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Abstract. NUMA-aware parallel algorithms in runtime systems attempt
to improve locality by allocating memory from local NUMA nodes. Re-
searchers have suggested that the garbage collector should profile mem-
ory access patterns or use object locality heuristics to determine the tar-
get NUMA node before moving an object. However, these solutions are
costly when applied to every live object in the reference graph. Our earlier
research suggests that connected objects represented by the rooted sub-
graphs provide abundant locality and they are appropriate for NUMA
architecture.
In this paper, we utilize the intrinsic locality of rooted sub-graphs to
improve parallel copying collector performance. Our new topology-aware
parallel copying collector preserves rooted sub-graph integrity by moving
the connected objects as a unit to the target NUMA node. In addition, it
distributes and assigns the copying tasks to appropriate (i.e. NUMA node
local) GC threads. For load balancing, our solution enforces locality on
the work-stealing mechanism by stealing from local NUMA nodes only.
We evaluated our approach on SPECjbb2013, DaCapo 9.12 and Neo4j.
Results show an improvement in GC performance by up to 2.5x speedup
and 37% better application performance.

Keywords: NUMA, multi-core, work-stealing, runtime support, garbage collec-
tion

1 Introduction

Managed runtime systems—such as the Java Virtual Machine (JVM) and Com-
mon Language Runtime (CLR)—successfully abstract low-level platform-specific
details such as hardware configuration and memory management. However de-
velopment efforts for these runtime systems may struggle to cope with rapid
evolution and diversity in hardware deployments. Contemporary multicore pro-
cessors are often designed with a distributed memory architecture to improve
memory bandwidth. This architectural layout means that individual processor
cores may incur non-uniform memory access (NUMA) latency. Therefore, multi-
threaded applications running on several cores may access remote memory. A
garbage collected runtime may cause non-determinism in data placement, which



will lead to unpredictable, suboptimal application performance, if the runtime
system is not adapted to be aware of the underlying NUMA hardware.

A large body of research attempts to tackle data placement on NUMA archi-
tectures by means of improving locality and balancing allocation across memory
nodes, e.g. [6]. A data placement policy that allocates data close to the core
most frequently accessing it should minimize access time. However, locality-
aware data placement policies could conflict with NUMA, perhaps through im-
balance of access causing memory bus traffic saturation to some NUMA nodes.
Other problems with NUMA imbalance include cache capacity issues, whereas
using off-node caches may provide abundant memory space, e.g. [17].

In OpenJDK Hotspot (like many Java runtime systems) the generational
Garbage Collector (GC) moves objects between spaces in the heap. For NUMA
platforms, the existing memory placement and movement policies of the GC
require re-engineering. Initially, the mutator threads use thread-local allocation
buffers (TLABs) to allocate new objects in the young generation. Hotspot de-
volves memory mapping to the operating system. For example, Linux uses the
first-touch policy as the default NUMA placement policy, which means that
memory pages are mapped to the NUMA node associated with the core that
first accesses a memory address in that page. As an advanced HotSpot configu-
ration option, the user can choose a pre-defined JVM NUMA allocation policy
(-XX:+UseNUMA) to map TLAB memory pages to local nodes.

Furthermore, GC threads also require local buffers, called promotion local
allocation buffers (PLABs). A PLAB is used to move objects to the survivor
spaces (in the young generation) and to the old generation. Mapping PLABs
to NUMA regions remains the responsibility of the OS. Thus, the GC has the
potential to change an object’s NUMA node location after moving that object,
which means subsequent mutator operations may incur remote access overhead.
There is a need for topology awareness in the GC, which must take into account
the NUMA architecture.

This paper extends our earlier work [1] which provided empirical observa-
tions of strong object locality in portions of the reference graph reachable from
a single root reference. We refer to these graph components as rooted sub-graphs.
In this paper, we modify the copying collector of the Hotspot JVM and imple-
ment a topology-aware parallel copying collector to preserve sub-graph locality
and integrity. Our solution does not require any programmer intervention. We
evaluated our algorithm with various benchmarks and the results show that
leveraging rooted sub-graph locality improves substantially the GC performance
(up to 2.5x speedup) and consequently improves application performance by
up to 37%.

