
Towards Secure MicroPython on Morello (WIP)
Jeremy Singer

University of Glasgow
Glasgow, United Kingdom

jeremy.singer@glasgow.ac.uk

Abstract
The Arm Morello platform is a prototype system that sup-
ports hardware capabilities for improving runtime security.
AlthoughMorello is a server class compute component, there
is ongoing work aimed at bringing architectural capabilities
to embedded scale devices. For this reason, we are porting the
MicroPython framework to Morello. Our intention is to un-
derstand the impact of hardware capabilities on lightweight
runtime execution environments, like MicroPython, that tar-
get embedded devices. In this work-in-progress report, we
describe the minimal modifications required to compile the
C source code of MicroPython for Morello. We show that
this approach gives a working, but not necessarily more se-
cure, version of MicroPython. Our paper proceeds to outline
how capabilities could be used to improve runtime system
security for MicroPython runtime and hosted applications.

CCS Concepts: • Security and privacy → Software se-
curity engineering; • Software and its engineering→
Interpreters.

Keywords: capabilities, CHERI, Python

ACM Reference Format:
Jeremy Singer. 2023. Towards Secure MicroPython on Morello
(WIP). In Proceedings of the 24th ACM SIGPLAN/SIGBED Interna-
tional Conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES ’23), June 18, 2023, Orlando, FL, USA. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3589610.3596272

1 Introduction
As part of the UK Digital Security by Design (DSbD) ini-
tiative, Arm has released a prototype platform code-named
‘Morello’ [2] which implements the CHERI hardware capabil-
ity concept. Essentially, a capability is a fat pointer including
inline metadata for bounds, permissions and validity. The
promise of hardware supported capabilities is that whole
classes of memory vulnerabilities can be eliminated, includ-
ing out-of-bounds reads/writes and use-after-free bugs [6].

LCTES ’23, June 18, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Proceedings of the 24th ACM SIGPLAN/SIGBED International Conference
on Languages, Compilers, and Tools for Embedded Systems (LCTES ’23), June
18, 2023, Orlando, FL, USA, https://doi.org/10.1145/3589610.3596272.

In this work-in-progress report, we describe our ongo-
ing project to port the MicroPython framework to Morello,
making adaptations to the C source code of MicroPython
in order to support a minimal level of capability-awareness
so the code will compile and run on the Morello platform.
This is a necessary first step towards enhancing the secu-
rity and resilience of MicroPython on Morello; however, the
key contributions will come when we incorporate more ad-
vanced features of capabilities—we sketch a roadmap for this
development in Section 4.

2 Background
2.1 What is Morello?
CHERI [8, 11] is an abstract set of processor extensions to
support capabilities as pointers. With appropriate compres-
sion techniques [10], the pointer data and metadata can be
stored in a double machine word, i.e. 128 bits on a 64 bit archi-
tecture. A further one bit (the 129th bit) is stored out-of-band
to represent the capability validity. This mechanism prevents
capability values from being forged by untrusted code. Dy-
namic checks take place in hardware on each memory access,
to ensure:

1. the capability is valid (tag check)
2. the capability has appropriate access permission (per-

mission check)
3. the capability is within bounds for this memory access

(bounds check)
If any of the checks should fail, a SIGPROT signal is raised
and code execution is interrupted.
Morello [2] is the Arm instantiation of the CHERI con-

cept. It is an quad-core AArch64 server class system-on-chip,
based on the Neoverse processor, enhanced to support 128-
bit architectural capability values. There are appropriate
new instructions, along with modifications to the register
file, memory hierarchy and data paths.

The Morello platform runs CheriBSD, a capability-aware
variant of the FreeBSD OS. Within CheriBSD, user code may
run in hybrid or purecap mode. The hybrid mode involves
executing unmodified AArch64 code, which has no capabil-
ity awareness. Effectively, this code runs in a process-level
sandbox, with all raw pointers being converted to capabil-
ities via global base capabilities in the Morello register set
(e.g. the default data capability, DDC). The purecap mode
involves executing Morello code with capability support. All
references within purecap applications are represented as
capabilities directly. This is the preferred execution mode

https://orcid.org/0000-0001-9462-6802
https://doi.org/10.1145/3589610.3596272
https://doi.org/10.1145/3589610.3596272


LCTES ’23, June 18, 2023, Orlando, FL, USA Jeremy Singer

for CheriBSD applications, since it provides finer-grained
capability support.
While Morello is a large scale machine, there is ongoing

research to create smaller, embedded variants of the CHERI
concept, e.g. [1, 12].

The most common language for developing CHERI appli-
cations is C [9]. CHERI C is a variant of C, with intrinsics
for capability support and additional semantic constraints
around pointer accesses.

