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Abstract
We introduce the Forseti system, which is a principled ap-
proach for holistic memory management. It permits a sysad-
min to specify the total physical memory resource that may
be shared between all concurrent virtual machines on a phys-
ical node. Forseti models the heap size versus application
throughput for each virtual machine, and seeks to maximize
the combined throughput of the set of VMs based on concepts
from economic utility theory. We evaluate the Forseti system
using a standard Java managed runtime, i.e. OpenJDK. Our
results demonstrate that Forseti enables dramatic reductions
(up to 5x) in heap footprint without compromising application
execution times.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Memory management (garbage col-
lection); D.4.2 [Operating Systems]: Storage Management—
Allocation / deallocation strategies

General Terms Measurement, Performance

Keywords Heap sizing, virtual machines

1. Introduction
In many data center and enterprise server scenarios, multiple
virtual machines (VMs) are co-located on a single physical
node. These VMs might be language-level, e.g. Java virtual
machine (JVM), or system-level, e.g. Docker container. A key
characteristic of such systems is the elastic memory usage.
For an individual VM, its memory resource requirements will
vary over time. For a physical node where VM spin-up and
shutdown is interactive, the whole-system memory resource
requirements will vary over time.
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This paper introduces Forseti1, a principled technique for
holistic memory management, that enables a sysadmin to
specify the total physical memory resource that may be
shared between all concurrent VMs on a physical node.
Forseti controls the maximum amount of memory that each
individual VM uses, aiming to meet the total memory target
specified by the sysadmin. Our Forseti system is similar to
Alonso and Appel’s advisor service [3]. Whereas they control
memory usage to avoid paging, we have a fixed memory
usage target and seek to optimize total system throughput
within that constraint. In summary, our advisor shepherds
multiple concurrent VMs, aiming to prevent the sum of their
runtime heap sizes from exceeding a fixed amount.

1.1 Current Practice
Current recommended practice for enterprise servers running
JVM applications is static heap size provisioning [18]. This
static heap configuration may be based on guidelines sup-
plied by developers (e.g. [2]) or service providers (e.g. [1]).
Alternatively, optimal parameters may be determined by a
search-based approach (e.g. [15]).

There are several problems with this approach. When VMs
have varying memory profiles over time, or multiple VMs are
admitted to the system queue at unpredictable time intervals,
then it is inevitable that the static heap size provision will
be suboptimal. In some cases, there will be under-utilization,
i.e. ‘spare’ memory goes unused. In other cases, there will be
over-commitment which can lead to the system running out
of memory, either thrashing or causing fatal runtime errors
in VMs. In both cases, the system behavior is undesirable. A
holistic memory manager can address both problems. Further,
a holistic memory manager is able to allocate resources to
competing VMs in such a way as to maximize the overall
throughput of the system.

1.2 Forseti System
Our solution, Forseti, is a system daemon that is assigned a
total memory target. Individual VMs register with the Forseti
daemon when they start executing. They regularly send heap

1 named after the Norse deity of justice and reconciliation



size and throughput readings to the daemon. Each registered
VM receives periodic advice from the daemon about the
current system-optimum value for that VM’s maximum heap
size.

Forseti improves system performance, enabling concurrent
VMs to run in small heap sizes. We show that, in many of
these situations, best-practice static resource partitioning fails
or is particularly slow. This paper addresses the challenging
scenarios where changes in an application’s heap size have
significant effects on its throughput.

There is minimal instrumentation overhead with Forseti.
In terms of the VM codebase, for instance, the Java OpenJDK
runtime was extended with fewer than 100 source lines
of code to provide hooks into the daemon. There is low
runtime overhead too, due to socket-based communication.
Effectively, the system requires one IPC call per VM garbage
collection, plus n IPC calls for the n VMs every advice period
(tens of seconds).

1.3 Contributions
This paper makes the following three contributions:

1. We describe the implementation of the Forseti system for
dynamic heap resizing, based on principles from economic
utility theory.

2. We report our experience in applying this system to the
OpenJDK runtime system.

3. We evaluate the Forseti system, demonstrating that it en-
ables relatively low heap memory footprints while en-
suring good performance. In the best example from our
results, see Section 5.4, Forseti achieves the same execu-
tion time as the default OpenJDK heap sizing mechanism
for a set of four Java benchmarks, while ensuring the max-
imum combined heap footprint is only 20% of the default
maximum combined footprint.

2. Motivation
In a system that hosts multiple concurrent VMs, how should
we partition the underlying memory resource between them
to get the best overall throughput?

