections 3.2
and 3.3 show how bytecode execution speed can be increased by the exposure of
specific host services to the interpreter. Finally Section 3.4 introduces speculative
parallelism, which requires further communication between host and guest VMs.
At this stage, the interpreter model is gradually shifting towards the JIT end of
the spectrum of bytecode execution environments outlined above.

Note that since the top-level interpreter runs on a host JVM, the imple-
mentation source language is required to be Java. Thus all the techniques for
improving interpreter performance must be expressible in Java syntax.

3.1 Switch-based interpretation

The simplest interpreter has an outer while loop that steps through the bytecodes
at the interpretive program counter. In each iteration of the loop the interpreter
executes a giant switch statement, with a different case for each bytecode opera-
tion. Operands reside on a memory stack. Operations take place directly on the



top of the stack. Figure 2 shows some example source code for a switch-based
interpreter.

while (pc < MAXPC) {

opcode = getByteAt(pc++);

switch(opcode) {

case Bytecodes.ADD:

a = pop();

b = pop();

push(a+b);

break;

// ...

}

Fig. 2. Source code for switch-based interpreter

Advantages: Very easy to implement, modify and debug. Portability.
Disadvantages: Very slow execution, due to control-flow inefficiencies (direct

and indirect branch per bytecode dispatch) and data-flow inefficiencies (stack-
based computation induces many memory accesses).

3.2 Threaded interpretation

The switch-based interpretation model involves convoluted control flow. Each
time a bytecode instruction is dispatched, execution flows through the single
fetch-decode sequence at the start of the while loop body, then it branches to
the correct bytecode case in the switch statement. This incurs one direct branch
and one indirect branch. Moreover, the single indirect branch instruction is used
for branching to all case statements, so branch prediction hardware is unlikely
to perform well here A better approach is to duplicate the fetch-decode sequence
at the end of each case, enabling dispatch to take place with a single indirect
branch. This is known as threaded interpretation [Bel73]. It removes the direct
branch to the start of the while loop body. Also there are now lots of indirect
branch instructions (one for each case) and since some instruction sequences
are more likely than others, branch prediction hardware may perform well. Ertl
and Gregg provide evidence to support this claim [EG03]. Unfortunately, the
Java language does not support this style of indirect branching. We overcome
the problem by exposing some host VM services that enable indirect branching.
These services were originally intended for dynamic linking after JIT compilation
of methods. We make use of the Jikes RVM VM Magic API to make dynamic
jumps to methods, where each method now corresponds to a switch case from
the original interpreter. Figure 3 shows some example source code for a threaded
interpreter.



public static void start() {

int opcode = getByteAt(pc++);

VM_CodeArray nextCall = offsets[nextOpcode];

VM_Magic.dynamicBridgeTo(nextCall);

}

public static void bc_ADD() {

if (numCached == 0) {

x = mem[sp/4];;

sp-=4;

y = mem[sp/4];

sp-=4;

first = x + y;

numCached = 1;

}

else if (numCached == 1) {

y = mem[sp/4];;

sp-=4;

first = first + y;

// numCached = 1;

}

else if (numCached == 2) {

first = first + second;

numCached = 1;

}

else {

// ...

}

nextOpcode = getByteAt(pc++);;

VM_CodeArray nextCall = offsets[nextOpcode];

VM_Magic.dynamicBridgeTo(nextCall);

}

Fig. 3. Source code for threaded interpreter with stack-caching and method inlining



Advantages: Increase in execution speed.
Disadvantages: Reduced portability. Requires interfacing to host API for in-

direct branches. Increased code duplication (impact on code size and main-
tainability).

3.3 Stack-caching and method inlining

There are several straightforward transformations that can be performed on
the threaded interpreter to improve its efficiency, without exposing further host
features. The top few stack elements may be cached in register-allocated local
variables [Ert95]. This reduces the number of memory accesses (which are slow).
Since most operations take place on top of stack, these will now be register-
register operations rather than memory-memory. Also, it is possible to inline

method calls such as stack push and pop operations. Method calls can be ex-
pensive. It is often cheaper to execute inlined instruction sequences. Figure 3
shows some example source code for a threaded interpreter with stack-caching
and method inlining.

Advantages: Simple improvements lead to increased efficiency.
Disadvantages: Increased code duplication causes code size increase and main-

tainability problems (unless non-standard Java macro-expansions are used).