2.2 What is MicroPython?
MicroPython is a lean Python runtime, typically targeting
microcontroller scale devices. Although such systems gen-
erally run software compiled from low-level languages like
C, MicroPython is a radical alternative. Scripting languages
enable rapid development for prototyping purposes; also,
Python is useful for hands-on educational contexts.
MicroPython accepts almost the full set of Python 3 con-

structs, with one or two minor absences. Textual code is
parsed and compiled to a compact bytecode format, which
is then interpreted at runtime. There is no JIT compilation
in MicroPython.
Efficiency-oriented features of MicroPython include in-

terned strings, small integers embedded directlywithin tagged
pointers, optimisedmethod calls, Python stack frames hosted
on the C stack, garbage collection without reference count-
ing, and exceptions using setjmp/longjmp.
MicroPython is written in C; the project is 307 kSLOC.

There are ports for many common microcontroller families
including Arm CortexM, and ESP32. Further, there is a Unix
process port so the MicroPython can be compiled and run
as a hosted Unix executable. MicroPython has support for
AArch64, as well as Arm32 / Thumb implementations.

2.3 Related Work
In terms of related work, several ongoing research projects
are investigating the development of managed runtimes on
capability platforms. The JavaScriptCore (JSC) runtime has
been partially ported to CHERI [4]. The CPython interpreter
compiles for CHERI, but is missing key functionality when
we try to use it.

3 Initial Porting Process
There are various configurations of MicroPython, for dif-
ferent architectures and variants. For our proof of concept
work, we chose to port the minimal configuration, which
does not incorporate any Python library support and has no
external dependencies. To build the minimal MicroPython,
the following tools are required:

• GNU make
• C compiler
• Python 3

On the default CheriBSD OS running on Morello, there
is no Python 3 interpreter. For this reason, we elected to go
down the route of cross-compilation to Morello.

3.1 Hybrid Binary
As a first attempt, we built MicroPython natively for FreeBSD
AArch 64 on a cloud instance (AWS t4g.micro) running a
Graviton2 Arm processor, which is a near equivalent to the
Morello platform (only Graviton does not have capabilities).
We copied the compiled MicroPython binary to our Morello
test server and it executes properly in hybrid mode. Only
trivial source code modifications were required in this case:

1. add a ‘fake’ alloca.h header file, which simply includes
the stdlib.h header

2. modify the configuration header file to add a macro
block #ifdef __FreeBSD__ that sets the initial heap size
and enables standard output.

3.2 Purecap Binary
As a second attempt, we built MicroPython through the
standard CHERI cross-compile process, using the Cambridge-
supported LLVM toolchain for Morello and the cheribuild
framework. This Morello cross-compiler is hosted on an x86-
64 Linux server. In this case, more extensive source code
modifications were required, in addition to those for the
previous FreeBSD build. We describe these modifications in
the remainder of this section.

Register Save Sequences. For non-local jumps (e.g. for
longjmp, for exceptions, etc) sets of registers need to be
saved onto the stack, following the procedure calling con-
vention. These sequences need to be modified for morello,
to use a capability base address for saves, and to update the
size of the save block (since capabilities are twice as large as
raw pointers).

SubwordBitfields in Structs. In the interests of conserving
space, MicroPython in-memory data structures use subword
bitfields in struct definitions. This feature is not supported
by the CHERI LLVM toolchain, so we redefine the relevant
structs so every field is a distinct word.

Capability Provenance Ambiguity. When multiple capa-
bilities are used in an arithmetic calculation, the compiler is
not clear how to handle provenance (tag validity). CHERI C
has a single-provenance semantics, which means that every
reference must be derived from exactly one other reference.
Essentially, this means that only one set of metadata (bounds,
permissions, validity) can be propagated to the result. We
simplified the code by breaking up complex calculations into
simpler, two-address style calculations. This prevents com-
piler errors (really only warnings) and allows the compiler
to generate executable purecap code.



Towards Secure MicroPython on Morello (WIP) LCTES ’23, June 18, 2023, Orlando, FL, USA

For the majority of source code modifications in this class,
the capability metadata is irrelevant since the code is op-
erating on tagged integer values that are embedded inside
MicroPython references.

Extent ofModifications. Wemeasured the number of lines
of C source code that we needed to modify in order to enable
MicroPython to compile for Morello in purecap mode. We
emphasize that this is not a full port, only an initial proof-of-
concept with negligible testing and no meaningful capability-
based features.
In total, we modified 87 lines of code. This includes 49

altered lines and 38 lines of additional code. This is a van-
ishingly small proportion of the overall codebase—as a per-
centage we have modified 0.028%. Remarkably, this propor-
tion corresponds almost exactly with the figure of 0.026%
reported by other researchers for the open-source KDE desk-
top port [7].