In this paper, we describe the following key contributions to the HotSpot
GC:

a) We improve access locality by making the collector threads process mostly
local objects.

b) We improve work-stealing locality such that idle threads fetch work from
local threads’ queues.



2 Motivation

The existing Parallel Scavenge copying GC in the Hotspot JVM uses conventional
techniques for:

1. task generation: scanning memory areas that contain root references, e.g.
mutator stacks, static areas, JNI handlers. At least one GC thread is used
to scan each memory area. These task-generating threads enqueue root ref-
erences locally, in a per-thread queue. Our implementation distinguishes be-
tween root references and non-root references by storing them in different
queues; the default scheme does not do this.

2. distribution: each GC thread processes its own local queue of references—
following references and processing (e.g. copying objects). Our implementa-
tion directs references to appropriate queues, based on the underlying NUMA
topology.

3. load balancing: when a GC thread’s local reference queue is empty, it ran-
domly steals a single reference from the back of another thread’s queue. This
is a typical work-stealing approach. Our implementation steals from nearer
thread queues in terms of the NUMA topology, whereas the default scheme
steals from an arbitrary queue in a NUMA-agnostic fashion.

The key objective is to keep the GC threads busy collecting the heap re-
gardless of the complex NUMA architecture. However, if a GC thread processes
distant objects, it incurs remote memory access overhead. Further, the GC may
relocate objects to a different NUMA node (e.g. during a copy-promotion); hence
degrading mutator thread locality. Our topology aware GC scheme aims to al-
leviate both these problems.

Existing NUMA locality improvements for GC copying algorithms have a
per-object granularity of work. Tikir and Hollingsworth [29] calculate the target
NUMA node for an object copy by profiling thread access patterns to each
object. Ogasawara [22] identifies the dominant thread of an object, which is
likely to access the object most frequently. This analysis is based on references
from thread stacks or the object’s header.

Conversely, Alnowaiser [1] identifies rooted sub-graphs which contain a root
reference and its descendant references in the reference graph. Rooted sub-graphs
are shown to exhibit abundant locality, i.e. the majority of objects in a sub-graph
are located in the same NUMA node as the root of that sub-graph. Selection of
the rooted sub-graph as the work granularity for GC is appropriate for NUMA
systems for two reasons:

1. When a GC thread processes a task, i.e. a rooted sub-graph, it is likely to
be processing objects in a single NUMA region—ideally local for that GC
thread.

2. If parallel GC threads operate in different NUMA regions on thread-local
data, there is a reduction in cross-node memory traffic, reducing bus con-
tention.



3 Topology-Aware Copying Collector

Our proposed topology-aware parallel copying collector leverages the locality
that exists in rooted sub-graphs. Since we set the work granularity to be a
rooted sub-graph, the main principle in our approach is to preserve the sub-
graph integrity by processing its connected objects in a single NUMA node. As
a result, a GC thread would move the entire rooted sub-graph to a single new
location. For further locality gains, GC threads should process local-node root
objects. We achieve this by organizing root objects according to NUMA nodes.

Moreover, when GC threads exhaust their local work queues, they should
prefer to steal references from non-empty local queues of sibling cores, i.e. cores
that are in the same NUMA node. This mechanism enables low access latency for
work-stealing threads, and benefits from accessing shared resources (e.g. caches).
Moreover, stolen objects will be moved to the same NUMA node as non-stolen
objects in the same rooted sub-graph. Therefore the locality remains consistent.

Fig. 1: Various topology-aware GC schemes. a) aggressive scheme only processes
local-node tasks b) hybrid scheme distributes tasks across all nodes but steals
from local node only. c) relaxed scheme processes random tasks from any node

3.1 Data Structures

Figure 1 illustrates the data structures used in our scheme. At VM initialization,
we create as many double-ended queues as there are NUMA nodes, to store root
references for processing. Since GC threads run concurrently, we need to ensure
that enqueue and dequeue operations are thread safe. For this purpose, we use
the OpenJDK Arora queue which supports single producer/multiple consumers.
GC threads pop root references from one end safely using atomic operations;
however, the other end is guarded such that a thread must lock the queue before
doing any enqueue operation.

To reduce lock contention on Arora queues, we buffer root references in
thread-local queues. When a GC thread completes its root scanning task, it
enqueues discovered root references into the corresponding Arora queue. The



memory footprint of this design is small since the root set size is small compared
to the live object set.

