
SecureMind: A Framework for Benchmarking Large

Language Models in Memory Bug Detection and Repair

Huanting Wang
University of Leeds

Leeds, United Kingdom
schwa@leeds.ac.uk

Dejice Jacob
University of Glasgow

Glasgow, United Kingdom
Dejice.Jacob@glasgow.ac.uk

David Kelly
University of Glasgow

Glasgow, United Kingdom
2604833K@student.gla.ac.uk

Yehia Elkhatib
University of Glasgow

Glasgow, United Kingdom
Yehia.Elkhatib@glasgow.ac.uk

Jeremy Singer
University of Glasgow

Glasgow, United Kingdom
Jeremy.Singer@glasgow.ac.uk

Zheng Wang
University of Leeds

Leeds, United Kingdom
Z.Wang5@leeds.ac.uk

Abstract

Large language models (LLMs) hold great promise for au-
tomating software vulnerability detection and repair, but
ensuring their correctness remains a challenge. While re-
cent work has developed benchmarks for evaluating LLMs
in bug detection and repair, existing studies rely on hand-
crafted datasets that quickly become outdated. Moreover,
systematic evaluation of advanced reasoning-based LLMs
using chain-of-thought prompting for software security is
lacking. We introduce SecureMind, an open-source frame-
work for evaluating LLMs in vulnerability detection and
repair, focusing on memory-related vulnerabilities. Secure-
Mind provides a user-friendly Python interface for defin-
ing test plans, which automates data retrieval, preparation,
and benchmarking across a wide range of metrics. Using
SecureMind, we assess 10 representative LLMs, including
7 state-of-the-art reasoning models, on 16K test samples
spanning 8 Common Weakness Enumeration (CWE) types
related to memory safety violations. Our findings highlight
the strengths and limitations of current LLMs in handling
memory-related vulnerabilities.

CCS Concepts: • Security and privacy → Software secu-

rity engineering; • Computing methodologies → Artifi-
cial intelligence.

Keywords: Software bug detection, Bug repair, Large lan-
guage models

ACM Reference Format:

Huanting Wang, Dejice Jacob, David Kelly, Yehia Elkhatib, Jeremy
Singer, and Zheng Wang. 2025. SecureMind: A Framework for

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
ISMM ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1610-2/25/06
https://doi.org/10.1145/3735950.3735954

Benchmarking Large Language Models in Memory Bug Detec-
tion and Repair. In Proceedings of the 2025 ACM SIGPLAN Inter-
national Symposium on Memory Management (ISMM ’25), June 17,
2025, Seoul, Republic of Korea. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3735950.3735954

1 Introduction

Large language models (LLMs) such as ChatGPT [4], Gem-
ini [8], Llama [45], and DeepSeek [34] are emerging as pow-
erful tools for detecting and fixing software bugs and vul-
nerabilities. Although LLMs have demonstrated remarkable
capabilities in programming tasks, they still face a significant
challenge – correctness.

Errors in bug detection and repair include failing to iden-
tify or fix bugs or explain the reason, generating false-positive
predictions, or introducing new bugs. Undetected vulnerabil-
ities can lead to severe security risks, while excessive false
positives overwhelm developers and hinder adoption. En-
suring correctness is crucial for automatic bug fixing and
code generation, as LLM-generated code may inadvertently
introduce new bugs or vulnerabilities [21, 35, 39].

Since formally verifying LLM-generated content is still im-
practical [29], empirical evaluation using benchmark datasets
remains the primary method for assessing LLM performance.
However, existing benchmark datasets for code analysis [15,
46] predominantly rely on manually constructed test cases.
While these datasets provide valuable insights, their cov-
erage is inherently limited due to the expensive effort re-
quired to create high-quality test scenarios. Other bench-
marking datasets, such as those based on competitive pro-
gramming [32] or classroom-style coding tasks [10], fail to
represent real-world software engineering tasks sensitive
to security vulnerabilities. Additionally, data leakage poses
a challenge: since LLMs are trained on public data, many
benchmark cases may already be in their training set [43],
resulting in misleadingly high performance and an inflated
sense of the models’ capabilities [9].

An automatic benchmarking framework is important for
systematically testing LLMs’ ability to detect and fix soft-
ware vulnerabilities. Such a framework should reduce the

https://orcid.org/0000-0003-0579-4295
https://orcid.org/0000-0002-4137-0353
https://orcid.org/0009-0000-5576-5842
https://orcid.org/0000-0003-4639-436X
https://orcid.org/0000-0001-9462-6802
https://orcid.org/0000-0001-6157-0662
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3735950.3735954
https://doi.org/10.1145/3735950.3735954

ISMM ’25, June 17, 2025, Seoul, Republic of Korea Huanting Wang, Dejice Jacob, David Kelly, Yehia Elkhatib, Jeremy Singer, and Zheng Wang

need for manual test dataset collection, ensuring alignment
with real-world software development. The framework must
adapt to emerging vulnerabilities and evolving code patterns
whilst mitigating data leakage by ensuring test samples fall
outside an LLM’s training data cutoff. Additionally, it should
support test sample augmentation to assess LLMs’ handling
of code complexity. By providing an automated and repro-
ducible evaluation process, such a framework helps identify
weaknesses and improve LLM reliability and effectiveness
for vulnerability detection and repair.

We present SecureMind1, an open-source framework and
dataset for systematically evaluating LLMs in vulnerability
detection and repair. SecureMind automates benchmark-
ing with customizable test plans, enabling a reproducible
evaluation pipeline with minimal human intervention.
SecureMind offers a Python interface that allows users

to define test plans with minimal effort. This can typically
be achieved using only a few dozen lines of Python code to
define testing parameters such as the target LLM, API cre-
dentials, and model knowledge cutoff date. Upon execution,
it automatically retrieves and caches test samples from six
public repositories, including the Common Vulnerabilities
and Exposures (CVE) database and GitHub. To prevent data
leakage, only datasets published after the LLM’s training
cutoff are included. To introduce adversarial challenges, Se-
cureMind applies source code obfuscation and evaluates
LLMs’ ability to analyze optimized assembly. Code repair
quality is validated using developer-created test inputs re-
trieved automatically, with syntax and functional correctness
checked via static analysis [5, 11].

SecureMind provides an automated evaluation pipeline to
systematically assess multiple aspects of LLM performance,
including prediction accuracy, reasoning capabilities, and
code repair correctness. By default, it quantifies LLM perfor-
mance across six key dimensions: (1) response consistency,
(2) prompt effectiveness, (3) reasoning ability, (4) vulnerabil-
ity detection and repair effectiveness, (5) sensitivity to code
obfuscations, and (6) robustness on assembly code. These cri-
teria can be easily customized and extended via SecureMind
APIs.

SecureMind is part of the community’s efforts in develop-
ing benchmarks to evaluate LLMs in code-related tasks [46].
It differs from prior work by offering a customizable toolkit
for test planning, automated data collection, and evaluation
rather than relying solely on static datasets. Our study tar-
gets memory-related vulnerabilities such as buffer overflows
and use-after-free errors, which account for a significant
portion of software security issues [12, 50]. For instance, 70%
of the most serious security bugs in the Chromium project
are memory-related vulnerabilities [16]. While tested on

1Code, documentation, test data, and full evaluation results are available at:
https://github.com/HuantWang/SecureMind.

memory-related vulnerabilities, SecureMind can be adapted
to cover other software vulnerabilities.

We demonstrate the benefit of SecureMind by applying it
to evaluate 10 leading LLMs for detecting and repairing eight
vulnerability types. Our test set includes seven state-of-the-
art reasoning LLMs, such as ChatGPT-o1 and DeepSeek-R1,
which leverage chain-of-thought prompting [49] at inference
time to enhance coding and logical reasoning.
Using SecureMind, we construct a dataset of over 16K

memory-related vulnerabilities, sourced and augmented from
six data sources, including online repositories (e.g., CVEs [1,
2]), developer-curated datasets (e.g., SARD [37]), and bug
reports from GitHub and Bugzilla. The dataset spans C,
C++, Java, Python, and x86 assembly code, making this the
most comprehensive evaluation of reasoning-based LLMs
for vulnerability detection and repair to date. Our evaluation
demonstrates SecureMind’s effectiveness in benchmarking
LLMs, providing empirical insights into their strengths and
weaknesses. For example, we find that LLMs perform poorly
in automatic patch generation for real-life programs, with
success rates ranging from 3% to 37% across the tested LLMs.
Additionally, minor source code changes can cause LLMs to
miss vulnerabilities or generate false positives.

This paper makes the following contributions:
• An automated and customizable framework for evaluating
LLMs on identifying and repairing vulnerabilities;

• A large-scale evaluation of 10 state-of-the-art LLMs on
vulnerability detection and repair;

• Identifying limitations of state-of-the-art LLMs, providing
a checklist for researchers working in this space.

2 Background

2.1 Large Language Models

LLMs generate content based on user prompts (or queries).
Techniques like instruction tuning teach LLMs to follow in-
structions effectively [41], while RLHF trains them to engage
in human-like reasoning and conversation. This has led to
the development of chat-based LLMs such as CodeLlama and
ChatGPT-4o, which can handle interactive discussions.

2.2 Chain-of-Thought

The latest development in LLMs, such as ChatGPT-o1 and
DeepSeek R1, incorporate chain-of-thought (CoT) reason-
ing [49] to enhance multi-step problem-solving. CoT struc-
tures reasoning steps explicitly, improving LLMs’ ability to
handle complex tasks requiring logical inference and con-
textual understanding. By decomposing problems into se-
quential steps, CoT-equipped models enhance performance
in code-related tasks.

2.3 Model Parameters

Two key parameters affect LLM output: temperature and top-
p. Temperature controls randomness - higher values (≥ 1.0)

https://github.com/HuantWang/SecureMind

SecureMind: A Framework for Benchmarking LLMs in Memory Bug Detection and Repair ISMM ’25, June 17, 2025, Seoul, Republic of Korea

Test Plan

Data
Preparation

Automatic
Evaluation

Test Report

SecureMind

Figure 1. The overall workflow of SecureMind.