In general, each VM manages the size and layout of its
own heap. Adjustments are made at runtime based on generic
metrics such as throughput (proportion of execution time
spent doing useful work rather than GC) which the VM
measures as it runs. Existing systems are good at managing
the heap to improve their own performance. However, they
do not take account of other VMs running on the same
system (except implicitly, through the impact other VMs
have on their own performance measurements). With all the
VMs aggressively trying to optimize their own performance,
resources such as memory might be oversubscribed, causing
system-level effects like paging or single-VM effects like
memory starvation. The overall performance of the system
can be degraded as a result.

It is common in enterprise applications for many VMs to
be co-located on a single physical node. The node administra-
tor may be more concerned that the overall system performs
well than with the performance of any of the individual VMs.
If the VMs’ heap-sizing mechanisms were aware of other
VMs, they might be better able to achieve this goal by acting
cooperatively rather than competitively. This requires each
VM to make performance information available for the rest
of the system to use.

Different VMs have different needs for the layout and
internal management of their heaps, depending on the garbage
collection algorithms they use and the characteristics of the
programs they run. Because these details are so specific, they
are of little use to a general system trying to help many
different VMs cooperate. Additionally, for a general system
to try and dictate these details to VMs would require an
enormous duplication of code and effort. Instead, such a
system should be based on generic metrics that apply to all
VMs, such as total heap size, throughput, and maximum
permitted heap size. The system could use the heap size and
throughput metrics from each VM to predict the maximum
heap size each VM should be permitted, so as to maximize
performance of the overall system.

Cameron and Singer [8] implement a simple multi-VM
heap sizing system based on static decisions derived from
analytic solutions. The heap size and throughput metrics are
based on offline profiling, and the maximum heap sizes are
fixed at startup. However, reported results show that it does
not perform better, on average, than allowing the VMs to use
their existing heap sizing mechanisms with no knowledge
of each other. This static sizing approach is unsuitable for
practical use. Most importantly, programs’ behavior changes
throughout their lifetimes, sometimes in unpredictable ways,
and this static approach does not adapt to take this into
account (in fact, it only works with programs that exhibit
deterministic behavior).

Our work is designed to overcome these limitations. We
modify several VMs to report their current heap size and
throughput metrics after every GC. An additional process,
the Forseti daemon, runs concurrently with the VMs and
receives their reports. Periodically, it uses the most recent
data to calculate the maximum heap sizes that should lead
to the best overall system performance, and sends these
size recommendations back to the VMs. The heap-resizing
mechanisms in the VMs have been altered to respect these
recommendations. In this way, the system can adapt to
changing behavior. The Forseti system is described in detail in
Section 4. The daemon process uses economic utility theory,
see Section 3, to determine appropriate heap sizes for each
VM. Other optimization strategies, perhaps based on machine
learning or control systems engineering, could be plugged
into the daemon instead.



3. Microeconomic Theory
Consumer theory is based on the concept of utility, which is a
measure of a consumer’s happiness. For a single commodity,
a utility function describes how utility depends on the amount
of the commodity the consumer has. Utility functions are
usually increasing (more commodity gives higher utility), but
with diminishing returns (the more the consumer has already,
the less benefit they get from an additional unit).

This is analogous to the typical behavior we expect from
a program with a managed heap [5] that is sufficiently small
to avoid significant paging [24]. We assume this scenario
throughout the paper. In general, the larger the heap, the
less time the program spends in garbage collection, and
consequently the throughput is higher (the proportion of
time spent doing non-GC work). But the bigger the heap
already is, the less throughput is improved by making the
heap bigger still. This gives us a throughput function which
is equivalent to a utility function, with heap size in place of
quantity, and throughput in place of utility. We recognize
that this throughput function may not be applicable to all
GC algorithms, e.g. in the G1 collector [10] throughput is
independent of heap size, assuming the marking threshold is
set at a fixed fraction of the heap.

We can model the typical throughput relationship mathe-
matically using a function which is strictly increasing, and
has a derivative that is strictly decreasing but always positive;
the need for these conditions is similar to other systems e.g.
[4, 8, 19]. We have chosen to use a power law of the form
T (h) = ahb, where a > 0 and 0 < b < 1. The real-valued
constants a and b are application-specific. Figure 1 shows
this function.

Figure 1. Example throughput function T (h) = ahb, where
a > 0 and 0 < b < 1. The function is strictly increasing and
exhibits diminishing returns.

When people buy more than one commodity, consumer
theory tells us how best they should split their resources.