Threads that complete root scanning tasks obtain root references from Arora
queues. In order to shorten the time between root scanning and enqueue oper-
ations, when a thread-local queue reaches a threshold length, the GC thread
enqueues all references in that thread-local queue to the corresponding Arora
queue. We set the threshold to 100 references.

3.2 Algorithm

Copying collection starts with a set of predefined tasks that are created in a
sequential block of code. The VM thread, which runs the sequential code, pop-
ulates a shared queue with three different kinds of tasks to handle the parallel
copying collection:

1. root scanning tasks to discover roots in various JVM data areas.

2. stealing tasks to balance the load among threads

3. a finalizer task to terminate the parallel phase.

These tasks are present in the default ParallelScavenge GC, however we have
modified their behavior to implement topology-awareness as follows. Root scan-
ning threads classify roots according to NUMA nodes and insert the references
into the appropriate local queue. Once a local queue reaches a threshold, the
thread locks the corresponding Arora queue and enqueues all discovered ref-
erences. Stealing threads compete on dequeuing a reference from non-empty
queues. When references in Arora queues are consumed, threads attempt to
acquire work from pending queues of NUMA-local threads. The thread that
acquires the final task performs the parallel phase termination.

Listing 1.1: Topology-Aware Copying Algorithm Pseudo Code

Task = acqu i r e g c t a s k ( )
switch (Task )
case s c an roo t s :

for ( a l l r o o t a r e a s ){
root = d i s c o v e r r o o t s ( )
node = r e t r i e v e r o o t n od e ( root )
enqueue loca l queue ( root , node )
i f ( queue ( node ) s i z e ()> thre sho ld )

for ( i =0; i<thre sho ld ; i++)
enqueue Arora queue ( root , node )

}
case s t ea l work :

node = get thread node ( )
while ( Arora queue ( node ) != empty){

r e f = dequeue ( node )
f o l l ow ( r e f )
}

while ( NUMA local queue ( node ) != empty){
r e f = dequeue ( )
f o l l ow ( r e f )
}

case f i n a l t a s k :
w a i t u n t i l a l l t h r e a d s t e rm i n a t e ( )
hand contro l to VM thread ( )
end



3.3 Optimization Schemes

We implement topology awareness for task distribution and work-stealing. How-
ever, retrieving an object’s NUMA-specific location requires an expensive NUMA
system calls. Therefore, we also explore various optimization schemes that pre-
serve rooted sub-graph integrity but may not support locality for task distribu-
tion or work-stealing. Since we are optimizing two parallel techniques, we will
have three optimization schemes, as illustrated in Figure 1:
Aggressive: GC threads look up an object’s NUMA node at task generation
phase, and only steal references from NUMA-local threads as described in Sec-
tion 3.1 and Section 3.2.
Hybrid: GC threads process roots randomly however they steal from sibling
(NUMA-local) queues only.
Relaxed: GC threads process roots randomly and steal work from any queue.

4 Experimental Setup

4.1 System Configuration

We evaluated our work on an AMD Opteron 6366 system. The NUMA topology
consists of eight nodes on four sockets, with 64 cores in total. NUMA nodes are
connected by Hyper-Transport links with transmission speed up to 6 GB/sec.
Each node incorporates 64GB RAM, i.e. 512GB in total. The 64 cores are clocked
at 1.8 GHz, and the machine runs Linux 3.11.4 64-bit. We set the OS memory
policy to interleaved, which maps the memory pages to each memory node in a
round-robin order. We use OpenJDK 8 for all our experiments. The ‘original’
JVM results use changeset 6698:77f55b2e43ae (jdk8u40-b06). All our modifica-
tions are based on this changeset.

4.2 Benchmarks

We use a variety of memory-intensive workloads to test our topology-aware copy-
ing collector:

Neo4j/LiveJournal: Neo4j is an embedded, disk-based, fully transactional
Java persistence engine that stores data structures in graphs instead of tables
[20]. The graph nodes and relationships are represented in the JVM heap.
We use the LiveJournal social network data set, which consists of around
5 million nodes and 68 million edges [16]. We have a Java app that em-
beds Neo4j 2.2.1 as a library and queries the database to find all possible
paths between two randomly selected nodes. The program uses 64 threads to
drive the workload and uses a minimum of 150GB heap size. The all-paths
operation is repeated twice and the total execution time is reported.