1 from SecureMind import DefinitionInterface

2 from openai import OpenAI

3
4 class MyInterface(DefinitionInterface):

5 def __init__(self , temp: list , top_p: list):
6 # Set the LLM parameters to be evaluated

7 super ().__init__ ()
8 self.temp = temp

9 self.top_p = top_p

10
11 def set_model(self , model_name: str , api_key:

str):
12 # Set the model to be tested

13 self.model = OpenAI(api_key=api_key)

14 self.model_name = model_name

15
16 def set_data(self , cutoff_date: str):
17 # Set the dataset cutoff date.

18 self.cutoff_date = cutoff_date

19
20 if __name__ == "__main__":

21 evaluator = MyInterface(temp =[...] , top_p

=[...])

22 llm = evaluator.set_model(model_name , api_key)

23 test_data = evaluator.set_data(cutoff_date="

...")

24 #Use the default evaluation pipeline

25 results = evaluator.evaluation(test_data , llm)

Figure 2. A simplified test plan using SecureMind APIs.

Dataset

Parameter
space

DetectionTest codeTest code

Prompt LLM

RepairVulnerable codeVulnerable code

Prompt LLM

Measurement Engine

Measurement
metrics

Measurement Engine

Security and
functional tests

Vul. detected? Vul. fixed?

Parameter
tuning

Prompt
selection

LLM API key

 Subsets
of test data

Figure 3. The SecureMind evaluation pipeline.

yield more diverse outputs, while lower values make re-
sponses more deterministic. Top-p selects from the smallest
set of words whose cumulative probability exceeds a thresh-
old 𝑝 , adapting to the model’s confidence. Higher 𝑝 values
(e.g., 0.9–1.0) increase variation but risk errors; lower values
(e.g., 0.3–0.5) improve coherence. SecureMind allows users
to specify temperature and top-p ranges during automated
tuning (Sec. 5.1)

3 SecureMindWorkflow

SecureMind is designed to be flexible and customizable, sup-
porting the evaluation of any chat-based LLM compatible
with the OpenAI API. Integrating a test LLM with Secure-
Mind is straightforward, requiring minimal effort from the
user. A basic setup involves writing a short Python script -
usually just a dozen lines of code - to specify theAPI key, LLM
knowledge cutoff date, and test configuration. SecureMind
is highly customizable, allowing users to override relevant

Table 1. Vulnerability databases used by SecureMind.
Name URL

Security advisories reported on GitHub github.com/advisories
The National Vulnerability Database (NVD) nvd.nist.gov
Common Vulnerabilities and Exposures (CVE) cve.org
The Python Packaging Advisory Database github.com/pypa/

advisory-database
NIST Software Assurance Reference Dataset (SARD) samate.nist.gov/SARD/
Bugzilla bugzilla.org

methods within its interface class to tailor and extend default
test strategies to meet specific requirements.

3.1 Test Plan Program

Figure 1 depicts the workflow for using SecureMind, begin-
ning with the definition of a test plan. A simplified Python
implementation of this test plan is shown in Figure 2. The
test plan defines methods from the SecureMind interface
class, including specifying the model to be tested and the API
key (lines 13, 14) required to query the model. Additionally,
it sets the knowledge cutoff date of the test model, allowing
SecureMind to prepare the appropriate test data. The exam-
ple test plan follows the default evaluation method provided
by the SecureMind interface, which returns a Python numpy
data frame containing the evaluation results. However, users
can override this method to customize the evaluation process
and define their own metrics.
Figure 3 shows the automated evaluation pipeline of Se-

cureMind. Upon executing the test plan, SecureMind auto-
matically retrieves and synthesizes test data from public code
repositories such as GitHub, NVD, SARD, and Bugzilla. It
then automatically selects the appropriate model parameters
(Sec.2.3) for detection and repair, before assessing the LLM’s
performance across a range of predefined metrics (Sec.3.4).

3.2 Automated Data Preparation

Given a test plan, SecureMind automatically retrieves and
prepares test samples based on the knowledge cutoff date. It
supports code samples written in C, C++, Java, and Python,
and compiles C and C++ samples into assembly code.

By default, SecureMind downloads test samples for eight
predefined CWE types, extensible via the test plan. It queries
CVEs from six online sources (Table 1) using GraphQL [6], ex-
tracting the vulnerability description, affected GitHub repos-
itories, CWE type, and commits. Samples missing these de-
tails are discarded. SecureMind then inspects each CVE’s
patch commits to locating the vulnerable code in earlier
versions and retrieves the vulnerable function, its patched
counterpart, and any relevant descriptions. Finally, vulnera-
ble snippets are mixed with benign samples - sourced from
other projects or generated by applying developer-written
patches to CVE records - at a configurable ratio.

As this work targets memory-related bugs, we use Gemini-
2.0-Flash to analyse vulnerability descriptions and download
a sample only if the LLM confirms its relevance. Users can
customise bug types and LLM choice via a SecureMind
interface.

github.com/advisories
nvd.nist.gov
cve.org
github.com/pypa/advisory-database
github.com/pypa/advisory-database
samate.nist.gov/SARD/
bugzilla.org

ISMM ’25, June 17, 2025, Seoul, Republic of Korea Huanting Wang, Dejice Jacob, David Kelly, Yehia Elkhatib, Jeremy Singer, and Zheng Wang

Table 2. Source code level code augmentation methods.
No. Augmentation Method

A1 Replace variable names with vulnerability-related keywords
A2 Replace function names with vulnerability-related keywords
A3 Rename a vulnerable function’s name to a non-vulnerable equivalent
A4 Introduce a potentially dangerous library function (e.g., strcpy,

strcat) but use it safely
A5 Define safe function names using macros (e.g., fgets) while embedding

vulnerable functions (e.g., gets) in their implementation
A6 Use sanitization functions (e.g., realpath) in vulnerable code without

mitigating the vulnerability
A7 Use map-defined expressions for safe function names (e.g., fgets) while

introducing vulnerable functions (e.g., gets) in their implementation
A8 Rename parameters
A9 Rename function names
A10 Insert dead code
A11 Add comments
A12 Modify whitespace
A13 Insert additional functions
A14 Insert new lines

3.2.1 Data augmentation. SecureMind provides 14 source
code augmentation methods, as detailed in Table 2, to ob-
fuscate the collected source code and enhance dataset di-
versity. Following previous studies [46], our augmentation
techniques include: 1) function and variable renaming, which
evaluates the LLM’s noise resistance by assessing whether it
can correctly understand program functionality; 2) adding
unreachable functions or code segments, which introduces
structural noise to test the LLM’s equivalence reasoning and
determine whether it can recognize non-executable code;
and 3) adding security-related segments, which obfuscate
program logic to assess the LLM’s security reasoning and
deep code-understanding ability.

3.2.2 Assembly code. Unlike prior work focused on high-
level code (e.g., C, Python, Java), SecureMind also evaluates
LLMs on optimized binaries. This is especially useful for
evaluating LLMswhen third-party source code is unavailable,
and only assembly can be recovered from compiled binaries
(e.g., 3rd party libraries) using tools like objdump. To support
this, SecureMind compiles C and C++ code into assembly
using standard compiler optimization levels (O0 - O3).

3.3 Prompt Templates

Tables 3 and 4 list the built-in SecureMind prompt tem-
plates for vulnerability detection and repair. These can be
customized or extended via SecureMind APIs. By default,
SecureMind supports both zero-shot and few-shot prompts.
Zero-shot prompts rely solely on the LLM’s pre-trained
knowledge, while few-shot prompts include examples to
guide the model more effectively. Following [46], Secure-
Mind provides prompts with step-by-step instructions to
simulate CoT reasoning (e.g., C2 in Table 3, R8 in Table 4),
mirroring how human experts approach vulnerability detec-
tion [47]. These CoT-based prompts also support comparison
between models with and without explicit CoT generation.
To reduce evaluation cost, SecureMind selects the most suit-
able prompt at the start using a small random sample. Users
may override this by supplying a custom prompt set.

3.4 Built-in Evaluation Metrics

SecureMind provides a range of built-in evaluation metrics
for vulnerability detection and repair, described as follows.

3.4.1 Deterministic score. The deterministic score (rang-
ing from 0 to 1) quantifies the consistency of model responses
across multiple runs, irrespective of correctness. By default,
SecureMind measures the deterministic score by running
the test LLM on the same prompt 10 times per test input.
3.4.2 Metrics for detection. For each test sample col-
lected and synthesized by SecureMind, a ground truth label
indicates whether it contains a vulnerability. SecureMind
automatically evaluates LLM performance in vulnerability
detection using four standard metrics: accuracy, precision,
recall, and F1-score. Users can also define custom metrics by
implementing their own evaluation methods.
3.4.3 Metric for bug repair. For bug repair, we report the
ratio of buggy test samples successfully fixed. SecureMind
validates LLM-generated code through a two-step process.
First, it uses CodeQL [5] to verify syntax correctness and
identify any unfixed or newly introduced bugs. If the code is
both compilable and executable, SecureMind then evaluates
the generated binary using test cases from the correspond-
ing project repository. These test cases, originally created
by developers after applying human-written patches, are
retrieved by SecureMind by tracing the vulnerable code
samples back to their repository and associated patch com-
mit. Users can also customize the validation process via the
SecureMind API. To generate repair instances, we use the
repair prompts listed in Table 4, instructing the LLM to pro-
duce 10 repair attempts per test sample per prompt. A repair
is considered successful if at least one attempt passes both
the syntax check and the test case execution.
3.4.4 Metrics for reasoning. Besides assessing the test
LLM’s performance in classifying and repairing vulnerabili-
ties, SecureMind provides an interface to evaluate the LLM’s
explanations for its decisions. Our objective is to assess the
reasoning capabilities of LLMs and determine whether they
can justify their decisions effectively. To achieve this, Secure-
Mind prepares the ground truth explanation for a given vul-
nerability collected from a vulnerability database like CWE,
and automatically evaluates the LLM’s explanation using
three quantified metrics proposed by Ullah et al [46]: (1)
Rouge [33], (2) Cosine similarity [42], and (3) an LLM score.
Rouge. This metric evaluates LLM-generated reasoning text
by measuring its n-gram overlap with the ground truth.
Cosine similarity. This measures the similarity between
two vectors in an embedding space, where a higher value
indicates greater similarity. In this study, we compute this
score by converting the LLM-generated text and ground
truth description into fixed-length vectors using Gemini’s
embedding model ‘text-embedding-004’, but other embed-
ding models can be used when defining the test plan.

