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Abstract
Two long-term trends have now reached maturity in the
computing field: namely generative AI and memory-secure
processors. In our research, we aim to exploit the synergy be-
tween these trends to use customized large language models
to generate system-level memory management routines that
take advantage of a range of processor features supporting
memory security. In this position paper, we sketch out the
research agenda for this project.

1 Motivation
Memory bugs often lead to serious security issues. According
to recent studies from Microsoft [3] and Google [1], mem-
ory bugs account for 70% of critical software vulnerabilities.
Such problems are frequently caused by (mis)management
of dynamically allocated memory. As well as being a focus
for security, memory allocation is also significant for per-
formance. A large proportion of program execution time is
devoted to low-level memory management routines.
Further, the huge power demands of dynamic RAM in

cloud data centres motivate the requirement for more so-
phisticated, adaptive memory management techniques to
improve the sustainability of virtualised workloads.

There is rapid, ongoing innovation in the hardware micro-
architectural domain, adding secure extensions to main-
stream processor families, including Arm and Intel. This
involves new basic instructions for secure enclaves, bounded
capabilities and extensions to page table metadata and pro-
tection mechanisms; preventing whole classes of exploits
that have plagued systems software for decades. These new
processor facilities provide fundamental mechanisms for
more secure memory allocators, but their full benefits are
yet to be seen due to the massive developer effort required
to write or optimise a memory management codebase. For
example, the recent snmalloc secure allocator [2] comprises
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25K SLoC painstakingly developed by leading industrial prac-
titioners over four years. Further, different vendors provide
highly diverse feature sets; there is no common baseline for
memory-secure operation.

Our ambitious project will develop an open-source frame-
work to enable ‘grow your own’ memory managers to meet
a set of formal user requirements encompassing security
and performance. While hand-crafted high-performance li-
braries are readily available and widely deployed, they take
immense developer effort to create—and further effort to
re-target to new architectures. Our proposal takes a different
approach, aiming to substitute most of the human engineer
time with automated machine time.

2 Typical Processor Memory Security
Features

Major processor vendors have a wide, diverse range of mem-
ory security features. This feature set is growing with each
new processor family—we seem to be at an evolutionary
stage where no-one is clear about the ‘fittest’ extensions to
support.

Key high-level memory security features include tagging,
isolation and encryption. Tagging enables probabilistic pointer
authentication, reducing the likelihood of forged pointers
accessing data. Arm MTE is one such technology. Isolation
involves secure enclaves, where memory is inaccessible to
code operating outside the enclave. Intel SGX and Arm Trust-
zone instantiate this concept. Encryption uses secret keys to
prevent attackers from reading secret data, even if they have
physical access to the encrypted memory. AMD SEV is one
such technology.

While these memory-secure features are being supported
by commercial processor designs, they are also the topic of
active research interest. The CHERI community [5], using
the ArmMorello prototype, support precise bounds checking
in hardware, unforgeable pointers, sealed memory, etc. This
is a more heavyweight approach than existing commercial
techniques, but might influence future industry direction.
Further, a number of experimental RISC-V security exten-
sions appear to be relevant to memory security.
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3 Synthesizing Code with Large Language
Models

The eye-catching publicity around ChatGPT points to the
likely successful adoption of large language models for AI-
generated text. A simple request like ‘ChatGPT, make a mal-
loc for me’ results in a simple C bump-pointer allocator
implementation, which is correct for trivial, single-threaded
client code. More complex requests for ‘secure memory allo-
cators’ return code that performs software bounds checking
via allocator metadata. However there is no notion of under-
lying processor memory-secure features in these C language
allocator implementations generated by ChatGPT.

Our intention is to automatically synthesise a high-performance
memory allocator using assembly instructions, OS library
calls, and low-level primitives as building blocks.

Initially, we will develop a catalogue of security properties
for memory allocators. While some properties will be com-
posable, others may have complex inter-dependencies. We
will develop an ontology with explicit relationships between
properties. In essence, we intend to specify a set of allocator
properties, relating to correctness and security.
The next stage is to map these allocator properties onto

low-level processor-specific primitives like CHERI pointer
permissions. We will begin with a hand-coded example map-
ping for the Arm Morello platform, since we have prior ex-
perience on this. Following this, we will create and/or collect
secure allocator code snippets that implement appropriate
features, targeting security-enhanced backends like Arm
MTE and Intel SGX. This corpus of allocator code fragments
will be used to train a code generator.

We will create a well-defined and reusable set of character-
istics for runtime memory allocation code, forming the basis
for both a taxonomic classification of allocators and a train-
ing set for a DRL framework. We will formulate the problem
as a single-player game using deep reinforcement learning
(DRL). Given a memory allocator API that defines the in-
puts and outputs, the player (computer) learns to select and
combine low-level primitives including, e.g. capability-based
bounded buffers, coloured pointers), assembly instructions,
and OS library calls, to produce a correct and effective mem-
ory allocator library.
We will build and train a DRL framework from open-

sourcememory allocators and our training corpus. The trained
DRL can then generate new memory management libraries
for new security properties or hardware. Our DRL consists
of a learning algorithm and a representation function. The
learning algorithmwill use DRL and stochastic search optimi-
sation algorithms like Monte Carlo Tree Search to navigate
the program synthesis space. The representation function
then maps a (partially) generated program into a status rep-
resentation to guide the search. The search can start from
either an empty algorithm or a standard memory allocator
implementation. It then iteratively amends the (partially)

generated code by changing, adding or removing an instruc-
tion, primitive, or library call. At each step, the current status
representation is used to predict the next action as being one
of the valid code transformation options or a stop action to
complete the optimisation. A reward function then estimates
the performance gain so far to provide feedback to guide the
code synthesis process.

4 What about Correctness?
Our radical alternative approach involves specifying the
memory management attributes required (including security
properties) and then synthesising performant memory man-
agement code to satisfy these specifications for a particular
target processor architecture. We will ensure such code is
correct by construction by using model checking techniques
to verify the generated code respects conventional malloc in-
variants and enhanced security requirements. Model check-
ing has been applied successfully to verify properties of
garbage collection algorithms [6]. In a similar way, we will
translate our high-level specifications to formal properties,
expressed in linear-time temporal logic (LTL).

Then we need to create an automated static analysis pass
to generate abstract models from allocator source code writ-
ten in C and the corresponding assembly code. The abstract
model only captures relevant semantics from the source
code, relating to dynamic memory access. We will extend
techniques for abstracting models from C code [4].
Based on our previous experience with formalizing sys-

tems software, we expect the developmentwill be exploratory
and, at least initially, highly iterative. Once we have rea-
sonably representative properties and abstract models, we
can commence model checking in earnest. In itself, this is
a valuable research contribution and should yield useful
publications. However our main goal is to link the model
checking with the code synthesis component and to support
reasoning at the assembly instruction level using high-level
abstractions.
Effectively, we will use formal verification to provide

increased confidence that generated code is correct and
matches the security specification. Verification can be used
in a feedback loop for the code synthesis process to revert a
partially generated program to an error-free status so that
code search does not need to start from scratch. Since our
primitives are correct-by-construction and their semantics
are known to the verification system, we can focus on veri-
fying the interfaces of the primitives and their interaction.
Doing so can significantly reduce the problem space. We will
also automate this verification process and use input-output
behavioural synthesis to quickly reject illegal code synthesis
options to accelerate verification.
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