DaCapo 9.12: We run applications from the DaCapo 9.12 benchmark suite
[3] that are compatible with JDK8, namely: avrora, pmd, xalan, sunflow, h2,
lusearch, and jython. The heap size for each program is set close to minimum
and the input size is large.



SPECjbb2013: SPECjbb2013 [27] is a server business application that
models a world-wide supermarket company. In our experiments, SPECjbb2013
executes the full workload with a heap size of 3GB.

4.3 Evaluation Metrics

We use three different metrics to evaluate our GC implementation.
NUMA Locality Trace: Since our approach relies on rooted sub-graphs,

we want to summarize quantitatively the NUMA locality of rooted sub-graphs.
Our metric represents the locality richness in each sub-graph. To calculate the
percentage of NUMA-local objects in a rooted sub-graph, we retrieve the NUMA
node of the root and also the NUMA node of each descending object in the
rooted sub-graph. For all rooted sub-graphs, the locality is recorded in an n-
by-n square matrix, where n represents the number of NUMA nodes. Matrix
element aij records the proportion of objects residing in node j that belong to
a rooted sub-graph with root in node i.

We use the Matrix Trace property from Linear Algebra to calculate the
NUMA locality of a program. The trace of an n-by-n square matrix A is de-
fined by the sum of the elements on the leading diagonal, i.e.

tr(A) = a11 + a22 + ... + ann =

n∑
i=1

aii 0 ≤ tr(A) ≤ n× 100 (1)

In our system with eight nodes, tr(A) = 800 represents perfect NUMA local-
ity, whereas tr(A) = 0 means that no objects are allocated in the same node as
the root. However, due to the memory allocation policy and program behavior,
some NUMA nodes might not be used at all. Thus we define the relative NUMA
Locality Trace metric such that:

loc(A) =
tr(A)

n× 100
, 0 ≤ loc(A) ≤ 1 (2)

where n is the number of nodes that contain roots.
E.g. a program p uses six nodes for object allocation and tr(p) = 450, thus,

loc(p) = 0.75 and we interpret the result as 75% of objects are allocated in the
same node as the root.

Application Pause Time and Total Execution Time We measure and
report the pause time caused by the (stop-the-world) GC and the end-to-end
execution time of the JVM. All timing measurements are taken five times. We
report arithmetic means, and plot 95% confidence intervals on graphs.

Scalability: We run as many GC threads as the number of cores available
to the system; however large heaps incur a scalability bottleneck. Roots avail-
able in the old generation are discovered by scanning the card table, which is a
data structure used to record old-to-young pointers. As the heap size increases,
the time consumed by scanning the card table grows; hence, we analyze the
responsiveness of our optimization schemes to the increased heap size.



5 Evaluation

5.1 NUMA Locality Trace
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Fig. 2: (a) Relative NUMA Locality Traces for evaluated benchmarks. On av-
erage, 50% of objects are local within rooted sub-graphs. (b) Relative NUMA
Locality Traces for various root types: old-to-young, thread stacks, and class
loader roots. An old-to-young rooted sub-graph exhibits relatively low locality.

Figure 2a shows the relative NUMA locality trace, see Section 4.3. For Neo4j/
LiveJournal, we are unable to process all the data collected due to the huge
size; however, we use the data from the fifth GC cycle only as a sample of
the application’s GC phase. DaCapo/Sunflow obtains the best relative NUMA
locality trace results. Approximately, 90% of objects are co-located in the same
node as the root. On the contrary, objects in DaCapo/h2 are dispersed across
NUMA nodes and rooted sub-graphs provide low locality traces: 42%. For all
benchmarks, the relative NUMA locality trace is 53% on average. These results
differ from our earlier empirical study [1], which demonstrated higher locality.
The main difference is that we now examine rooted sub-graphs from the young
generation in our samples. This may suggest that we cannot rely on the locality
features of rooted sub-graphs to optimize the copying GC. However the following
experiment gives more insight on rooted sub-graph locality for different kinds of
roots.