SecureMind: A Framework for Benchmarking LLMs in Memory Bug Detection and Repair ISMM ’25, June 17, 2025, Seoul, Republic of Korea

Table 3. SecureMind built-in prompt templates of vulnerability detection
ID Few-shot Description

D1 No Does this code contain instances of the memory-related security vulnerability?
D2 No Does this code contain instances of the memory-related security vulnerability known as {cwe_type}?
D3 No Similar to D2, but with the LLM role set as a "helpful assistant."
D4 No Similar to D2, but with the LLM role set as a "code security expert."
D5 No You are a code security expert who analyzes the given code for the memory-related security vulnerability known as

{cwe_type}.
D6 Yes Similar to D2, but includes an example of a vulnerability and its corresponding patch, along with reasoning texts.
D7 Yes Similar to D4, but includes the few-shot information as D5.
C1 No Similar to D1 but use CoT prompt: "Let’s think step by step."
C2 No Similar to D2 but use CoT prompt: "Let’s think step by step."
C3 No Similar to D3 but use a multi-step prompt: 1. First, you describe the overview of the code. 2. Then, based on the overview,

you identify the sub-components in the code that could lead to {cwe_type}. 3. After that, you conduct a detailed analysis
of the identified sub-components for the existence of the {cwe_type} vulnerability. 4. Based on the detailed analysis, you
determine and answer whether the {cwe_type} vulnerability is present in the given code.

C4 No Similar to D3 but use a multi-round conversation: Provide a brief overview of the code. Based on the overview, identify
the sub-components in the code that could lead to a memory-related security vulnerability known as {cwe_type}.

C5 Yes Similar to C3 but with the role "helpful assistant" and add few-shot information as in D5.
C6 Yes Similar to C2 but with few-shot information as in D5.
C7 Yes Similar to C5, but without the role assigned.

Table 4. SecureMind built-in prompt templates of vulnerability repair
ID Few-shot Description

R1 No Remove the vulnerable memory-related code/function body and replace it with a secure version.
R2 No Remove the vulnerable memory-related code/function body known as {cwe_type} and replace it with a secure version.
R3 No Similar to R2, but with the LLM role set as a "code security repair expert".
R4 No Similar to R1, but with the LLM role set as a "code security repair expert".
R5 Yes Similar to R2, but includes the few-shot information as in D5.
R6 Yes Similar to R5, but with the role set as in R2.
R7 No Similar to R2 but using the CoT prompt: "Let’s think step by step".
R8 No Similar to R2 but using a multi-step prompt: analyze the given code for {cwe_type} security vulnerabilities and system-

atically fix them by following these steps: 1. Remove insecure memory-related functions and replace them with safe
alternatives. 2. Initialize all allocated memory before use to avoid uninitialized memory vulnerabilities. 3. Implement
buffer overflow protection by ensuring all writes stay within buffer limits. Avoid unsafe pointer arithmetic and always
validate pointer dereferences. 4. Enable stack canaries to detect and prevent stack-based buffer overflows. 5. Verify the
fixed code: Ensure that the {cwe_type} vulnerability is fully mitigated.

R9 Yes Similar to R7 but with few-shot information as in D5.
R10 Yes Similar to R8 but with few-shot information as in D5 and with the role set as "code security repair expert".

LLM score. To compute the LLM-evaluated similarity, Se-
cureMind instructs an LLM (Gemini-2.0-Flash in this work)
to determine whether the response generated by the test
LLM and the ground-truth reason are similar.
Compute reasoning metrics. Following the methodology
in [46], we compute reasoningmetrics by comparing an LLM-
generated explanation (𝐿𝑟) to the ground truth (𝐺𝑟). Specif-
ically, 𝐿𝑟 is considered similar to 𝐺𝑟 if its Rouge score and
Cosine similarity exceed 0.34 and 0.84, respectively. Once
three similarity scores are computed, SecureMind deter-
mines reasoning correctness through a majority vote: if at
least two of the scores indicate similarity, the LLM’s reason-
ing is classified as aligned with the ground truth.

4 Evaluation Setup

This section describes the parameters and experimental setup
used by SecureMind to evaluate some of the state-of-the-art
LLMs for detecting and repairing memory-related bugs. In
this work, we focus on memory-related bugs because they
are common, critical, and challenging for LLMs, which strug-
gle with the complex reasoning required for pointers, heap
management, and execution paths. However, SecureMind is
applicable to other bug types, which we consider a strength.

4.1 Language Models

Table 5 lists the LLMs used in this study, including several
state-of-the-art CoT-enhanced reasoning models that have

Table 5. LLMs evaluated in this work
CoT LLM #Params. Context

len.

Gen.

len.

Know.

Cutoff

Llama-3.3-70B-Inst. 70B 128K 128K 12/2023
Llama-3.1-405B-Inst. 405B 128K 128K 12/2023
Qwen2.5-7B-Inst. 7B 128K 8K 04/2023No Qwen2.5-Coder-32B-Inst. 32B 128k 8K 04/2023
ChatGPT 4o ∼ 200B 128K 16.4K 04/2023
DeepSeek V3 671B 128K 8K 07/2024at training
Gemini 1.5 PRO ∼ 200B 128K 8K 09/2024
ChatGPT o1 ∼ 200B 128K 128K 10/2023
DeepSeek R1 671B 128K 8K 07/2024at infer.
Gemini 2.0 Flash 40B 1M 8K 06/2024

Table 6. Vulnerable test samples used to evaluate detection;
all were reported after Sept. 2024 - the latest knowledge
cutoff date of the evaluated LLMs.
CWE Description #Raw

samples

#Aug.

samples

CWE-119 Improper restriction of operations within
the bounds of a memory buffer (a.k.a
buffer overflow)

120 1,800

CWE-125 Out-of-bounds read 180 2,700
CWE-190 Integer overflow or wraparound (focus-

ing on memory leaks under this cate-
gory)

24 360

CWE-415 Double free 198 2,970
CWE-416 Use after free 270 4,050
CWE-476 NULL pointer dereference 144 2,160
CWE-787 Out-of-bounds write 78 1,170
CWE-824 Access of uninitialized pointer 64 960

not been previously evaluated for bug detection and repair
in prior peer-reviewed publications.
Because each LLM may have different preferred prompt-

ing methods, SecureMind allows users to tailor prompt

ISMM ’25, June 17, 2025, Seoul, Republic of Korea Huanting Wang, Dejice Jacob, David Kelly, Yehia Elkhatib, Jeremy Singer, and Zheng Wang

Table 7. Raw test samples per programming language.
Languages #Samples

C and C++ 934
Java 120
Python 24

10
1

10
2

10
3

10
4

#Lines of code

0
0.2
0.4
0.6
0.8
1

C
D

F

SecureMind SARD

(a)

10
1

10
2

10
3

#Basic blocks (solid line) and
 cyclomatic complexity (dashed line)

0.4

0.6

0.8

1

C
D

F

SecureMind SARD

(b)
Figure 4. The CDF of the number of lines (a), basic blocks,
and cyclomatic complexity (which measures the complexity
of a program’s control flow [23]) (b) for our test samples and
the SARD benchmark at log scale.

formatting to optimize interactions with the test model. In
this study, we follow the guidance of LLM vendors to apply
the recommended prompting techniques. This customiza-
tion is achieved by overriding the default prompt method
in the SecureMind API. For example, OpenAI’s GPT docu-
mentation suggests enclosing the input content within triple
quotes (‘"""‘) to clearly separate it from instructions [4].

4.2 Datasets

Raw test samples.We use SecureMind to automatically
collect data from six databases (Table 1), yielding 1,078 test
samples for vulnerability detection - split evenly between
vulnerable and benign (patched) versions. Table 7 shows
the language distribution of these samples. The cumulative
distribution functions (CDF) in Figure 4 highlight some key
characteristics of the SecureMind dataset (Table 6) com-
pared to SARD (Table 1). Over 80% of our samples have at
least 100 lines of code and 20 basic blocks, whereas SARD
samples are simpler. This suggests that our dataset better
reflects real-world program complexity. For vulnerability
repair, we collect a smaller dataset of 31 samples, as Secure-
Mind automatically retrieves developer-written patches and
test cases, limiting sample availability.
Code augmentations.We use the code augmentation meth-
ods described in Sec. 3.2.1 to obfuscate both vulnerable and
benign samples at the source code level, resulting in a total
of 16K test samples for vulnerability detection.

4.3 Test Plan and Evaluation Platform

For this study, we define a test plan using the SecureMind
API in less than 50 lines of Python. We then execute the
plan on six Google Cloud instances, switching test LLMs
via cloud-based LLM APIs. Each instance runs Ubuntu 20.04
with 16× Intel(R) Xeon(R) CPUs (2.20GHz) and 64GB RAM.

In total, our evaluation used over 5,000 CPU hours, gen-
erating more than 10 billion tokens from the tested LLMs.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
top-p

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

te
m

pe
ra

tu
re

0.60

0.70

0.80

0.90

1.00

D
et

er
m

in
is

tic
 S

co
re

(a) ChatGPT-4o deterministic score

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
top-p

1.
0

0.
9

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

0.
1

0.
0

te
m

pe
ra

tu
re

0.00

0.10

0.20

0.30

0.40

S
uc

ce
ss

fu
l R

at
e

(b) ChatGPT-4o vul. repair rate

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
top-p

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

te
m

pe
ra

tu
re

0.60

0.70

0.80

0.90

1.00

D
et

er
m

in
is

tic
 S

co
re

(c) DeepSeek R1 deterministic score

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
top-p

1.
0

0.
9

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

0.
1

0.
0

te
m

pe
ra

tu
re

0.00

0.10

0.20

0.30

0.40

S
uc

ce
ss

fu
l R

at
e

(d) DeepSeek R1 vul. repair rate

Figure 5. Temperature and top-p settings for deterministic
scores and vulnerability repair rates.