We first combine the individual utility functions for the
commodities to make an overall utility function in terms
of the quantities of both commodities. We then maximize
this function within the constraint that the consumer cannot
spend more than their overall budget. This tells us how much
of each commodity the consumer should buy.

In the case of memory management, we combine the
throughput functions for the running programs to make an
overall throughput function for the system. We chose to com-
bine the functions using multiplication, which preserves the
convex properties of the throughput function. Thus the over-
all function has the standard Cobb-Douglas form from eco-
nomic theory [9, 16] i.e. Toverall(h1, h2) = T1(h1)T2(h2) =
ah1

bch2
d. The constraint we apply here is the memory target,

the total amount of memory we intend to allocate to the entire
system. There is a second constraint in memory management
that is not present in economics: the minimum heap constraint.
Programs require a certain minimum heap size to run at all, so
we must make sure each program is given at least this amount.
We now optimize the total overall throughput function within
these constraints to predict the heap sizes which should give
the best overall throughput of the system. Figure 2 shows this
situation graphically.

Although the examples given here only use two pro-
grams, the theory generalizes to more. In the general
case, the overall throughput function for N programs is
Toverall(h1, . . . , hN ) =

QN
i=1 Ti(hi).

4. Forseti System
The system2 has two parts: the Forseti daemon which makes
maximum heap size recommendations, and the VMs which
have been modified to interact with it. The general architec-
ture of the system is shown in Figure 3.

4.1 Forseti Daemon
The Forseti daemon runs concurrently with the VMs, on
the same machine. It observes their behavior and makes
heap sizing recommendations with the aim of improving the
overall throughput of the system. The total memory target for
the daemon is set at launch time. All communication between
the daemon and the VMs uses Unix sockets.

4.1.1 Individual Throughput Functions
To apply the economic theory described in Section 3, an
individual throughput function is required for each of the
VMs in the system. The throughput functions have the form
T (h) = ahb, where the constants a and b are program-
specific.

The VMs send readings to the Forseti daemon, consisting
of the heap size and throughput of their most recent period
of mutation (Section 4.2.1 describes how throughput is
calculated). For each VM, the daemon keeps a cache of

2 We will publish our code, experimental scripts and datasets to an open
repository when double blind review process is complete.
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Figure 2. The combined throughput function for two pro-
grams; Toverall(h1, h2) = T1(h1)T2(h2). The curved lines
represent equi-throughput contours in the function. Through-
put increases towards the upper right of the figure. The solid
diagonal line represents the total memory target. The dashed
horizontal and vertical lines represent the minimum heap
sizes of the two programs, and the shaded areas are the areas
excluded from consideration by the minimum heap constraint.
Heap size combinations below the target line are feasible;
those above it are infeasible (they use more memory than is
available). The best feasible point found by the optimization
occurs on the target line, where this line touches the highest
equi-throughput contour line.

these readings. These caches have a fixed size, and readings
are replaced using a least-recently-received policy. When
the VM’s behavior undergoes a phase change, old readings
from the previous phase (which no longer reflect the VM’s
behavior) will gradually be replaced by new readings from
the current phase. The readings in the cache should therefore
always reflect the VM’s current behavior. New readings for
sizes that are already in the cache are combined with the
existing reading using an exponentially-decaying average, so
that the influence of the old readings decreases over time.

When the daemon requests an individual utility function,
the constants a and b are calculated by curve-fitting the
general function given above to the readings in the cache.
Curve-fitting only makes sense when there are at least two
points in the cache; if this is not the case, then no function
can be generated. Therefore, the very first change in heap size
for a VM is determined by the default underlying ergonomics
system without consulting the Forseti daemon; this allows
the system to get a second point for that VM.

Figure 3. High-level architecture of the system. All N VMs
(here N = 2) report their heap size and throughput to the
Forseti daemon after every GC. The daemon periodically
calculates maximum heap size recommendations based on
recent readings, and sends these back to the VMs.

4.1.2 Making Recommendations
VMs send readings to the daemon whenever a GC completes.
The daemon responds at regular intervals (by default, every
ten seconds). At this time, an individual throughput function
is generated for each VM, and the daemon optimizes the com-
bined throughput function to find the combination of heap
sizes which is predicted to give the best overall throughput.

If only one VM is present, it is assigned all the memory
available, respecting the target. If two or more VMs are
present, the overall throughput function is optimized using the
L-BFGS-B algorithm [7] for numerical optimization, which
suggests new values of heap sizes for individual VMs that
are expected to increase the combined throughput based on
the fitted throughput functions. The daemon then sends out
the recommendations to their respective VMs

When a VM receives a heap size recommendation, it will
grow or shrink its heap as appropriate at the next GC event.
The step size of the change is determined by the HotSpot
ergonomics component, which alters heap size in a gradual
manner. The VM continues to act on the same heap size
recommendation until it receives a new recommendation from
the daemon. In general, the frequency of recommendations is
lower than the frequency of GCs.