Recall that at the start of parallel GC, various root scanning tasks are in-
serted in shared queues. These tasks direct the GC threads to different JVM
data areas which contain potential root references. These areas include mutator
thread-local stacks, card table (for old-to-young references), class loader data,
JNI handlers, etc. We calculate the NUMA locality traces for prevalent root kinds
and plot the results in Figure 2b. For all evaluated benchmarks, the old-to-young



rooted sub-graphs consistently obtain low locality results, whereas other roots
show high locality.

These results suggest that aggressive locality optimization can be applied on
selected root types. In the next section, we show that GC performance increases
when applying locality optimization on all root types except old-to-young refer-
ences. For old-to-young root, we randomly assign root references to any queue.

5.2 Pause Time and VM Time Analysis
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Fig. 3: GC time (i.e. pause time) for our three schemes. For small heaps (e.g.
DaCapo programs), hybrid scheme gives the best results, whereas aggressive
scheme is more effective for apps with larger heaps. (The default JVM is labeled
Org.)
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Fig. 4: VM time (i.e. end-to-end execution time) for our three schemes. At least
one scheme provides better VM execution time than default (labeled Org) in
most cases.



Figures 3 and 4 plot the GC pause time and VM execution time results
for the Java benchmarks. Proposed topology-aware parallel techniques for task
distribution and work-stealing outperform the default Hotspot ParallelScavenge
GC (labeled org).

For programs with small heap sizes, represented here by DaCapo bench-
marks, we observe that programs take the best advantage from Hybrid scheme.
Hybrid optimization scheme speeds up the GC performance by up to 2.52x and
never degrades it significantly. However, not all DaCapo programs follow the
same performance trend. For instance, DaCapo/avrora gains 2.5x GC speedup
but the VM performance degrades by 31%. Avrora simulates a number of appli-
cations running on a grid of micro-controllers. Previous studies [15] [24], report
that DaCapo/avrora incorporates extensive inter-thread communications and
the application threads benefit from increased cache capacity. Thus, efforts to
improve locality counteract this cache optimization.

We note that locality is vital to programs that have large heaps. Our ap-
proach improves Neo4j/LiveJournal GC performance by 37%, 22%, and 5% for
aggressive, hybrid, and relaxed optimization schemes respectively. With the ag-
gressive scheme, SPECjbb2013 records improvement in GC and VM performance
by 91% and 20% respectively.

5.3 Scalability

When the heap size gets large, the copying collector might spend much time
scanning roots for old-to-young references in the card table. Our experience is
that many live objects are discovered through the card table; thus, the card
table scanning accounts for the majority of GC pause time. On heap sizes above
100GB, we found that card table handling often takes hundreds of seconds.

In this section, we study the scalability of our optimization schemes as the
heap size increases. The experiments were run on Neo4j/LiveJournal with heap
sizes of 100, 150, and 200 GB. Figure 5 shows the GC time and VM time scalabil-
ity results. Ideally, as the heap size increases, the number of GC cycles decreases.
However, the original GC implementation shows a slight increase in the GC time.
We argue that this increase is due to the time consumed by processing the card
table—in particular due to three factors. First, old-to-young rooted sub-graphs
tend to be deep and require time for processing. Second, we have shown in Sec-
tion 5.1 that such type of roots possess poor locality between objects; hence,
incur significant remote access overhead. Third, deep sub-graphs are suscepti-
ble to work-stealing, thus, object connectivity will be broken and objects are
scattered across NUMA nodes.

Our three optimization schemes improve the second and third aspects and
provide better scalability results. Preserving the rooted sub-graph integrity and
enforcing topology awareness on work-stealing scales the GC time substantially.
In fact, relaxed scheme which aims only at processing connected objects as a unit
outperforms the original GC at 200GB heap size. These results show that large
heap sizes necessitate knowledge of the NUMA architecture to improve memory
access behavior.



For VM scalability, the original JVM implementation provides a steady VM
time over the three heap sizes and is not affected by the GC pause time. Hybrid
and relaxed optimization schemes observe reduction in VM time but moderate
scaling with increased heap size. Aggressive scheme follows the GC result’s trend
and obtains better scalability results.
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Fig. 5: GC (left) and VM (right) time scaling with heap size for
Neo4j/LiveJournal. GC time decreases with heap size for our optimized ver-
sions, whereas the original implementation does not show any scaling.