Most of this time was spent querying LLMs for evaluation,
while data download and preparation took under 5 hours.
To prevent overloading data source websites, SecureMind
limits concurrent download requests by default.

5 Evaluation Results

We use SecureMind to evaluate all LLMs listed in Table 5,
reporting the built-in metrics from Sec. 3.4 along with illus-
trative examples. Following the default evaluation pipeline,
we first tune the temperature and top-p parameters (Sec.2.3).
SecureMind then identifies the optimal prompt template
(Tables 3 and 4) for each LLM and assesses its reasoning abil-
ity in explaining decisions. Using the selected parameters,
we further analyze LLM performance across varying code
complexities and vulnerability types. All the quantified met-
rics are automatically generated by SecureMind as Python
data frames and CSV files.

5.1 Parameter Tuning and Determinism

To robustly evaluate LLMs, ensuring response consistency
is crucial - repeated tests for identical inputs should yield
stable results. SecureMind begins with parameter tuning
(Sec. 2.3), using 10% of randomly selected test samples to
find the highest temperature and top-p values that still yield
a deterministic score (Sec. 3.4.1) of at least 0.9.
Each parameter pair is tested across 10 trials, varying

values from 0 to 1 in 0.1 increments. For tuning, SecureMind
uses prompt D4 (Table 3) for detection and R4 (Table 4) for
repair. These zero-shot prompts avoid prior context, making
them well-suited for evaluating response stability.
Observations.Optimal parameter settings vary across LLMs.
As shown in Figure 5, setting the temperature and top-p to

SecureMind: A Framework for Benchmarking LLMs in Memory Bug Detection and Repair ISMM ’25, June 17, 2025, Seoul, Republic of Korea

1 int open(wtap *wth , int *err , gchar ** err_info)

2 { ...

3 wth ->p = g_malloc (...);

4 while (1) {

5 if (file_seek (...)) == -1){

6 g_free(wth ->p); wth ->p = NULL;

7 return -1;

8 }

9 ...

10 if (bytes_read != 4){

11 *err = ...;

12 if (*err != 0){

13 g_free(wth ->p); wth ->p = NULL;

14 return -1;

15 }

16 g_free(wth ->p); wth ->p = NULL;

17 return 0;

18 }}}

19
20 static void close(wtap *wth) {

21 if (wth ->p != NULL){

22 g_free(wth ->p);

23 wth ->p = NULL;}

(a) A simplified patch for a CWE-415 double-free vulnerability. The patch
ensures that pointer p is set to NULL immediately after calling g_free().
ChatGPT-4o’s incorrect response to the code in (a)

The code has multiple paths where memory (wth->p) is freed. If an error
occurs and the caller subsequently calls close, a double free can occur. Multiple
return paths also increase the risk, as the caller might unknowingly free the
memory again. ✗

(b) A false-positive provided by ChatGPT-4o
ChatGPT-4o’s correct response to the code in (a)

The code frees memory at each error exit point and sets the pointer to NULL
to prevent accidental reuse. [...] The memory is managed correctly.✓

(c) Correct responses given by ChatGPT-4o.

Figure 6. A benign code sample and inconsistent responses
given by ChatGPT-4o for the same prompt.

0.2 and 0.1, respectively—values suggested by OpenAI for
code-related tasks [3]—yields a deterministic score below
0.9 for ChatGPT-4o but exceeds 0.98 for DeepSeek R1 for
vulnerability detection. Notably, even with a temperature
of 0, full consistency is not guaranteed, with deterministic
scores averaging only 0.96. For example, ChatGPT-4o (tem-
perature 0.0, top-p 0.1) misclassifies a patched code snippet
in Figure 6 as vulnerable in 1 out of 10 runs. As seen in Fig-
ure 5, increasing temperature and top-p values (e.g., ≥ 0.9)
enhances response diversity and "creativity," improving the
likelihood of generating a correct patch. Since optimal param-
eter settings depend on both the LLM and the task, choosing
appropriate values is non-trivial. SecureMind addresses this
challenge by automatically adjusting parameters based on
user-defined criteria, such as ensuring a deterministic score
above 0.9 while maintaining accuracy above 0.6.

5.2 Prompt Template Selection

SecureMind automates the evaluation of prompt effective-
ness on LLMs for vulnerability detection and repair using the
templates in Sec. 3.3. Such an evaluation provides insights

D1 D2 D3 D4 D5 D6 D7 C1 C2 C3 C4 C5 C6 C7
Prompt

0.3

0.4

0.5

0.6

Pe
rfo

rm
an

ce

F1 score Precision Recall Accuracy

Figure 7. Vulnerability detection performance using differ-
ent prompts. Min-max bars show the variances across tested
LLMs and samples.

Response to prompt D1

Upon reviewing the provided code, I have identified a few potential
issues related to memory management... ✗
Response to prompt D3

Yes, the code contains instances of double free. ... In the close function,
wth->p is freed again without checking if it is NULL. ✗
Response to prompt D6

... The ‘close‘ function checks if ‘wth->p‘ is not ‘NULL‘ before freeing
it, and then sets it to ‘NULL‘ to prevent any potential double free.
Overall, the code appears to handle memory management correctly
and does not contain any instances of double free.✓

(a) Llama-405B’s responses to prompts D1, D3, and D6.
Response to CoT prompt C1

... let’s analyze it step by step... 1. Buffer Overflows... 2. Use-

After-Free... ... 4. Other Issues... In conclusion, based on the pro-
vided code snippet, there do not appear to be any obvious instances
of memoryrelated security vulnerabilities such as buffer overflows,
useafterfree, or memory leaks.✓
Response to CoT prompt C2

... 1. Memory Allocation... 2. FreeingMemory... 3. ... In conclusion,
the provided code does not appear to contain instances of the double
free vulnerability. ✗
Response to CoT prompt C3

Overview: ... The following sub-components ...1. Memory Alloca-
tion and Freeing in ‘open‘; ... 2. Potential Double Free...DetailedAnal-
ysis ... Conclusion The potential double-free vulnerability arises
because if the function encounters an error while reading the next
record type and length, it frees the allocated memory and returns -1.
If the function is called again, it will attempt to free the same memory
again, leading to a double free. ✗
Response to CoT prompt C7

Overview: ... sub-components: S1: Memory allocation for ‘wth->p‘
in ‘open‘. S2: ... S3: ... Analysis A-S1: The memory for wth->p is
allocated using g_malloc ... Decision: It seems that the authors have
taken necessary precautions to avoid double-free issues✓

(b) Llama-405B’s responses to CoT prompts C1-C3 and C7.

Figure 8. Llama-405B’s responses to standard and CoT
prompts to detect vulnerability for the code in Figure 6(a).

into prompt effectiveness, supporting the development of
more effective prompt strategies. In this experiment, we use
the parameters during the parameter tuning stage for indi-
vidual LLMs (Sec. 5.1). This evaluation is conducted on 16K
test samples for vulnerability detection and 23 samples for
vulnerability repair.

5.2.1 Vulnerability detection. Figure 7 presents the per-
formance of different prompts for vulnerability detection,
with min-max bars indicating variation across LLMs and

ISMM ’25, June 17, 2025, Seoul, Republic of Korea Huanting Wang, Dejice Jacob, David Kelly, Yehia Elkhatib, Jeremy Singer, and Zheng Wang

Table 8. Repair success rate of individual prompts of Table 4.
Prompts R1 R2 R3 R4 R5 R6 R7 R8 R9 R10
Rep. rate 27% 25% 22% 29% 29% 33% 25% 33% 32% 28%

1 BGD_DECLARE(void) gdImageFillToBorder (gdImagePtr im,

int x, int y, int border , int color){...

2 if (border < 0) {

3 /* Refuse to fill to a non -solid border */

4 return;
5 }...}

(a) A stack-overflow code sample when invalid color is used
ChatGPT-o1 patch with R1 prompt

#Problem: If im is NULL, accessing im->trueColor will cause a NULL
pointer dereference (CWE-476), which can crash the program.
if (!im) { printf("Error: Image line pointer is NULL."); return;} ✗

(b) A incorrect ChatGPT-o1 generated patch
ChatGPT-o1 patch with R9 prompt

1 //Validate color and border indices [...]

2 BGD_DECLARE(void) gdImageFillToBorder (

gdImagePtr im, int x, int y, int border ,

int color){...

3 if (!im->trueColor) {

4 if (im->colorsTotal <= 0) {

5 printf (" Error: No colors available .\n");

6 return}

7 if (color < 0 || border < 0 || color >= im->

colorsTotal || border >= im->colorsTotal)

{

8 /* Ensure color [...] */

9 printf ("Error: Invalid color or border

[...]");

10 return ;}}}

✓
(c) A correct ChatGPT-o1 generated patch using prompt R9

Figure 9. A code sample and patches given by ChatGPT-o1.

test samples. Figure 8 provides examples of the Llama-405
B responses. Among the tested prompts, D1 performs the
worst, with low precision (32%) and recall (31%), as it lacks
vulnerability-specific context (e.g., CWE types). This high-
lights a practical challenge in using LLMs for vulnerability
detection: users may not knowwhether a vulnerability exists,
let alone its type. Adding candidate CWE types (D2) improves
precision by 5%. Assigning a role (e.g., "security expert" in D3)
enhances function analysis, increasing detection precision
by up to 10% for some LLMs. However, this does not help
all models – Llama-405B still fails with D3, as shown in Fig-
ure 8(a). In general, CoT-like prompts outperform standard
prompts. Incorporating contextual examples with reasoning
text (D6) further improves predictions, demonstrating that
prior knowledge enhances LLM reasoning. C1, a step-by-
step CoT-like prompt, achieves 34% precision and 33% recall
for common memory issues such as buffer overflow and use-
after-free but struggles with other CWE types. Similar to D2,
which provides CWE hints, C2 further improves accuracy.