4.1.3 VM Lifecycle
The Forseti daemon also responds to changes in the number
of VMs. A newly-created VM announces itself to the daemon
by sending its first reading. At the next recommendation,
the daemon will take the new VM into account. When a
VM terminates, it should send a death notification to the
daemon, which will delete the late VM’s reading cache. Even
if a VM crashes or fails to send a death notification, the
daemon will detect its absence eventually (attempting to send
a recommendation to it will fail), and clean up appropriately.



4.2 Modified VMs
VMs intended to work with the Forseti system must do two
things: send readings to the daemon, and receive recommen-
dations from it. The VM must be modified to support this,
although we have encapsulated most of the work in a library
so that the modifications are as small as possible. We have
modified the OpenJDK VM to work with our system.

4.2.1 Calculating Throughput
After every GC, the VM should send a reading to the daemon
consisting of two things:

• The heap size during the period of mutation immediately
preceding this GC.

• The throughput over the whole period of this GC and the
mutation immediately preceding it.

Throughput is defined by the formula:

throughput =
mutationTime

mutationTime + gcTime

(1)

In a VM with only a single type of GC, the definition of
throughput can be applied directly.

In a VM with generational GC, the situation is more
complicated. Applying the throughput definition directly
to all GCs gives different values of throughput for major
and minor GCs. Minor GCs, which typically have short
pause times, give high throughput readings, while major GCs,
with much longer pause times, give much lower throughput
readings. The outlying points representing major GCs disrupt
the curve-fitting algorithm used in the daemon to such an
extent that the generated functions are essentially useless.

Vengerov [22] proposes an analytic throughput model
for generational heap layouts, which defines a smoothed
throughput function based on parameters that are observed
at each major and minor GC. Although the conditions in our
system do not match all the assumptions used to derive the
analytic model (e.g. it is derived for a VM in a steady state,
whereas we are also concerned with startup behavior), we
apply it for our experiments throughout this paper and get
useful results.

4.2.2 Proxy Library
All communication and most of the throughput calculations
are encapsulated inside a proxy library with a simple and
well-defined interface. The VM must initialize the proxy at
startup, and delete it at shutdown. The library is implemented
in C++, which it is expected most VMs will be able to link
against.

From the VM programmer’s point of view, all that is
required to send readings to the daemon is to:

• Call a function when a GC starts, and another when a GC
ends.

• Provide a way for the library to query the current heap
size (by implementing a pure virtual function).

To receive recommendations from the daemon, the library
uses a background thread. The VM can then call a non-
blocking function to test whether a new recommendation
has been received since the last call. It is then up to the
VM programmer to modify the heap-sizing code to treat that
recommendation as an upper limit, which the heap will not
exceed.

The proxy library can report an estimate of the minimum
heap size of the currently running program to the daemon.
This value may be specified by the sysadmin or extrapolated
conservatively from observed runtime behavior.

4.2.3 HotSpot JVM
We modified version 8 of the HotSpot JVM provided by
OpenJDK to use the proxy library and communicate with the
Forseti daemon. Specifically, we modified the ‘parallel scav-
enge’ garbage collector, which is a generational collector, and
hence we used the Vengerov method to calculate throughput.

To take account of the recommendations received, we
modified the ‘adaptive size policy’, which decides how the
heap should be resized after each GC. The existing policy
checks a number of metrics to make its decision. We added
our recommendation check as the first (i.e. highest priority)
metric: if the heap is bigger than the recommended size,
shrink (using the existing resizing code); else, continue with
the original logic. Because of the encapsulated proxy library,
the changes needed to implement this were minimal. The
sizes received from the daemon are recommendations, not
exact instructions, so the heap is not immediately forced to
that size. Instead, the existing heap-sizing mechanism grows
and shrinks the heap gradually, within the recommended size
limit.

5. Evaluation
We performed experiments to compare the Forseti system
against the default heap-sizing algorithm in OpenJDK.

5.1 Experimental Platform
All experiments were carried out on a single machine with
a quad-core Intel Core i5-3570 CPU clocked at 3.4 GHz,
16 GB of RAM, running Linux Mint 17 with kernel 3.13.0-
24-generic 47-Ubuntu SMP. The VM used in the experiments
was our modified version of HotSpot from OpenJDK 8. All
unnecessary services on the machine were disabled.