6 Related Work

Prior work proposes allocating related objects close to each other to provide
locality. Objects are co-allocated based on various criteria including temporal
access patterns [5] and types [25]. Graph traversal order can improve object
locality. Wilson et al. [30] suggest a hierarchical decomposition traversal order.
This involves two different queues: small queues for descendant objects of some
particular object in order to group them in a memory page, and a large queue to
link these small queues. In our algorithm, we use two queues: NUMA queues for
roots and local queues for rooted sub-graphs. Huang et al. [13] attempt to group
frequently accessed fields in hot methods by sampling the program execution.
At GC time, referents of hot fields are copied with their parents.

Thread-local heaps enforce local access to thread-specific objects [2,14,7,18,28].
New objects are initially allocated in thread-local heaps until they are referenced
by non-local objects. Such objects are promoted to a shared heap. Zhou and
Demsky [32] implement master/slave collector threads and thread-local heaps.
Each slave thread collects its own heap only. Any reference to a non-local object
is sent to the master thread, which communicates with the appropriate thread
to mark it live. In our algorithm, every GC thread is associated with a particular
NUMA node and processes objects in that node only.

NUMA-aware collectors take into account object location before and after
collection time. Tikir and Hollingsworth [29] sample memory accesses and move



objects to the memory node of the thread accessing the object most frequently.
Ogasawara [22] uses the dominant-thread information of each live object, e.g.
thread holding the object lock, to identify the target memory node.

Connected objects in the object graph share various attributes. Hirzel et
al. [12] examine different connectivity patterns with relation to object lifetime.
They conclude that connected objects that are reachable only from the stack
are shortlived; whereas, objects that are reachable from globals live for long
time, perhaps immortally. In addition, objects that are connected by pointers
die at the same time. Alnowaiser [1] studies the locality of connected objects
and reports that the majority of connected objects, which form a sub-graph of
a root, reside in the same memory node as that root.

Parallel GC algorithms aim to keep all cores busy processing the live object
graph. The fundamental technique of task distribution is to create a per-thread
work list that contains a set of tasks accessible by the owner thread. For load
balancing, threads that complete processing their own queues steal tasks from
non-empty queues [9,8,26,31]. However, such processor-centric algorithms do not
consider object locality and may incur additional overhead for processing distant
objects.

Memory-centric parallel GC algorithms take the object location into consid-
eration. The heap is segregated into segments and each GC thread processes one
or more segments. References to local objects in each segment are processed,
whereas references to remote objects are pushed into a queue of the correspond-
ing segment [4]. Alternatively, Shuf et al. [25] push references to remote objects
into a shared queue enabling other threads to process them. For load balancing,
GC threads need to lock unprocessed queues to trace live objects [21]. However,
a memory segment boundary might not match the physical memory page size
nor it is assigned to local threads; therefore, further locality improvements are
required.

Work-stealing algorithms negatively affect object locality by separating child
objects from their parents. Gidra [10] remarks that disabling work-stealing im-
proves program performance for some applications. Ananya et. al. [19] suggest
a locality-aware work-stealing algorithm, which calculates the distance between
NUMA nodes in a system with multi-hop memory hierarchy. An idle thread on
a node attempts to steal work from the ‘nearest’ non-empty queues. Olivier et.
al. [23] propose a hierarchical work-stealing algorithm to improve locality. They
enable one third of running threads to steal work on behalf of other threads in
the same chip and push stolen work into a shared queue for local threads. Our
approach allows threads to steal from local threads only, to preserve NUMA
locality.

7 Conclusion

We have shown that a NUMA topology-aware copying GC based on per-node
reference queues is able to preserve much of the rooted sub-graph locality that
is inherent from mutator allocation patterns. Our improved copying GC has



significant benefits—with improvements in GC performance up to 2.5x speedup
and up to 37% faster application runtime for non-trivial Java benchmarks.

We argue that further improvements are possible based on not only preserv-
ing locality of reference sub-graphs in single NUMA nodes, but also using local
GC threads to operate on these sub-graphs. At present, we rely on expensive
system calls to identify local work for GC threads—but cheaper techniques are
presented in recent literature [11].

In summary, GC implementations should attempt to preserve intra-node ref-
erence graph locality as much as possible, to enable subsequent low-latency ac-
cess times for both mutator and collector threads.
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