5.2.2 Vulunerability repair. Table 8 shows the repair
success rates when using individual repair prompts from
Table 4. R1 has the lowest success rate owing to the absence

D1 D2 D3 D4 D5 D6 D7 C1 C2 C3 C4 C5 C6 C7
Prompt

0.15

0.3

0.45

0.6

Pe
rfo

rm
an

ce

Reasoning score Cosine sim. Rouge LLM.

Figure 10. Reasoning scores for vulnerability detection.

of vulnerability-specific information. With this prompt, the
LLM must first identify and remove the code segment before
generating a suitable replacement, making this a complex
challenge. For example, Figure 9(b) presents a patch gen-
erated by ChatGPT-o1 using R1, which failed to repair the
vulnerability in Figure 9(a). In general, few-shot prompts
with examples yield more successful patches. By incorporat-
ing the vulnerability type and additional context, R9 helps
ChatGPT-o1 generate a valid patch in Figure 9(c) with a good
understanding of the code context and key data structures.
Observations. Providing bug context improves LLM perfor-
mance in vulnerability detection and repair, but extracting
and integrating such context remains challenging. One ap-
proach is to combine LLMswith static bug-detection tools [5]
to supply useful hints. Step-by-step, CoT-like prompts en-
hance performance even in models without explicit CoT
mechanisms. Nevertheless, models with built-in CoT reason-
ing consistently outperform those without, highlighting the
value of CoT for code analysis. For instance, with prompt
D1, DeepSeek-R1 achieves a detection accuracy of 52.0%,
outperforming Llama-405B’s 45.1% even when using CoT
prompt C1.

5.3 Reasoning Ability

SecureMind measures LLM reasoning ability using a rea-
soning score (Sec.3.4.4), which quantifies alignment between
the model’s reasoning and its answer. As shown in Figure10,
reasoning scores generally correlate with vulnerability de-
tection performance. However, some CoT prompts (e.g., C2,
C3) produce similar reasoning scores despite up to 15% drops
in precision and recall. This suggests LLMs may focus on
similar code elements but reach inconsistent conclusions. Fig-
ures 11 and 12 show LLM-generated reasoning for the same
code, revealing varied accuracy: some models, like Gemini-
2.0-Flash, correctly detect vulnerabilities but misidentify the
root cause, potentially misleading users.
Observations. While the tested LLMs generally align their
answers with their reasoning, every model exhibits cases
where it provides the correct answer but with incorrect rea-
soning, e.g., Figure 12(b). Additionally, whilemodels using ex-
plicit CoT reasoning at inference often generate correct and
well-structured reasoning texts, they may sometimes offer a
less accurate root cause explanation than non-CoT models.
By enabling automatic evaluation of reasoning faithfulness,
SecureMind can assist model developers in improving LLM
reasoning by identifying areas where a model is likely to

SecureMind: A Framework for Benchmarking LLMs in Memory Bug Detection and Repair ISMM ’25, June 17, 2025, Seoul, Republic of Korea

1 # CVE -2024 -4741: Use -After -Free

2 int tls_free_buffers(OSSL_RECORD_LAYER *rl)

3 { if (...)

4 return 0;

5 return tls_release_read_buffer(rl);}

6 # Reads and free client data

7 void Run(){while (true){...

8 iRes = SSL_read_ex (&ssl , inBuf , BufSize , &

iLen);}

9 tls_free_buffers (&ssl);}

10 # Another concurrently running thread to

execute Run()

11 void RunThread (){

12 h = CreateThread (..., C->Run(), (LPVOID)this

, ...);}

13 # Listens for client and start new threads

14 void Server (){...

15 while (true){...

16 Connection* C = new Connection (...);

17 C->RunThread ();}}

18 # Starts the server

19 int main(){

20 Server ();}

(a) A race conditions of shared buffer in multi-threaded execution.
ChatGPT-o1 reasoning texts

... Lack of Synchronization: - Risk: The code assumes single-threaded
execution. In multi-threaded contexts (common in TLS), concurrent
access to rl->wbuf/rl->rbuf without locks/atomics could cause: - A
thread to free buffers while another thread is still using them. - In-
consistent state checks (e.g., numwpipes changes after validation).
... Responsing text: Yes. The code does contain use-after-free vul-
nerabilities due to inadequate thread synchronization, unsafe pointer
management, and insufficient validation of buffer lifecycle states.[...]
✓

(b) ChatGPT-o1 reasoning texts to Figure 11(a)
Llama-405B reasoning text

The code appears to be safe from use-after-free vulnerability.
The analysis states that the buffers are released and not ac-
cessed after being freed. However, it requires further review
of the ‘tls_release_read_buffer‘ function and the code calling
‘tls_free_buffers‘ to completely confirm the absence of a use-after-free
vulnerability. ✓✗

(c) Llama-405B reasoning texts to Figure 11(a)

Figure 11. Reasoning texts provided by CoTmodel ChatGPT-
o1 and Llama-405B for a program with race conditions.

produce misleading explanations, which can be improved
through methods like supervised fine-tuning [22].

5.4 Comparing LLMs

This section presents a comparison of the results of the tested
LLMs (Table 5), using the report generated by SecureMind.
Vulnerability detection. Figure 13(a) reports the vulnera-
bility detection performance of individual LLMs across 1,078
raw test samples (without augmentations) using prompt C4,
along with their reasoning scores. The min-max bars show
variance across test samples. Models trained with CoT rea-
soning or those that explicitly employ CoT during inference
outperform non-CoT models. For instance, the CoT-enabled
ChatGPT-o1 successfully identifies the "lack of synchroniza-
tion" issue in Figure 11(b), identifying the Use-After-Free

Gemini-1.5-PRO response

The code has the potential for a use-after-free vulnerability due to a
lack of external synchronization. Other parts of the code might access
rl->wbuf or rl->rbuf concurrently with tls_free_buffers, leading to a
race condition. ✓

(a) Gemini-1.5-PRO reasoning texts to Figure 11(a)
Gemini-2.0-Flash response

The code does contain a use-after-free vulnerability in the read di-
rection. The code contains a use-after-free vulnerability in the read
direction because the function ‘tls_release_read_buffer(rl)‘ is called
twice, resulting in the second call operating on a potentially freed
buffer. ✓✗

(b) Gemini-2.0-Flash reasoning texts to Figure 11(a)
DeepSeek-R1 response

The code contains multiple use-after-free (UAF) vulnerabilities due
to ..., lack of thread synchronization, ... ✓

(c) DeepSeek-R1 reasoning texts to Figure 11(a)
Qwen-7B response

The code does not reuse the freed buffer, so there is no risk of use-
after-free. Each buffer is checked and freed only if the conditions are
met. ✗

(d) Qwen-7B reasoning texts to Figure 11(a)

Figure 12. Reasoning texts provided by diverse LLMs for
the example program in Figure 11(a).

Qwen7b
llama-70b

Qwen-coder-32b
llama-405b

gemini-2.0

gemini-1.5-pro

DeepSeek-v3

DeepSeek-R1
gpt-4o

gpt-o1
0.3

0.4

0.5

0.6

Pe
rfo

rm
an

ce

F1 score Precision Recall Accuracy

(a) Performance evaluation across LLMs

gemini-2.0

gemini-1.5-pro
Qwen7b

Qwen-coder-32b
llama-70b

llama-405b

DeepSeek-v3

DeepSeek-R1
gpt-4o

gpt-o1
0.2
0.3
0.4
0.5
0.6

Pe
rfo

rm
an

ce

Reasoning score Cosine sim. Rouge LLM.

(b) Reasoning evaluation across LLMs

Figure 13. Evaluation for LLMs. Min-max bars indicate per-
formance variation across different prompts.

vulnerability. In contrast, Llama-405B is unsure about this
sample as can be seen from its reasoning text in Figure 11(c).
Figure 13(b) further demonstrates that among models of
similar size, CoT-enabled LLMs (e.g., GPT-4o, 200B) achieve
reasoning scores up to 6% higher than conventional LLMs
(e.g., Llama-405B). Overall, larger models tend to perform
better - DeepSeek R1 (671B) and Gemini 1.5 Pro (200B) out-
perform Gemini 2.0 Flash (40B), which uses CoT in inference.
As shown in Figures 12(a) and 12(c), Gemini 1.5 Pro and
DeepSeek R1 correctly detect the vulnerability with sound
reasoning, whereas Gemini 2.0 Flash provides a poorer ex-
planation for its decision.
Vulnerability repair. Table 9 reports the average success
rate of repairing 23 real-world vulnerabilities using all 10

ISMM ’25, June 17, 2025, Seoul, Republic of Korea Huanting Wang, Dejice Jacob, David Kelly, Yehia Elkhatib, Jeremy Singer, and Zheng Wang

Table 9. LLM success rates for vulnerability repair.
LLMs Qwen-7B Llama-70B Qwen-coder-32B Llama-405B Gemini-2.0-Flash Gemini-1.5-Pro DeepSeek-V3 DeepSeek-R1 GPT-4o GPT-o1
Rep. rate 3.3% 6.3% 12.8% 19.1% 6.3% 21.9% 27.0% 28.4% 29.9% 37.1%

Fun 1

Fun n

Fun 2 Fun ...

. . .

(a) A vulnerability triggered via a
long execution path across functions

. . .

Fun 1 Fun nFun ...

(b) A vulnerability require patch-
ing across multiple functions

Figure 14. Most LLMs fail to fix samples with a long execu-
tion flow like (a), and none can patch vulnerabilities spanning
multiple functions like (b), even when provided with all rele-
vant code in a single input.
prompts from Table 4, with each LLM run 10 times per
prompt per sample. A repair is deemed successful if at least
one output correctly fixes the code. Despite multiple at-
tempts, repair rates remain below 40%. CoT-enabled models
outperform standard LLMs, with ChatGPT-o1 achieving a
37% success rate, compared to a maximum of 30% for others.
Figure 14(a) shows a ZNC [7] test case with a long execution
path, successfully patched only by ChatGPT-o1 thanks to its
explicit CoT reasoning. Standard LLMs struggle with such
reasoning depth. Similarly, when vulnerabilities span multi-
ple functions (Figure 14(b)), none of the models produced a
correct fix - even with full context. Nine test cases fall into
this category. In other cases, LLMs identify the right code
segments but fail to produce functionally correct patches.
Observations. Increasing model size improves detection
accuracy and reasoning capability to some extent, but it
is not the sole factor. For example, Llama-405B underper-
forms compared to the CoT-enabled Gemini 2.0 Flash (40B),
while both DeepSeek-V3 (671B) and the smaller Qwen-7B
(7B) model fail to detect the vulnerability in Figure 11(a).
While CoT enhances LLMs’ code reasoning and generation
capabilities, applying them to real-world vulnerability repair
may require integration with external tools like compilers
to handle complex, multi-function programs.