3.4 Speculative parallel interpretation

Bytecode interpretation is an inherently sequential computation. The fetch-
decode-execute scenario does not readily admit parallelism, especially with stack-
based computation. However, there may be latent parallelism in the bytecode
program. If the host VM is able to support parallel computation, then the inter-
preter needs to somehow communicate this information to the host. Extra an-

notation bytecodes convey hints to the host about regions of bytecode that can
be interpretively executed in parallel. Such an annotation bytecode may occur
immediately before a loop that may be executed in parallel. When the inter-
preter encounters this annotation bytecode during execution, it sends a message
to the host VM to indicate that more threads should be forked to interpret the
loop iterations in parallel. Each forked thread runs until it has finished execut-
ing its portion of the loop iterations. Then a single thread continues sequential
interpretation.

One novelty of our approach is that we attempt to build support for thread-

level speculation directly in the interpretation layer. The idea is that the in-
terpreter forks several interpretation threads at speculative parallel execution
points. The underlying host VM does not need to know which threads are spec-
ulative and which threads are not. The interpretation system manages the spec-
ulation itself, by either committing or rolling back the effects of speculative
interpreter threads. The interpretation system can use standard memory access
buffering techniques to enforce correct speculative execution with support for
roll-back in the case of data dependence violations.



There is scope for two-way communication, since the host VM can send a
reply back to the interpreter when insufficient parallel resources are available.
This paradigm is hints-based speculative parallelism which should become in-
creasingly useful to support effective HOV. Figure 4 shows some example source
code for an interpreter that supports speculative parallelism over loops.

Advantages: Increase in execution speed. Effective deployment of parallel re-
sources that are not usable by ordinary sequential interpretation techniques.

Disadvantages: Further exposure of host-specific services, which reduces porta-
bility. (However note that the interpreter only gives hints to the host VM,
so it is possible to ignore these hints.)

3.5 Improving interpreter performance

The performance of the interpreter improves as the interpreter model changes
from switch-based (Section 3.1) to threaded (Section 3.2) to parallel (Section
3.4). This performance increase is clear to see from the fetch-decode-execute
(FDE) code layout, as shown in Figure 5. The switch-based model has a single
FDE code sequence, and all bytecode interpretation goes through this sequence.
The threaded model has multiple FDE code sequences, one for each instruction.
A single instruction is in-flight at once. The parallel model has multiple FDE
code sequences in-flight at once.

4 Experimental Setup

This section explains the details of the VM stack used for the experiments.

4.1 Jamaica architecture

The Jamaica architecture is the basis of our research into compiler support for
chip multiprocessors (CMPs). The experimental processor structure is a CMP
constructed of simple 5-stage pipeline cores. An important aspect of the hard-
ware is the ability to create and distribute lightweight threads with minimum
overheads. This is supported by a free thread mechanism, in which the availabil-
ity of free hardware threads is signalled by the passing of a token on a separate
ring bus [WEMW02]. This is coupled with a register windows based ISA which
facilitates the maintenance of thread context when performing thread switches.
This is particularly useful when implementing multiple thread contexts per core
to permit thread switching on cache misses to hide latency. Because of the indi-
vidual nature of the ISA, the cores have not been based on any specific processor.
The instruction set is similar to that of an Alpha but with a number of exten-
sions and modifications. The experimental simulator is written in C. The number
of processor cores and hardware contexts-per-core can be specified at simulator
startup. All experiments reported in this paper use a 4-core, 2-contexts-per-core
layout. Recent experiments have verified that a single core can be simulated at
an approximate instruction execution rate of 1.5 MIPS on a 3GHz IA32 Linux
workstation.



public static void setupSpecLoop() {

// get parameters from subsequent bytecodes

// start value for loop iterator

int begin = pop();

// end value for loop iterator (not inclusive)

int limit = getWordAt(ThreadedBCs.pc);

ThreadedBCs.pc += 4;

// increment value for loop iterator (signed)

int step = getWordAt(ThreadedBCs.pc);

ThreadedBCs.pc += 4;

// pc-relative offset to code after loop

int offset = getWordAt(ThreadedBCs.pc);

ThreadedBCs.pc += 4; // now pc points to 1st instr in loop

// now do speculation, simple example has 2

// hard-wired speculative interpreter threads

// first thread

ThreadedBCs_1.pc = ThreadedBCs.pc;

ThreadedBCs_1.fp = ThreadedBCs.fp + NEW_THREAD_STACK;

// ...