5.2 Selecting Experimental Workloads
The DaCapo benchmark suite [6] provides several Java
benchmarks based on real-world open-source applications.
These benchmarks consist of fixed-workload iterations, where
each iteration is a repetition of the benchmark program in the
same JVM process. By adjusting the number of iterations,
we can construct a fixed-workload benchmark of any desired
length. We then treat the benchmark as a black box, and
consider a single execution of a JVM running N iterations



to be a single fixed-workload program. By running several
of these programs concurrently (in separate JVM processes),
we can construct a multi-VM workload.

Previous work by Cameron and Singer [8] indicates that
workloads consisting of two instances of the same benchmark
have different performance characteristics from combinations
of two different benchmarks. We therefore randomly selected
several same-benchmark workloads and several different-
benchmark workloads from the set of all possible two-VM
combinations of the DaCapo benchmarks (ignoring any
benchmarks known not to work under HotSpot 8).

5.3 Selecting Memory Target Sizes
For each combination of benchmarks, we selected memory
targets to use in the experiments based on multiples of the
total minimum heap size of the combination (i.e. the sum of
the individual minimum heap sizes of the benchmarks in the
combination). The minimum heap size for each benchmark
(memory needed to complete without crashing) is determined
through manual experimentation. However, we did this only
for the purpose of determining experimental environments
with different ‘stress levels’ on each VM (multiples 1.1, 1.3,
1.5, 1.7, and 1.9⇥ the minimum heap size), which in turn
are used to illustrate how Forseti works in these different
regimes. In a real deployment, we are targeting contexts
where the VMs are already running (i.e. the sysadmins have
already figured out the amount of memory required to run
each application), and the sysadmins are now interested
in reducing the total memory target (still keeping it above
the sum of the minimum heap sizes that have previously
determined) while maintaining a good combined throughput
for all VMs. In such contexts, the L-BFGS-B algorithm used
by Forseti will automatically discover the VMs that are close
to their minimum memory requirements (the ones whose
throughput is greatly reduced when their heap size is reduced)
and will suggest giving them more memory, thus avoiding
violating the minimum heap requirement for any VM.

5.4 Illustrative Examples
This section provides a case study that gives an intuitive feel
for the Forseti system’s behavior, prior to running a more
systematic evaluation in Section 5.5.

Figure 4 shows the heap size and throughput readings
received by the daemon for execution of several Java bench-
marks. For these initial experiments, each benchmark is exe-
cuted in isolation on a single VM and the daemon provides
pseudo-random heap size recommendations. A throughput
function for each benchmark is generated by curve-fitting
the general throughput function T (h) = ahb to the observed
points. The function has the expected shape for the power
law throughput function shown in Figure 1.

Figures 5 and 6(a) show the behavior of four distinct VMs
managed by the Forseti daemon over their lifetimes. The four
VMs, indicated by the different colored lines, start execution
at 100s intervals and finish at different times. In Figure 5, each

plot shows the actual and recommended heap size for a single
VM. In Figure 6(a) the upper panel shows actual heap sizes
(gray lines) and the memory target (horizontal dotted black
line) for all VMs, as well as the total actual memory usage
(dashed black line). The vertical dashed lines show when each
VM was created and destroyed. The bottom panel shows
throughput for each of the VMs, over the same timescale.
The daemon makes recommendations at ten-second intervals
throughout the run.

The heap sizes of the VMs expand to make use of available
memory, and contract when they become bigger than the
recommended size. When a new VM starts, it has to complete
several GCs before the daemon can build a model for it. Until
this happens, the total memory usage tends to increase above
the target, as can be seen at around 120 seconds. Except for
these brief periods, the system keeps the total memory usage
close to or below the target.

Figure 6(b) shows the behavior of the same four VMs
without the Forseti daemon. In this case, the existing per-VM
OpenJDK heap sizing mechanism is in full control, and is
agnostic of the memory target. Comparing the two figures,
we see that the total runtime of the four benchmarks is similar:
675 s with the daemon, and 667 s without it. However, the run
with the daemon uses much less memory overall: 269 MB
at the highest point, compared with 1411 MB at the highest
point without the daemon. We see that the Forseti daemon
allows a small time penalty (8 s) to be traded for a dramatic
decrease in overall memory usage (the high watermark is
5.2⇥ lower with Forseti).

5.5 Experimental Methodology
We compare three different heap-sizing mechanisms for
concurrently-executing VMs, using various memory target
values, M .