5.5 Code Augmentation Impact

This evaluation shows how SecureMind’s code augmenta-
tion strategies (Sec.5.5) test LLM robustness by adding diver-
sity and complexity to source code - key factors in defending
against adversarial attacks [13]. For each LLM, SecureMind
uses its best-performing prompt. Figure 15 compares model
performance and reasoning on original vs. augmented code
in vulnerability detection.

Some augmentations mislead LLMs into false positives or
missed vulnerabilities. For instance, adding a benign-looking
function name like safe_input (A5) leads to misclassifi-
cation (Figure 16(a)). Function renaming (A2, A3) lowers
precision by 5–10% and reasoning scores by up to 15%; e.g.,

Ori. A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14
Augmentation methods

0.45

0.5

0.55

0.6

Pe
rfo

rm
an

ce

F1 score Precision Recall Accuracy

(a) Performance evaluation across augmentation methods

Ori. A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14
Augmentation methods

0

0.2

0.4

0.6

Pe
rfo

rm
an

ce

Reasoning score Cosine sim. Rouge LLM.

(b) Reasoning evaluation across augmentation methods
Figure 15. Evaluation of code augmentation methods. Min-
max bars show variations across LLMs.

Gemini-2.0-Flash response to an A5-augmented benign sample

Yes, this code contains a potential buffer overflow vulnerability. The
culprit is the ‘#define safe_input(buffer, size) gets(buffer)‘ ✗

(a) Reasoning texts given by Gemini-2.0-Flash for A5, where we add
‘#define safe_input(buffer, size) gets(buffer)’ to a correct test sample.
DeepSeek-R1 response to an A2-augmented benign sample

Based on A-S1 and A-S2, the code is potentially vulnerable to buffer
overflow due to the use of ‘vulnerable_strcpy‘, which implies a lack
of proper bounds checking. ... ✗

(b) Reasoning texts given by DeepSeek-R1 for A2 on a correct test sample
Responses to an A13-augmented benign sample

Qwen2.5-7B

Based on the provided code snippet, the ‘helpfunc‘ function seems
to be the most suspicious part. The function contains a loop with
multiple ‘break‘ statements, which is unnecessary and can potentially
lead to a stack overflow if the loop is not properly terminated. ✗
ChatGPT-4o

The ‘helpfunc‘ appears to be a placeholder or a stub with no functional
purpose in its current form. ✓

(c) Reasoning texts based on A13 given by LLMs with different parameter
sizes. vulnerable_strcpy
Llama-70B responses to an A14-augmented benign sample

Response to the original test sample

Yes, [...] if ‘a‘ was previously allocated and had a name, ‘oldname‘
would point to freed memory, leading to a use-after-free vulnerability.
✓
Response to the A14-augmented sample

No, this code does not contain a use-after-free vulnerability. The code
explicitly checks if a->name is not NULL before freeing it using g_free.
[...]✗

(d) Reasoning texts based on A14. Llama-70B misses a Use-After-Free
vulnerability after a new line is added to the original code sample.

Figure 16. Reasoning texts provided by different LLMs for
various augmentation methods applied to benign samples.

renaming strcpy to vulnerable_strcpy causes a false neg-
ative in DeepSeek-R1 (Figure 16(b)).

SecureMind: A Framework for Benchmarking LLMs in Memory Bug Detection and Repair ISMM ’25, June 17, 2025, Seoul, Republic of Korea

cwe-119
cwe-125

cwe-415
cwe-416

cwe-476
cwe-787

cwe-824
cwe-825

0.3

0.4

0.5

0.6

Pe
rfo

rm
an

ce

F1 score Precision Recall Accuracy

(a) Performance evaluation across vulnerability types

cwe-119
cwe-125

cwe-415
cwe-416

cwe-476
cwe-787

cwe-824
cwe-825

0.2
0.3
0.4
0.5
0.6

Pe
rfo

rm
an

ce

Reasoning score Cosine sim. Rouge LLM.

(b) Reasoning evaluation across vulnerability types

Figure 17. Evaluation for 8 memory-related vulnerability
types. Min-max bars indicate variation across different LLMs.

The impact of adding redundant security-like functions
varies by model size. As displayed in Figure 16(c), ChatGPT-
4o correctly ignores the placeholder helpfunc, while Qwen-
7B misinterprets it. Even small changes, like added white-
space or new lines (A12, A14), can trigger misclassifications.
For instance, Llama-70B misses a use-after-free vulnerabil-
ity after a one-line insertion (Figure 16(d)), likely due to
changing token context.
Observations. All the tested LLMs are sensitive to code
changes in vulnerability detection. This raises concerns, as
adversaries could introduce small changes to bypass security
scrutiny or generate excessive false positives [25], discourag-
ing adoption. By automatically assessing LLM robustness to
code augmentation, SecureMind helps developers enhance
model reliability for vulnerability detection.

5.6 Evaluation on Vulnerability Types

Figure 17 shows the LLM performance and reasoning across
eight memory-related CWEs (Sec. 6). LLMs excel at detecting
CWE-415 (double-free), reaching 65% precision and 50% re-
call, but struggle with CWE-119 (buffer overflow), achieving
only 34% for both metrics. This gap likely exists because
double-free follows a clear pattern (free called more than
once), while buffer overflows often depend on user input and
indirect memory access, requiring deeper contextual under-
standing. For reasoning, LLMs perform worst on CWE-824
(use of an uninitialized pointer), with only 15% of responses
aligning with the ground truth. This is due to execution
flow dependencies, which vary across samples and projects,
reducing cosine similarity.
Observations.Most LLMs show poor performance in cer-
tain types of CWE or cannot appropriately explain their
reasons for decisions. SecureMind can help developers pin-
point the weaknesses of LLMs and improve the coverage of
the test data of LLMs.

Source codeAssembly-O0Assembly-O1Assembly-O2Assembly-O3
Compiler optimization levels

0
0.2
0.4
0.6
0.8

1

Pe
rfo

rm
an

ce

F1 score Precision Recall Accuracy

Figure 18. Performance evaluation across compiler optimiza-
tion levels. Min-max bars indicate the average performance
variation across different LLMs.

1 void *hi_calloc(size_t nmemb , size_t size) {

2 if (SIZE_MAX / size < nmemb)

3 return NULL;}

4 ...

5 if (elements > 0) {

6 if (SIZE_MAX / sizeof(redisReply *) <

elements) return NULL; /* Don't

overflow */

7 r->element = hi_calloc(elements ,sizeof(
redisReply *));

8 ...}

(a) Patch for CVE-2021-32765: buffer overflow. The condition on
line 6 prevents the allocation of more than SIZE_MAX bytes, which
would otherwise result in a buffer overflow.
Response to assembly code

The code contains potential integer overflow vulnerabilities in mem-
ory allocation functions (‘hi_malloc‘, ‘hi_calloc‘, ‘hi_realloc‘) [...] ✗

(b) Wrong reasoning given by ChatGPT-o1.

Figure 19. Reasoning texts (b) of ChatGPT-o1 for (a).

5.7 Evaluation on Low-level Languages

SecureMind can evaluate LLM reasoning on assembly code
generated at different compiler optimization levels. It cur-
rently supports automatic compilation of C/C++ code. In
our study, we use SecureMind to compile 23 real-world C
samples from 12 GitHub projects into assembly using LLVM
v19.1.0, then evaluate LLMs on vulnerability detection at the
assembly level.

Figure 18 depicts performance and reasoning results. LLMs
achieve 62% precision and recall on source code, but precision
drops by 20% on assembly. LLMs can detect memory-related
functions but often misinterpret their roles (Figure 19) due to
loss of high-level context during compilation and limited ex-
posure to assembly code in training. Reasoning performance
is especially weak, with a score of just 0.4%, suggesting min-
imal understanding of assembly-level vulnerability patterns.
Observations. While LLMs show promise in detecting vul-
nerabilities in high-level programming languages, they strug-
gle with assembly. This raises concerns about their ability to
scrutinize third-party libraries, where high-level source code
is often inaccessible [53]. An interesting direction for fu-
ture research is to explore whether fine-tuning a pre-trained
LLM on assembly code can enhance its capability to detect
vulnerabilities at a lower level [18].
5.8 Comparing to Static Tools

In this experiment, we compare ChatGPT-4o (using prompt
C4) with CodeQL [5] on code samples extracted from the

ISMM ’25, June 17, 2025, Seoul, Republic of Korea Huanting Wang, Dejice Jacob, David Kelly, Yehia Elkhatib, Jeremy Singer, and Zheng Wang

Linux kernel v6.6 v6.12. The test data contains 76 CVEs
reported by independent users. Results show that CodeQL
detects 6 CVEs with a recall rate of 8%, while the LLM detects
41 CVEs with a recall rate of 54%. An interesting future di-
rection would be to explore hybrid approaches that combine
LLMs with static analysis techniques [48].