VM_Magic.branchCall(); // thread migrates to diff processor

startSpec1();

// and in parallel, second thread

ThreadedBCs_2.pc = ThreadedBCs.pc;

ThreadedBCs_2.fp = ThreadedBCs.fp + 2*(NEW_THREAD_STACK);

// ..

VM_Magic.branchCall(); // thread migrates to diff processor

startSpec2();

// now both speculative interpretation threads

// should be running in parallel, wait

// for them to complete

while (VM_Magic.branchThreadSynchronize() != 0) {

Thread.yield();

}

// ...

}

Fig. 4. Source code for speculative parallel interpreter



model static FDEs dynamic FDEs

switch-based one one
threaded many one
parallel many many

Fig. 5. Fetch-decode-execute (FDE) characteristics of different interpreter models

4.2 Jikes RVM

The IBM Jikes RVM [AAB+00,AAB+05] is written mostly in Java and there is
a great deal of published material about its structure. In addition, there is a very
active research community experimenting with many aspects of dynamic com-
pilation and more general VM issues. A version of the Jikes RVM has therefore
been constructed on top of the instruction-level simulator. This required both
the retargetting of the compilers and the extension of the system to make use
of multiple cores. This includes the mapping of Java threads onto multiple cores
and the handling of concurrent garbage collection.

Although the Jikes RVM has been designed for the execution of Java pro-
grams there are many aspects of the system that are applicable to the execution
more general programs. Java bytecode is translated to a high-level intermediate
representation (HIR). This is a 3-address format which enables a range of optimi-
sations to be performed. As the dynamic compilation proceeds, this is translated
through two further intermediate forms before reaching the native code of the
target processor. At the highest level, general optimisations such as loop un-
rolling are performed. This is the level at which we are implementing generic
(non-speculative) parallelization optimisations. At lower levels, more processor
specific optimisations such as register allocation are done.

The Jikes RVM executes about 500 million instructions in order to boot itself
ready to execute a basic Java program; that is about 10 minutes of simulated
execution. A program such as the 205 raytrace SPECjvm98 benchmark, which
executes for approximately 15 seconds on a 3GHz IA32 requires about 10 hours
of simulation time for a single Jamaica processor.

4.3 Interpreter

We designed a simple stack-based bytecode virtual instruction set, influenced by
PCode [Nel79] and OCode [Ric71]. It has standard stack-based operations for
integer arithmetic, conditional branches, memory access and function calls. It
also has some support for speculation, as described later in this section. Figure
6 reviews the full instruction set.

We developed a series of simple interpreter VMs for this stack-based virtual
instruction set. All the interpreter models are developed in the Java program-
ming language. The simplest model is a switch-based bytecode interpreter, con-
forming to the description in Section 3.1. This simplest model can run on top of



operation classification instruction opcodes

integer arithmetic operations ADD, SUB, MUL, DIV, MOD
conditional branch operations B, BEQ, BNE, BLT, BLE, BGT, BGE
memory access operations LDW, STW
function call operations CALL, RET
stack manipulation operations DUP, DUPx2, SWAP, POP, PUSHFP, PUSHCONST
speculation support annotations SPECLOOP, SPECLBEGIN, SPECLEND

Fig. 6. Bytecode operations for Simple Interpreter

any standard JVM. More complicated interpreter models (as described in Sec-
tions 3.3 to 3.4) make assumptions about the services provided by the underlying
host VM. These services are specifically provided by the VM Magic API of the
Jamaica port of the Jikes RVM.

The most complicated interpreter model supports speculative parallel inter-
pretation. In this model, annotation bytecodes mark the start and end of each
loop body that may be speculatively parallelized. These annotations must be
inserted automatically by a static compiler, or manually at the assembly lan-
guage level. The annotation information gives static bounds on loop iterator
values. Note that this information is only a suggestion about speculation. It can
be disregarded, indeed, it is ignored entirely by non-parallel interpreter models.
Unfortunately, due to time constraints, at present our speculative parallel inter-
preter model is not fully functional. It buffers memory accesses by speculative
threads, but it is unable to support rollback in the case of data dependence
violations.