Unconstrained The baseline case; the VMs are run without
the Forseti daemon. No size recommendations are made,
and the VMs’ existing heap-sizing mechanisms have
full control. The maximum heap size for each VM is
statically set to the target, M , using the -Xmx command-
line parameter.

Static equal Memory is distributed equally among the VMs.
The VMs are run without the Forseti daemon. No size
recommendations are made, and the VMs’ existing heap-
sizing mechanisms have full control. The maximum heap
size for each of the N VMs is statically set to M/N using
the -Xmx command-line parameter.

Daemon The VMs are run concurrently with the Forseti
daemon, and communicate with it. The daemon makes
recommendations by applying economic theory to the
readings provided by the VMs.

For every combination of workload, memory target size,
and heap-sizing mechanism, the benchmarks in the workload
are started concurrently on distinct JVMs, and the wallclock



(a) h2/large (b) jython/large

(c) lusearch/default (d) pmd/default

(e) sunflow/large (f) tomcat/large

Figure 4. Heap size and throughput readings received by the Forseti daemon issuing pseudo-random recommendations. The
throughput function is generated by curve-fitting the general power law function to the readings.



Figure 5. Behavior of four VMs with staggered start times at 0, 100, 200 and 300 seconds. Each plot shows the heap size for
a single VM against time. The thicker black line shows the heap size recommendation made by the Forseti daemon, for that
individual VM. At all times in this experiment, the sum of the size recommendations is 200 MB. The same four VMs are plotted
on a single graph in Figure 6(a).



(a) with Forseti daemon

(b) default heap sizing

Figure 6. Behavior of four VMs with staggered start times at 0, 100, 200 and 300 seconds. The highest black line (only visible
when more than one VM is executing, i.e. between around 100 and 600 seconds) indicates total combined heap size. In each case,
the upper chart shows heap size, and the lower chart shows corresponding throughput. Note that the combined heap footprint is
much smaller with the Forseti daemon, but the overall runtime is almost identical.



time for all of them to complete is recorded. This is repeated
ten times. The heap-sizing mechanisms are compared to see
which one gives the lowest total runtime on average.

5.6 Results
The results of the experiments are presented in Figure 7 and
Table 1.

Benchmark combinations are defined in terms of name,
input size, threads, and iterations, as described in Section 5.2.
For each combination, memory targets between 1.1 and
1.9 times the combined minimum heap size are used, as
described in Section 5.3; these are reported both as multiples
and as absolute sizes in Table 1. For each benchmark and
heap size, the execution times of the combination using the
three heap-sizing mechanisms are compared (results are the
mean of 10 repetitions, and uncertainties are ± one standard
deviation from the mean). Figure 7 shows these execution
times, relative to the baseline unconstrained configuration.

In most cases, the unconstrained baseline is the fastest, the
static equal partition is the slowest, and the runtime with the
Forseti daemon is in the middle (the times in Figure 6(b) in
the previous section correspond to the unconstrained case).
There are some anomalous results in the static equal case,
where the execution time is an order of magnitude higher than
the rest. These are cases where the combination has enough
memory to complete, but only just; one of the VMs spends
a long time in garbage collection before finally completing.
Some cases do not complete successfully at all, because one
of the benchmarks runs out of heap space and crashes. None
of the Forseti daemon or unconstrained experiments crash.

Table 1 compares the combined heap size actually used
for each configuration. For the static equal and unconstrained
cases, these are predictable upper limits, because they are
set statically. In the static equal case, the memory target
M is divided equally between the VMs (the ‘Target (MB)’
column in the table). In the unconstrained case, the maximum
combined heap size is M ⇥ N , because each of the N
VMs is given M . In the Forseti daemon case, we report the
maximum of the sum of heap sizes over all JVMs, across the
ten repetitions of each benchmark/target combination; this
is considered to be an upper limit. In almost all cases, the
maximum total memory usage with the daemon lies between
the other two cases.

These results show that the Forseti daemon allows us to
achieve two things:

• In comparison to the baseline unconstrained case, using
the daemon allows us to trade off a small amount of
execution time (arithmetic mean 5.7% slowdown) for a
large reduction in maximum heap size (arithmetic mean
32% smaller). This is consistent with the illustrative
example given in Section 5.4. It also gives us a simpler
way to control the total heap size (by setting just one
number, the target) than attempting to set the maximum

heap sizes of each of the benchmarks statically to give the
best performance.

• In comparison to the naive static equal case, using the
daemon allows us to decrease the running time, or in
some cases allow benchmarks to run to completion that
otherwise would not complete at all, in exchange for a
moderate amount of extra heap space (arithmetic mean
41% larger).