6 Threats to Validity

Internal validity. Despite our best efforts to prevent data
leakage, we cannot guarantee the complete absence of data
contamination, such as similar code snippets appearing in the
training data. The current implementation of SecureMind
includes a set of prompt templates specifically designed for
bug detection and repair, along with a selection process that
automatically chooses the most suitable prompt for a given
task. However, our prompts may be further optimized us-
ing prompt engineering tools such as LangChain [17] and
OpenPrompt [20].
External validity. Although we included diverse memory-
related vulnerabilities acrossmultiple programming languages,
our findings may not be generalizable to other vulnerabil-
ity classes, such as network threats. Furthermore, while we
evaluated 10 leading LLMs, including advanced models such
as ChatGPT-o1 and DeepSeek-R1, the rapidly evolving na-
ture of LLM technology means that our findings represent a
snapshot that might not reflect future model capabilities.
Construct & conclusion validity. The risk of bias in con-
struct and conclusion validity is minimal, as our evaluation
is based on a large dataset, a representative selection of
widely used LLMs, and a diverse set of metrics to report our
findings. Furthermore, LLMs are evolving rapidly, so con-
clusions and methodologies in this research field may not
remain valid over time. This is precisely why we developed
an automated and extensible framework designed to reduce
the effort required to test LLMs as they evolve. SecureMind
also provides a user-friendly API that allows users to extend
both the evaluation methodology and metrics.
7 Related Work

LLMs are increasingly used to assist with software develop-
ment tasks [28], including code generation [30, 31] and opti-
mization [18, 24]. Their applications also extend to detecting
and repairing software bugs and vulnerabilities [19, 27, 52].
Recent studies explored LLMs for generic code repair [40]
and vulnerability detection [46, 51].

Despite their potential to automate software development,
LLMs struggle with reliability, especially in vulnerability
detection and repair, where incorrect outputs can introduce
serious security risks [21, 35], and high false-positive rates
can deter adoption. As formal verification of LLM-generated
content is limited to highly simplified models or scenar-
ios [36, 44], empirical evaluation using benchmark datasets
remains essential to evaluate an LLM. Turbulence [26] groups
test samples with related properties into "neighborhoods"
and assesses the variance in LLM capabilities within each

neighborhood. The same strategy can be applied to alter our
prompt templates. We adopted the evaluation methodology
from [51] – using hand-crafted benchmarking data to evalu-
ate LLMs. However, wemake two key different contributions:
(1) an automated framework for collecting and preparing
test data to evaluate LLMs, and (2) an extensible API that
supports the expansion of the evaluation methodology.
Existing efforts to benchmark LLMs for bug detection

have several limitations. They typically rely on manually
crafted datasets [14, 35, 38, 46, 54] that can rapidly become
outdated as LLMs are continuously trained on newly col-
lected data. Moreover, existing code-based benchmarks are
typically based on competitive programming challenges [32]
or classroom-style coding tasks [10], which poorly represent
real-world software engineering practices sensitive to secu-
rity vulnerabilities. Furthermore, there has been no system-
atic evaluation of state-of-the-art (SOTA) reasoning LLMs
that leverage chain-of-thought prompting for vulnerability
detection and repair.

SecureMind addresses these drawbacks by providing an
automated benchmarking framework with an easy-to-use
Python API for defining and customizing test plans. It auto-
matically downloads and prepares test data from real-world
open-source projects and vulnerability databases and mini-
mizes data leakage. It also assesses LLMs on assembly code -
an area largely overlooked by existing benchmarks. While
this work focuses onmemory-related vulnerabilities, Secure-
Mind can be extended to other code-related tasks.

Beyond introducing an automated testing framework for
LLM-based bug detection and repair, our study conducts a
large-scale evaluation of SOTA reasoning LLMs for code
reasoning and highlights challenges in using LLMs for bug
detection and repair.

8 Conclusions

We have presented SecureMind, a customizable and auto-
mated framework for evaluating LLMs’ efficiency and rea-
soning capabilities in detecting and fixing software vulnera-
bilities. We performed a large-scale study to evaluate some
state-of-the-art LLMs using SecureMind. Our evaluation
identifies the strengths and weaknesses of the leading LLMs
in vulnerability detection and repair. We show that while
the recent advancement of reasoning LLMs shows promise
in memory bug detection and repair, they are still brittle to
adversarial changes, and the success rates for automated bug
repair are low (max observed is 37% success from ChatGPT-
o1). We hope our open-source framework, datasets, and find-
ings will be useful for the community in designing more
robust LLMs for software engineering tasks.

Acknowledgments

This work is supported in part by the UK Engineering and
Physical Sciences Research Council (EPSRC) under grant
agreements EP/X018202/1, EP/X037304/1 and EP/X037525/1.

SecureMind: A Framework for Benchmarking LLMs in Memory Bug Detection and Repair ISMM ’25, June 17, 2025, Seoul, Republic of Korea

References

[1] [n. d.]. Common Vulnerabilities and Exposures (CVE). https://cve.
mitre.org/.

[2] [n. d.]. National Vulnerability Database (NVD). https://nvd.nist.gov.
[3] 2023. Cheat Sheet: Mastering Temperature and Top P in ChatGPT API

(A Few Tips and Tricks on Controlling the Creativity/Deterministic
Output of Prompt Responses). https://community.openai.com/t/cheat-
sheet-mastering-temperature-and-top-p-in-chatgpt-api-a-few-
tips-and-tricks-on-controlling-the-creativity-deterministic-output-
of-prompt-responses/172683/1. Accessed: 2025-03-17.

[4] 2025. ChatGPT. https://chat.openai.com/.
[5] 2025. CodeQL. https://codeql.github.com/.
[6] 2025. GraphQL. https://graphql.org/.
[7] 2025. ZNC IRC bouncer. https://github.com/znc/znc.
[8] Gemini Team Google: Rohan Anil, Sebastian Borgeaud, Jean-Baptiste

Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, Katie Millican, et al. 2023. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805 (2023).

[9] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke,
Fabio Pierazzi, Christian Wressnegger, Lorenzo Cavallaro, and Konrad
Rieck. 2022. Dos and don’ts of machine learning in computer security.
In 31st USENIX Security Symposium (USENIX Security 22). 3971–3988.

[10] Ben Athiwaratkun et al. 2022. Multi-lingual Evaluation of Code Gen-
eration Models. In The Eleventh International Conference on Learning
Representations.

[11] Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max
Schäfer. 2016. QL: Object-oriented Queries on Relational Data. In 30th
European Conference on Object-Oriented Programming (ECOOP 2016)
(Leibniz International Proceedings in Informatics (LIPIcs), Vol. 56), Shri-
ram Krishnamurthi and Benjamin S. Lerner (Eds.). Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2:1–2:25. https:
//doi.org/10.4230/LIPIcs.ECOOP.2016.2

[12] Sicong Cao, Xiaobing Sun, Lili Bo, Rongxin Wu, Bin Li, Xiaoxue
Wu, Chuanqi Tao, Tao Zhang, and Wei Liu. 2023. Learning to de-
tect memory-related vulnerabilities. ACM Transactions on Software
Engineering and Methodology 33, 2 (2023), 1–35.

[13] Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopad-
hyay, and Debdeep Mukhopadhyay. 2021. A survey on adversarial
attacks and defences. CAAI Transactions on Intelligence Technology 6,
1 (2021), 25–45.

[14] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie
Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al.
2024. A survey on evaluation of large language models. ACM transac-
tions on intelligent systems and technology 15, 3 (2024), 1–45.

[15] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
De Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas
Joseph, Greg Brockman, et al. 2021. Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374 (2021).

[16] Chromium Project. 2025. Chromium Security: Memory Safety. https:
//www.chromium.org/Home/chromium-security/memory-safety/ Ac-
cessed: 14 March 2025.

[17] LangChain Contributors. [n. d.]. LangChain: Build context-aware
reasoning applications. https://github.com/langchain-ai/langchain

[18] Chris Cummins, Volker Seeker, Dejan Grubisic, Baptiste Roziere, Jonas
Gehring, Gabriel Synnaeve, and Hugh Leather. 2025. LLM Com-
piler: Foundation Language Models for Compiler Optimization. In
Proceedings of the 34th ACM SIGPLAN International Conference on
Compiler Construction (Las Vegas, NV, USA) (CC ’25). Association
for Computing Machinery, New York, NY, USA, 141–153. https:
//doi.org/10.1145/3708493.3712691

[19] Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and
Lingming Zhang. 2023. Large language models are zero-shot fuzzers:
Fuzzing deep-learning libraries via large language models. In Proceed-
ings of the 32nd ACM SIGSOFT international symposium on software

testing and analysis. 423–435.
[20] Ning Ding, Shengding Hu, Weilin Zhao, Yulin Chen, Zhiyuan Liu, Hai-

Tao Zheng, and Maosong Sun. 2021. OpenPrompt: An Open-source
Framework for Prompt-learning. arXiv preprint arXiv:2111.01998
(2021).

[21] Tuan Dinh, Jinman Zhao, Samson Tan, Renato Negrinho, Leonard
Lausen, Sheng Zha, and George Karypis. 2024. Large language models
of code fail at completing code with potential bugs. Advances in Neural
Information Processing Systems 36 (2024).

[22] Guanting Dong, Hongyi Yuan, Keming Lu, Chengpeng Li, Mingfeng
Xue, Dayiheng Liu, Wei Wang, Zheng Yuan, Chang Zhou, and Jingren
Zhou. 2024. How Abilities in Large Language Models are Affected by
Supervised Fine-tuning Data Composition. In ACL (1).

[23] Christof Ebert, James Cain, Giuliano Antoniol, Steve Counsell, and
Phillip Laplante. 2016. Cyclomatic complexity. IEEE software 33, 6
(2016), 27–29.

[24] Jingzhi Gong, Vardan Voskanyan, Paul Brookes, Fan Wu, Wei Jie, Jie
Xu, Rafail Giavrimis, Mike Basios, Leslie Kanthan, and Zheng Wang.
2025. Language Models for Code Optimization: Survey, Challenges
and Future Directions. arXiv preprint arXiv:2501.01277 (2025).

[25] John Heibel and Daniel Lowd. [n. d.]. MaPPing Your Model: Assessing
the Impact of Adversarial Attacks on LLM-based Programming Assis-
tants. In Trustworthy Multi-modal Foundation Models and AI Agents
(TiFA).

[26] Shahin Honarvar, Mark van der Wilk, and Alastair Donaldson. 2023.
Turbulence: Systematically and automatically testing instruction-
tuned large language models for code. arXiv preprint arXiv:2312.14856
(2023).

