
Programming Language Feature Agglomeration

Jeremy Singer Callum Cameron Marc Alexander
University of Glasgow

firstname.lastname@glasgow.ac.uk

Abstract
Feature-creep is a well-known phenomenon in software systems.
In this paper, we argue that feature-creep also occurs in the domain
of programming languages. Recent languages are more expressive
than earlier languages. However recent languages generally extend
rather than replace the syntax (sometimes) and semantics (almost
always) of earlier languages. We demonstrate this trend of agglom-
eration in a sequence of languages comprising Pascal, C, Java, and
Scala. These are all block-structured Algol-derived languages, with
earlier languages providing explicit inspiration for later ones. We
present empirical evidence from several language-specific sources,
including grammar definitions and canonical manuals. The evi-
dence suggests that there is a trend of increasing complexity in
modern languages that have evolved from earlier languages.

1. Introduction
As programming language theory has developed and compiler tech-
nology has become more powerful, so programming languages
have become increasingly complex. This phenomenon is recog-
nized in the evolution of a single language like Fortran [14]: the
initial specification of FORTRAN [2] is vastly different to Fortran
2008. Features from the earliest version of FORTRAN form a small
subset of modern-day Fortran, which has accumulated a host of new
syntactic constructs and behaviors. In this paper, we will observe
the same trends, i.e.

1. increasing complexity

2. backwards compatibility

in a family of related programming languages, where later lan-
guages are, in some sense, successors of earlier languages. The four
languages we study in this paper are: Pascal, C, Java and Scala.

One key constraint is that new programming languages need
to resemble existing languages in order to be widely and rapidly
adopted. Syntactic familiarity engenders trust on the part of the
developers. This obliges language designers to retain old features
of languages in an attempt to support backwards compatibility, or at
least some semblance of it. For instance, Gosling [6] states that ‘we
tried to stick as close as possible to C++ in order to make the [Java]
system more comprehensible.’ Stroustrup [16] explains that C++
retains ‘the lowlevel and unsafe features of C’ since he strongly

[Copyright notice will appear here once ’preprint’ option is removed.]

feels that ‘a language designer has no business of trying to force
programmers to use a particular style’.

In view of this constraint, new languages are likely to be rel-
atively large and unwieldy. The new language tends to have new
features, otherwise there is no compelling reason for it. However
the new language generally also supports features of existing lan-
guages, otherwise no-one will use it. In this paper, we provide some
empirical evidence to support our argument that modern languages
(Java, Scala) are significantly larger than older languages (Pascal,
C) due to their greater complexity.

1.1 Contributions
In this work, we make the following contributions:

1. We outline four metrics to quantify the relative complexity of a
set of programming languages.

2. We provide an empirical study of four programming languages,
showing how recent languages are inherently more complex
than earlier languages.

3. We discuss how language designers might take concrete steps
to avoid excessive complexity when devising new programming
languages.

2. Selected Languages
In this language study, we are going to consider four mainstream
programming languages. Below we set out the systematic basis for
the selection of these languages. The criteria are:

• popularity: each language must feature in the Tiobe index1 of
top 50 programming languages.

• tool availability: each language must have freely available
toolchains, ideally with source code available for inspection.

• primary documentation: each language must have a published
manual, co-authored by one or more of the language designers.

• conceptual elegance: each language must be created by persons
recognized as programming language authorities by their peers.
For instance, the language designers should be Turing award
winners or ACM Fellows in recognition of their contributions
to programming language progress.

Table 1 lists the four languages selected for this study, which
meet the criteria outlined above.

Importantly, there are clear inter-dependences between the se-
lected languages. Pascal is the earliest language in our selection.
C appears to be motivated in part by the developers’ frustration
with Pascal [9]. Java [6] relies strongly on the tradition of C and
C++. Scala [12] is explicitly designed to ‘work seamlessly with
. . . mainstream object-oriented languages such as . . . Java.’

1 http://www.tiobe.com/index.php/content/paperinfo/tpci/
index.html, checked May 2014

1 2014/7/24

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html


language year
Pascal 1970

C 1978
Java 1996
Scala 2003

Table 1. Programming languages systematically selected for study

We intend to trace these relationships between the languages, in
terms of their chronological and conceptual orderings.

3. Language Syntax Study
This section focuses on comparative studies of artifacts relating to
the syntax of the various programming languages.

3.1 Keywords
In this initial study, we examine the number of keywords in each
language. This is a simplistic measure of complexity, in terms of the
size of each language’s primitive vocabulary. Keywords are used
to express data types, data structures, control flow and modularity,
inter alia. A larger set of keywords indicates a more complex
language, with a richer set of programming constructs. We are
aware that C-like languages rely on punctuation symbols more than
Pascal-like languages. The effect of this reliance on symbols will
be considered in the grammatical comparison in Section 3.1.

We retrieve keyword lists from freely accessible web sites, as
listed below. ISO standards and similar sources would provide a
more reliable basis for this study.

The set of Pascal keywords is specified at http://www.
gnu-pascal.de/gpc/Keywords.html. A total of 36 keywords
are valid in any dialect of Pascal.

The set of C keywords is listed at http://en.wikipedia.
org/wiki/C_syntax#Reserved_keywords. This list gives a to-
tal of 37 keywords.

The Java Language Specification keywords at http://docs.
oracle.com/javase/specs/jls/se5.0/html/lexical.html#
3.9 gives 50 keywords for Java version 1.5. Note that this list does
not include literals e.g. null, true, or reserved words that are
not current keywords e.g. goto, operator. Earlier version of Java
featured fewer keywords. There are 46 keywords in Java version
1.0.