4 Future Work
At present, we have a working, minimal MicroPython inter-
preter on Morello. However we are not taking advantage of
any of the capability features. This section explores possible
future development directions that will enhance our port
and leverage the CHERI capabilities.
The first step will be to add tight bounds to all memory

allocations. This will serve to make the system more secure.
Further, we might be able to use CHERI hardware bounds
checking to eliminate some of the software bounds checking
performed by MicroPython.

Next we will study the garbage collector (GC) for MicroPy-
thon. This is a simple whole-heap tracing collector that im-
plements the mark/sweep algorithm. While some research
has been carried out regarding GC for capability systems [5]
this will be helpful additional evidence for how to operate
GC with capabilities, particularly in the context of a tightly
integrated memory manager and language runtime.

The MicroPython framework uses the bottom few bits of
object references to indicate whether this reference is to an
in-heap object, a string or an integer value. Small integer
values are encoded directly within the reference value itself.
This superposition of values on object references is accom-
plished by tagging, so the interpreter understands how to
evaluate each reference. As we consider the Morello port of
MicroPython, we need to assess whether such tagged inte-
gers and strings make sense with capabilities (instead of raw
pointers). Could we use the Morello capability metadata to
handle tags instead of stealing bits from the pointer payload?
MicroPython in minimal configuration is missing many

useful libraries, for instance, for regular expressions. Once
we have a working GC, we intend to incorporate as many of
these libraries as we can.

One of the most promising features of Morello is its sup-
port for lightweight software compartmentalization. Capa-
bilities allow us to divide an executing program into mu-
tually distrusting compartments with managed interfaces
between them. We will explore the Morello compartmental-
ization primitives and determine how best to split up the
MicroPython runtime. We will be looking to compartmen-
talize libraries and driver code in particular, since these are
often supplied by third parties and may be untrusted [3].
Another interesting line of work would be to exploit the
compartmentalization mechanism for the foreign function
interface. Currently, foreign functions may be able to damage
the Python heap if they behave improperly. We will further
explore whether it makes sense for compartmentalization
to be exposed to hosted Python applications running on
MicroPython—can this Python software be split into com-
partments using a simple Python API?
Finally, we intend to explore the potential for running

MicroPython in baremetal mode on Morello, rather than as a
process within a conventional Unix OS like CheriBSD. Al-
though this is not a feasible use case for server grade Morello
platforms, we are aware that researchers are developing mi-
crocontroller devices with CHERI support [1]. Baremetal
MicroPython is a typical microcontroller deployment sce-
nario.

5 Conclusions
In this work in progress report, we have described our initial
attempts at porting the MicroPython framework to the new
capability-aware Morello platform. We have sketched out a
roadmap of future work for improving capability support for
MicroPython, which will become increasingly relevant as
hardware capability support is adopted for microcontroller
scale devices.

Acknowledgments
This work was partly funded by the Digital Security by De-
sign (DSbD) programme delivered by UKRI (including grants
EP/V000349/1 and EP/X015831/1), also by the UK Defence
and Security Accelerator contract ACC6037520.

References
[1] Saar Amar, Tony Chen, David Chisnall, Felix Domke, Nathaniel

Filardo, Kunyan Liu, Robert Norton-Wright, Yucong Tao, Robert
N. M. Watson, and Hongyan Xia. 2023. CHERIoT: Rethinking secu-
rity for low-cost embedded systems. Technical Report MSR-TR-2023-6.
Microsoft. https://www.microsoft.com/en-us/research/publication/
cheriot-rethinking-security-for-low-cost-embedded-systems/

[2] Arm. 2021. ArmArchitecture ReferenceManual Supplement —Morello
for A-profile Architecture. https://developer.arm.com/documentation/
ddi0606/.

[3] Adrien Ghosn, Marios Kogias, Mathias Payer, James R. Larus, and
Edouard Bugnion. 2021. Enclosure: Language-Based Restriction of

https://www.microsoft.com/en-us/research/publication/cheriot-rethinking-security-for-low-cost-embedded-systems/
https://www.microsoft.com/en-us/research/publication/cheriot-rethinking-security-for-low-cost-embedded-systems/
https://developer.arm.com/documentation/ddi0606/
https://developer.arm.com/documentation/ddi0606/


LCTES ’23, June 18, 2023, Orlando, FL, USA Jeremy Singer

Untrusted Libraries. In Proceedings of the 26th ACM International Con-
ference on Architectural Support for Programming Languages and Oper-
ating Systems. 255–267. https://doi.org/10.1145/3445814.3446728

[4] Brett Gutstein. 2022. Memory safety with CHERI capabilities: security
analysis, language interpreters, and heap temporal safety. Technical
Report UCAM-CL-TR-975. University of Cambridge, Computer Labo-
ratory. https://doi.org/10.48456/tr-975

[5] Dejice Jacob and Jeremy Singer. 2022. Capability Boehm: Chal-
lenges and Opportunities for Garbage Collection with Capability
Hardware. In Proceedings of the 18th ACM SIGPLAN/SIGOPS Inter-
national Conference on Virtual Execution Environments. 81–87. https:
//doi.org/10.1145/3516807.3516823

[6] Nicolas Joly, Saif ElSherei, and Saar Amar. 2020. Security Analysis
of CHERI ISA. https://msrc.microsoft.com/blog/2020/10/security-
analysis-of-cheri-isa/.