[27] Soneya Binta Hossain, Nan Jiang, Qiang Zhou, Xiaopeng Li, Wen-Hao
Chiang, Yingjun Lyu, Hoan Nguyen, and Omer Tripp. 2024. A deep
dive into large language models for automated bug localization and
repair. Proceedings of the ACM on Software Engineering 1, FSE (2024),
1471–1493.

[28] Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li,
Xiapu Luo, David Lo, John Grundy, and Haoyu Wang. 2024. Large
language models for software engineering: A systematic literature
review. ACM Transactions on Software Engineering and Methodology
33, 8 (2024), 1–79.

[29] Xiaowei Huang, Wenjie Ruan, Wei Huang, Gaojie Jin, Yi Dong, Chang-
shun Wu, Saddek Bensalem, Ronghui Mu, Yi Qi, Xingyu Zhao, et al.
2024. A survey of safety and trustworthiness of large language models
through the lens of verification and validation. Artificial Intelligence
Review 57, 7 (2024), 175.

[30] Maliheh Izadi, Jonathan Katzy, Tim Van Dam, Marc Otten, Razvan Mi-
hai Popescu, and Arie Van Deursen. 2024. Language models for code
completion: A practical evaluation. In Proceedings of the IEEE/ACM
46th International Conference on Software Engineering. 1–13.

[31] Xue Jiang, Yihong Dong, LechengWang, Zheng Fang, Qiwei Shang, Ge
Li, Zhi Jin, and Wenpin Jiao. 2024. Self-planning code generation with
large language models. ACM Transactions on Software Engineering and
Methodology 33, 7 (2024), 1–30.

[32] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrit-
twieser, Rémi Leblond, Tom Eccles, James Keeling, Felix Gimeno,
Agustin Dal Lago, et al. 2022. Competition-level code generation
with alphacode. Science 378, 6624 (2022), 1092–1097.

[33] Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation
of Summaries. In Text Summarization Branches Out. Association for
Computational Linguistics, 74–81. https://aclanthology.org/W04-
1013/

[34] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda
Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, et al.
2024. Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437
(2024).

[35] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang.
2024. Is your code generated by ChatGPT really correct? Rigorous

https://cve.mitre.org/
https://cve.mitre.org/
https://nvd.nist.gov
https://community.openai.com/t/cheat-sheet-mastering-temperature-and-top-p-in-chatgpt-api-a-few-tips-and-tricks-on-controlling-the-creativity-deterministic-output-of-prompt-responses/172683/1
https://community.openai.com/t/cheat-sheet-mastering-temperature-and-top-p-in-chatgpt-api-a-few-tips-and-tricks-on-controlling-the-creativity-deterministic-output-of-prompt-responses/172683/1
https://community.openai.com/t/cheat-sheet-mastering-temperature-and-top-p-in-chatgpt-api-a-few-tips-and-tricks-on-controlling-the-creativity-deterministic-output-of-prompt-responses/172683/1
https://community.openai.com/t/cheat-sheet-mastering-temperature-and-top-p-in-chatgpt-api-a-few-tips-and-tricks-on-controlling-the-creativity-deterministic-output-of-prompt-responses/172683/1
https://chat.openai.com/
https://codeql.github.com/
https://graphql.org/
https://github.com/znc/znc
https://doi.org/10.4230/LIPIcs.ECOOP.2016.2
https://doi.org/10.4230/LIPIcs.ECOOP.2016.2
https://www.chromium.org/Home/chromium-security/memory-safety/
https://www.chromium.org/Home/chromium-security/memory-safety/
https://github.com/langchain-ai/langchain
https://doi.org/10.1145/3708493.3712691
https://doi.org/10.1145/3708493.3712691
https://aclanthology.org/W04-1013/
https://aclanthology.org/W04-1013/

ISMM ’25, June 17, 2025, Seoul, Republic of Korea Huanting Wang, Dejice Jacob, David Kelly, Yehia Elkhatib, Jeremy Singer, and Zheng Wang

evaluation of large language models for code generation. Advances in
Neural Information Processing Systems 36 (2024).

[36] Ansong Ni, Srini Iyer, Dragomir Radev, Veselin Stoyanov, Wen-tau
Yih, Sida Wang, and Xi Victoria Lin. 2023. Lever: Learning to verify
language-to-code generation with execution. In International Confer-
ence on Machine Learning. PMLR, 26106–26128.

[37] NIST. [n. d.]. Software Assurance Reference Dataset Project. https:
//samate.nist.gov/SRD/.

[38] Shuyin Ouyang, Jie M Zhang, Mark Harman, and Meng Wang. 2025.
An empirical study of the non-determinism of ChatGPT in code gen-
eration. ACM Transactions on Software Engineering and Methodology
34, 2 (2025), 1–28.

[39] Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-
Gavitt, and Ramesh Karri. 2022. Asleep at the keyboard? assessing the
security of github copilot’s code contributions. In IEEE Symposium on
Security and Privacy (SP). IEEE, 754–768.

[40] Hammond Pearce, Benjamin Tan, Baleegh Ahmad, Ramesh Karri, and
Brendan Dolan-Gavitt. 2023. Examining zero-shot vulnerability repair
with large languagemodels. In IEEE Symposium on Security and Privacy
(SP). IEEE, 2339–2356.

[41] Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jian-
feng Gao. 2023. Instruction tuning with GPT-4. arXiv preprint
arXiv:2304.03277 (2023).

[42] Faisal Rahutomo, Teruaki Kitasuka, Masayoshi Aritsugi, et al. 2012.
Semantic cosine similarity. In The 7th international student conference
on advanced science and technology ICAST, Vol. 4. University of Seoul
South Korea, 1.

[43] June Sallou, Thomas Durieux, and Annibale Panichella. 2024. Breaking
the Silence: The Threats of Using LLMs in Software Engineering. In
Proceedings of the ACM/IEEE 44th International Conference on Software
Engineering: New Ideas and Emerging Results (ICSE-NIER’24). 102–106.
https://doi.org/10.1145/3639476.3639764

[44] Christos Thrampoulidis. 2024. Implicit Optimization Bias of Next-
token Prediction in Linear Models. Advances in Neural Information
Processing Systems (2024).

[45] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Alma-
hairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal
Bhargava, Shruti Bhosale, et al. 2023. Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023).

[46] Saad Ullah, Mingji Han, Saurabh Pujar, Hammond Pearce, Ayse
Coskun, and Gianluca Stringhini. 2024. LLMs Cannot Reliably Identify

and Reason About Security Vulnerabilities (Yet?): A Comprehensive
Evaluation, Framework, and Benchmarks. In IEEE Symposium on Secu-
rity and Privacy.

[47] Daniel Votipka, Seth Rabin, Kristopher Micinski, Jeffrey S Foster, and
Michelle L Mazurek. 2020. An Observational Investigation of Reverse
Engineers’ Processes. In 29th USENIX Security Symposium (USENIX
Security 20). 1875–1892.

[48] Huanting Wang, Zhanyong Tang, Shin Hwei Tan, Jie Wang, Yuzhe
Liu, Hejun Fang, Chunwei Xia, and Zheng Wang. 2024. Combining
Structured Static Code Information and Dynamic Symbolic Traces for
Software Vulnerability Prediction. In Proceedings of the IEEE/ACM 46th
International Conference on Software Engineering (Lisbon, Portugal)
(ICSE ’24). Association for Computing Machinery, New York, NY, USA,
Article 169, 13 pages. https://doi.org/10.1145/3597503.3639212

[49] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia,
Ed Chi, Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. Advances in neural
information processing systems 35 (2022), 24824–24837.

[50] Ying Wei, Xiaobing Sun, Lili Bo, Sicong Cao, Xin Xia, and Bin Li. 2021.
A comprehensive study on security bug characteristics. Journal of
Software: Evolution and Process 33, 10 (2021), e2376.

[51] Cheng Wen, Yuandao Cai, Bin Zhang, Jie Su, Zhiwu Xu, Dugang Liu,
Shengchao Qin, Zhong Ming, and Tian Cong. 2024. Automatically
inspecting thousands of static bugwarningswith large languagemodel:
How far are we? ACM Transactions on Knowledge Discovery from Data
18, 7 (2024), 1–34.

[52] Aidan ZH Yang, Claire Le Goues, Ruben Martins, and Vincent Hellen-
doorn. 2024. Large language models for test-free fault localization. In
Proceedings of the 46th IEEE/ACM International Conference on Software
Engineering. 1–12.

[53] Zicheng Zhang, Wenrui Diao, Chengyu Hu, Shanqing Guo, Chaoshun
Zuo, and Li Li. 2020. An empirical study of potentially malicious
third-party libraries in android apps. In Proceedings of the 13th ACM
Conference on Security and Privacy in Wireless and Mobile Networks.
144–154.

[54] Zibin Zheng, Kaiwen Ning, Qingyuan Zhong, Jiachi Chen, Wenqing
Chen, Lianghong Guo, Weicheng Wang, and Yanlin Wang. 2025. To-
wards an understanding of large language models in software engi-
neering tasks. Empirical Software Engineering 30, 2 (2025), 50.

Received 2025-03-19; accepted 2025-05-03

https://samate.nist.gov/SRD/
https://samate.nist.gov/SRD/
https://doi.org/10.1145/3639476.3639764
https://doi.org/10.1145/3597503.3639212

	Abstract
	1 Introduction
	2 Background
	2.1 Large Language Models
	2.2 Chain-of-Thought
	2.3 Model Parameters

	3 SecureMind Workflow
	3.1 Test Plan Program
	3.2 Automated Data Preparation
	3.3 Prompt Templates
	3.4 Built-in Evaluation Metrics

	4 Evaluation Setup
	4.1 Language Models
	4.2 Datasets
	4.3 Test Plan and Evaluation Platform

	5 Evaluation Results
	5.1 Parameter Tuning and Determinism
	5.2 Prompt Template Selection
	5.3 Reasoning Ability
	5.4 Comparing LLMs
	5.5 Code Augmentation Impact
	5.6 Evaluation on Vulnerability Types
	5.7 Evaluation on Low-level Languages
	5.8 Comparing to Static Tools

	6 Threats to Validity
	7 Related Work
	8 Conclusions
	References