5.7 Overhead
In all reported experiments, the time overhead for running the
Forseti daemon is small. We analyzed the 6104 experimental
runs completed for this paper:

• mean experiment wall clock time is 412 seconds (max is
2300 seconds).

• mean daemon CPU time is 1.00 seconds (max is 5.94
seconds).

• mean daemon memory footprint is 23MB (max is 29MB).

The majority of the daemon memory footprint is occupied
by the Python runtime, which is embedded in the daemon
since it relies on the Python scipy L-BFGS-B implementa-
tion. We intend to develop a more time- and space-efficient
daemon that uses C bindings to the original Fortran imple-
mentation of L-BFGS-B [28]. Note that the memory footprint
measurements include storage for daemon history tables. The
socket-based communication time between the daemon and
the JVM is negligible.

6. Related Work
The closest related work is the advisor service proposed by
Alonso and Appel [3]. They advocate system-wide central-
ized management of heap sizes for garbage-collected run-
times that have flexible working sets. The advisor aims to
avoid page faults. There is no fixed memory target; instead
it dynamically varies to minimize system paging. Multiple
SML/NJ runtimes execute concurrently. They communicate
with the advisor at every major GC, and receive advice about
how to resize their heaps. The heap sizing model is based on
an analytic model of copying GC. The advisor aims to equal-
ize the CPU time distribution across all SML/NJ runtimes,
including their GC overhead. At the same time, it seeks to
minimize the overall GC overhead. Our Forseti system com-
municates with the daemon more frequently—at both minor
and major GCs due to the use of Vengerov’s throughput model
[22]. Our daemon seeks to maximize application throughput
across all VMs.

Hertz et al. [12] describe a cooperative GC scheme for
system-wide paging avoidance. It is a best-effort approach,
using a shared memory buffer for all VMs to record current
resource usage and indicate if they are incurring page faults
during GC. There are several different heuristic strategies to
determine which other VM will voluntarily shrink its heap,



Figure 7. Experimental results, showing execution times for benchmark combinations with ‘Static equal’ and ‘Forseti daemon’
heap size configurations (lower is better). Times are reported relative to the baseline ‘Unconstrained’ configuration, see Section
5.5 for details. In some cases, there is no time reported for a ‘Static equal’ experiment since one of the benchmarks exhausted its
heap space and crashed.



Benchmark combination Target Target Daemon max
(name, size, threads, iterations) factor (MB) heap (MB)

h2, large, 2, 13 h2, large, 2, 13

1.1 607 726
1.3 718 824
1.5 828 888
1.7 938 946
1.9 1049 999

h2, large, 2, 13 jython, large, 1, 28

1.1 328 429
1.3 387 491
1.5 447 547
1.7 507 565
1.9 566 593

h2, large, 2, 13 sunflow, large, 2, 32

1.1 312 394
1.3 369 462
1.5 426 498
1.7 483 510
1.9 540 567

h2, large, 2, 13 tomcat, large, 2, 15

1.1 317 398
1.3 374 432
1.5 432 500
1.7 490 511
1.9 547 552

h2, large, 2, 13 xalan, large, 2, 27

1.1 307 387
1.3 363 451
1.5 418 480
1.7 474 480
1.9 530 515

jython, large, 1, 28 jython, large, 1, 28

1.1 48 90
1.3 57 94
1.5 66 98
1.7 75 99
1.9 84 117

jython, large, 1, 28 sunflow, large, 2, 32

1.1 33 61
1.3 39 71
1.5 45 76
1.7 51 81
1.9 57 84

pmd, large, 1, 90 pmd, large, 1, 90

1.1 66 97
1.3 78 118
1.5 90 130
1.7 102 148
1.9 114 157

pmd, large, 1, 90 tomcat, huge, 2, 2

1.1 46 73
1.3 55 82
1.5 63 92
1.7 71 97
1.9 80 99

sunflow, large, 2, 32 sunflow, large, 2, 32

1.1 18 34
1.3 21 42
1.5 24 46
1.7 27 53
1.9 30 56

sunflow, large, 2, 32 tomcat, large, 2, 15

1.1 22 42
1.3 26 49
1.5 30 50
1.7 34 53
1.9 38 54
1.1 337 543

h2, large, 2, 13 1.3 398 587
jython, large, 1, 28 1.5 459 687

sunflow, large, 2, 32 1.7 520 746
1.9 581 761

Table 1. Experimental benchmark combinations, showing
heap sizes used for each experiment. For ‘Unconstrained’
execution, each individual VM has a maximum heap size
equal to the target. For ‘Static equal’ execution with N
benchmarks, each individual VM has its heap size set to
1/N of the target. For ‘Forseti daemon’ execution, we report
the maximum observed value of the sum of actual heap sizes
for all VMs.

to allow the paging VM to make progress. There are many
other systems to avoid or mitigate paging by heap resizing.
However these solutions are more intrusive, either modifying
the kernel virtual memory system [25], relying on program
profiling [20, 26], or introducing new kernel modules [11].