4.4 Test programs

There are two microbenchmark programs to test the interpreter. The primes

program checks the primality of integers and does some simple mathematical
computations based on the outcome. The matrix program performs matrix mul-
tiplication for matrices with integer elements. Since this system is still at the
prototype stage, there is no compiler for the bytecode interpretive language.
Both the microbenchmarks were hand-coded.

5 Results

All the reported results are in terms of cycle counts. These are obtained from
the instruction-level simulator of the Jamaica architecture. Figure 7 shows the
cycle counts taken by different interpreter models on the two microbenchmarks.
Due to time constraints we were unable to obtain a cycle count for the primes

program on the speculative parallel interpreter.
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We also coded the matrix program in Java and ran it “natively” on the
Jamaica Jikes RVM, to compare cycle counts. The native version took just over
840,000 cycles. If we normalize the results for matrix in relation to this native
result, then the execution times are as follows.

execution system relative time

native 1
speculative parallel 14
cached/inlined 24
threaded 32
switch-based 107

These results show that increasingly sophisticated interpreter models get
closer to the performance of native code, but are still over 10 times slower than
it.

For the record, the Jamaica Jikes RVM configuration used is OptBaseNoGC.
All cycle counts were obtained on the second run of the interpretation, presuming
all Jikes RVM compilation overhead to be factored into the first run of the
interpretation.

6 Related Work

6.1 Interpretation techniques

Klint [Kli81] gives the earliest survey paper for interpretation techniques. Ertl
and Gregg [EG03] provide motivation for efficient interpretation, and then de-
scribe some techniques. However neither of these surveys includes speculative
techniques. Pickett and Verbrugge [PV05] describe the implementation of a spec-
ulative interpretation system for Java, running on top of a native processor rather
than another VM. They employ method-level speculation, which predicts return
values from method calls before they have completed. Yoshizoe et al [YMH98]
use loop-level speculation, which predicts loop variant values before loop itera-
tions have completed. Again, this is for a Java interpreter running on a native
platform. Our approach is different because our interpreter VM only provides
hints to the underlying Jamaica Jikes RVM. These other interpreters make ex-
plicit decisions, since they run directly on non-virtual platforms.

6.2 VM abstraction techniques

Piumarta et al [PFSB00] advocate the virtual virtual machines approach, which
brings the concepts of aspect orientation to VMs. There are a wide range of
different VM services, and the system dynamically weaves together as many
services as necessary to create a VM with sufficient capabilities to run each
application. This is a virtualization that broadens the functionality of a single
VM, rather than building guest VM layers on top of host layers in a stack.
The Xen approach of paravirtualization [BDF+03] aims to multiplex around



a hundred x86 VMs on a single system, with low virtualization overhead and
pervasive resource accountability. This provides a farm of VMs, not a stack. The
whole aim of Xen is to avoid interaction between these VMs altogether. The
parallel virtual machine (PVM) [GBD+94] abstracts a heterogeneous cluster of
machines, then permits client program to use these resources in parallel. In this
sense PVM is similar to our system, however PVM allows client programs to
specify precisely their parallelization policies, whereas our system only permits
clients to make hints.

7 Concluding Remarks

The primary motivation for this research is that there is no speculation support
in the Jamaica version of Jikes RVM at present. We have implemented a sim-
ple software speculation VM layer, which seems the easiest and least intrusive
approach [CL03]. However, this approach has several disadvantages.

1. Software support is always less efficient than hardware support.
2. Existing Java programs cannot be candidates for speculation. Only byte-

code programs executed by the simple interpreter can be speculatively par-
allelized.

Nevertheless this study was justified, for the reasons below.

1. It has presented the HOV paradigm.
2. It has argued that it is straightforward to build speculation support on top

of non-speculative parallelism.
3. These ideas have been implemented in a simple prototype bytecode inter-

preter system.

Much work remains to be done. The speculative parallel interpreter model
must be developed to enable the speculative rollback mechanism. Microbench-
marks will be required to measure the overhead of rollback. The primitive loop-
level speculation could be improved. A compiler for this simple bytecode lan-
guage would facilitate easier production of microbenchmark tests. The long term
goal of our research is to implement support for speculation directly within the
Jamaica version of the Jikes RVM. However this small case study should be a
useful experience.
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