[7] Robert N. M. Watson, Ben Laurie, and Alex Richardson. 2021.
Assessing the Viability of an Open-Source CHERI Desktop Soft-
ware. https://www.capabilitieslimited.co.uk/_files/ugd/f4d681_
e0f23245dace466297f20a0dbd22d371.pdf

[8] Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Michael
Roe, Hesham Almatary, Jonathan Anderson, John Baldwin, Graeme
Barnes, David Chisnall, Jessica Clarke, Brooks Davis, Lee Eisen,
Nathaniel Wesley Filardo, Richard Grisenthwaite, Alexandre Joannou,
Ben Laurie, A. Theodore Markettos, Simon W. Moore, Steven J. Mur-
doch, Kyndylan Nienhuis, Robert Norton, Alexander Richardson, Peter
Rugg, Peter Sewell, Stacey Son, and Hongyan Xia. 2020. Capability

Hardware Enhanced RISC Instructions: CHERI Instruction-Set Architec-
ture (Version 8). Technical Report UCAM-CL-TR-951. University of
Cambridge, Computer Laboratory. https://doi.org/10.48456/tr-951

[9] Robert N. M. Watson, Alexander Richardson, Brooks Davis, John
Baldwin, David Chisnall, Jessica Clarke, Nathaniel Filardo, Simon W.
Moore, Edward Napierala, Peter Sewell, and Peter G. Neumann. 2020.
CHERI C/C++ Programming Guide. Technical Report UCAM-CL-
TR-947. University of Cambridge, Computer Laboratory. https:
//doi.org/10.48456/tr-947

[10] Jonathan Woodruff, Alexandre Joannou, Hongyan Xia, Anthony Fox,
Robert M. Norton, David Chisnall, Brooks Davis, Khilan Gudka,
Nathaniel W. Filardo, A. Theodore Markettos, Michael Roe, Peter G.
Neumann, Robert N. M. Watson, and Simon W. Moore. 2019. CHERI
Concentrate: Practical Compressed Capabilities. IEEE Trans. Com-
put. 68, 10 (April 2019), 1455–1469. https://doi.org/10.1109/TC.2019.
2914037

[11] Jonathan Woodruff, Robert N.M. Watson, David Chisnall, Simon W.
Moore, Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neu-
mann, Robert Norton, and Michael Roe. 2014. The CHERI Capability
Model: Revisiting RISC in an Age of Risk. In Proceeding of the 41st
Annual International Symposium on Computer Architecuture. 457–468.
https://doi.org/10.1145/2678373.2665740

[12] Hongyan Xia. 2021. Capability memory protection for embedded sys-
tems. Technical Report UCAM-CL-TR-955. University of Cambridge,
Computer Laboratory. https://doi.org/10.48456/tr-955

Received 2023-03-16; accepted 2023-04-21

https://doi.org/10.1145/3445814.3446728
https://doi.org/10.48456/tr-975
https://doi.org/10.1145/3516807.3516823
https://doi.org/10.1145/3516807.3516823
https://msrc.microsoft.com/blog/2020/10/security-analysis-of-cheri-isa/
https://msrc.microsoft.com/blog/2020/10/security-analysis-of-cheri-isa/
https://www.capabilitieslimited.co.uk/_files/ugd/f4d681_e0f23245dace466297f20a0dbd22d371.pdf
https://www.capabilitieslimited.co.uk/_files/ugd/f4d681_e0f23245dace466297f20a0dbd22d371.pdf
https://doi.org/10.48456/tr-951
https://doi.org/10.48456/tr-947
https://doi.org/10.48456/tr-947
https://doi.org/10.1109/TC.2019.2914037
https://doi.org/10.1109/TC.2019.2914037
https://doi.org/10.1145/2678373.2665740
https://doi.org/10.48456/tr-955

	Abstract
	1 Introduction
	2 Background
	2.1 What is Morello?
	2.2 What is MicroPython?
	2.3 Related Work

	3 Initial Porting Process
	3.1 Hybrid Binary
	3.2 Purecap Binary

	4 Future Work
	5 Conclusions
	References