Forseti differs from these systems in two respects. First, we
have a fixed memory usage target, rather than a dynamically
varying boundary imposed by the paging limit of the system.
We control the heap sizes of multiple VMs to co-exist at
or below the specified target if possible. Second, we aim to
optimize overall throughput across the hosted VMs, based
on microeconomic utility. Other systems feature best-effort
or heuristic approaches. We note that microeconomic utility
has been previously applied to JVM heap sizing [8], however
this was only in the context of static heap sizing. In contrast,
our Forseti system dynamically adapts to workload phase
changes and unpredictable VM starts and finishes.

In this work, we have focused entirely on language-level
VMs, such as the JVM architecture. We expect that the same
techniques should be applicable for partitioning memory
resource across system-level VMs, like Xen VMs or Docker
containers. Salomie et al. [19] describe a modification to
the OpenJDK runtime to support memory ballooning. Their
technique is generally applicable to any applications that
manage their own memory. They acknowledge that they are
only providing a mechanism for memory resource allocation,
without any specific allocation policy. Ginkgo [13] presents
another JVM ballooning policy based on JNI, with a set
of resource allocation constraints induced by service level
agreements and solved with linear programming. Kim et
al. [14] describe an approach to handle memory resource
allocation for an isolated group of VMs, which may be
subject to a common service level agreement. This is similar
to our concept of a group target for memory resource in
Forseti. Zhao et al. [27] present a working set size estimator to
predict the memory requirements of each VM, then they use a
memory resizer to determine the memory allocation for each
VM. In the case that all working sets can fit into the memory,
then memory is distributed proportionately to each VM. In
the case of memory shortage, a hill-climbing algorithm is
used to determine how to allocate memory between VMs so
as to minimize page misses.

Finally, we realize that it is possible to consider the
fair allocation of other physical resources across multiple
runtimes, such as CPU or network bandwidth. A likely future
trend is the consolidation of resource management for VMs
at the rack-scale [17]. Our Forseti system is a small step in
this direction.

7. Future Work
The Forseti daemon has several configurable parameters.
Most important is the memory target size, which must be spec-
ified when the daemon is launched. The size of the caches,
the frequency of recommendations, and the weighting given



to old and new readings in exponential averages can all be ad-
justed. All results reported in this paper have used the default
values for these parameters (100 entries per cache, recom-
mendations every 10 seconds, and a 50% weighting in the
exponential averages). The performance may be improved
relative to the results in Table 1 if smarter feedback learning
mechanisms are used to tune the parameters. Such tuning,
however, is outside the scope of this paper. We aim to demon-
strate the feasibility of fitting functions to experimentally
observed throughput points and then using a global optimiza-
tion algorithm to change heap allocations for each VM. Our
approach is shown to work well even without tuning.

It would be useful to investigate the performance of the
system with heterogeneous VM combinations and potentially
other runtime systems with managed memory, such as those
for Haskell, Go, and JavaScript.

Many of the values observed by the system are noisy, as a
result of non-determinism introduced by process scheduling,
the non-deterministic nature of GC and JIT compilation in
HotSpot, and the IPC used for communication between VMs
and the daemon. In some cases, the throughput functions
generated by the daemon, and hence the heap size recom-
mendations made by it, are sensitive to noise. Introducing
additional smoothing of data into various parts of the system
might help to counter this.

At the moment, the system uses the microeconomic op-
timization model outlined in Section 3, but this could be
replaced by another model, such as the market-based ap-
proach proposed by Vengerov [21], a control system [23]
or a search-based approach. The daemon could be extended
with a plugin system to allow these optimization models to
be replaced and modified by a system administrator.

8. Conclusions
We have introduced Forseti, a holistic memory manager that
seeks to maintain a set of managed runtime heaps within a
fixed overall memory target size. Forseti uses principles from
microeconomic utility theory to partition memory resource
dynamically in such a way as to maximize system throughput.
Our results indicate that Forseti enables dramatic (up to 5x,
see Figure 6) reductions in OpenJDK heap footprints without
significant execution time increase. Thus we feel that Forseti
would be useful for cloud servers which host unpredictable,
constantly changing, multi-VM workloads.
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