The Scala reference document at http://www.scala-lang.
org/docu/files/ScalaReference.pdf lists 49 reserved words.

From this initial investigation, the languages cluster into two
groups. Pascal and C have similar sized vocabularies. Both are
imperative languages with support for user-defined abstract data
types. Java and Scala have similar keyword vocabulary sizes to
each other, since they are both object-oriented languages that are
significantly more complex than the earlier imperative languages.

Observed Evolution: Later languages have more
keywords.

3.2 Grammars
In the next investigation, we examine the sizes of the grammars
that define each language. There is a range of metrics for grammar
complexity, e.g. [7]. We measure the number of rules in the BNF
grammar specification for each language. Rather than considering
the keywords in isolation, we study how they may be composed
to generate legal programs. This is another measure of language
complexity.

language book pages
Pascal [8] 167
C [10] 272
Java [1] 891
Scala [13] 736

Table 3. Programming Language Manual sizes

We rely on extant open source grammar definition files for our
four languages under study. These files are generally inputs to
parser generator systems like yacc. Table 2 shows the details of the
actual grammar files we used. Although these grammars are not all
canonical, they should give a general representation of the relative
complexity of the language grammar. (Only the Scala grammar is
written by the original language developers.)

In each eBNF grammar specification, we will count the number
of non-terminal expansions, i.e. the number of actual rules. Where a
single rule consists of multiple clauses, i.e. A ::= B | C, we count
each alternate clause B and C as a separate rule.

Table 2 is not particularly conclusive. It seems that Pascal and
Java have more complex grammars, largely due to their built-in
facilities for modularization, which C does not support directly. The
Scala grammar seems smaller, but the comparison may be unfair
since it is specified in a different notation.

Observed Evolution: The study is inconclusive
based on the grammatical evidence above. There is
no evolutionary trend in any direction.

4. Language Manual Study
This section focuses on the standard manuals for each program-
ming language under study. We attempt to make a systematic se-
lection of manuals: our aim is to select the canonical manual for
each language. This requires (1) the manual to be written by the
language designer(s) and (2) the first edition of the manual to be
published within five years of the public release of the language.

For Pascal, we choose the Pascal User Manual and Report [8].
For C, we select the K&R textbook, in its most popular ANSI C
edition [10]. For Java, we choose the Java Programming Language
manual [1] rather than the more formal (but less accessible) Java
Language Specification. For Scala, we select the Programming in
Scala manual [13].

4.1 Manual Size
This study measures the number of pages in each programming
language manual. The manual size should be an indication of the
language’s relative complexity. Table 3 gives the results of this
analysis.

Again, the languages appear to cluster into two distinct groups.
Pascal and C have more concise manuals, whereas the Java and
Scala manuals are more verbose. This metric may correlate directly
with the number of keywords in a language, see Section 3.1. A
larger keyword vocabulary will naturally require more explanation.
Kernighan and Ritchie [10] comment that ‘C is not a big language,
and it is not well served by a big book.’

It is also likely that as the conceptual complexity of program-
ming languages increases, then their descriptions become longer.
Some programming constructs evolve to become more compli-
cated, as we discover in the next section. The well recognized phe-
nomenon of evolution within a single language may be observed
using the same metric of programming language manual size. Ta-

2 2014/7/24

http://www.gnu-pascal.de/gpc/Keywords.html
http://www.gnu-pascal.de/gpc/Keywords.html
http://en.wikipedia.org/wiki/C_syntax#Reserved_keywords
http://en.wikipedia.org/wiki/C_syntax#Reserved_keywords
http://docs.oracle.com/javase/specs/jls/se5.0/html/lexical.html#3.9
http://docs.oracle.com/javase/specs/jls/se5.0/html/lexical.html#3.9
http://docs.oracle.com/javase/specs/jls/se5.0/html/lexical.html#3.9
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://www.scala-lang.org/docu/files/ScalaReference.pdf


language source location specification language language version rules
Pascal http://ccia.ei.uvigo.es/docencia/PL/

doc/bison/pascal/pascal.y
Bison ISO 7185 Level 0 242

C http://www.lysator.liu.se/c/
ANSI-C-grammar-y.html

Bison ANSI C89 211

Java http://www.cs.dartmouth.edu/

~mckeeman/cs118/notation/java11.html
Bison v1.1 278

Scala http://lampsvn.epfl.ch/svn-repos/
scala/scala-documentation/trunk/src/
reference/SyntaxSummary.tex

eBNF in LaTeX v2.7 200

Table 2. Grammar Files used for Grammar Size Study

year Java v. edition pages
1996 1.0 1st 333
1997 1.1 2nd 442
2000 1.3 3rd 595
2006 1.5 4th 891

Table 4. Growth in size of ‘The Java Programming Language’
through four editions (data from Google books)

ble 4 shows how the Java manual has grown over various editions,
tracking the increasing complexity of the language itself.

Another cause for manual growth is that older books have more
compact typesetting. Newer books are cheaper to typeset, and elec-
tronic books largely eliminate concerns of per-page cost.

Observed Evolution: Later languages have longer
manuals.

4.2 Linguistic Comparison
In this final study, we examine a programming construct that
is shared between all the languages under study. For this cross-
sectional study, we consider the for loop construct. This iterative
control flow statement is supported by all four languages, although
there are differences in the complexity of the construct between
languages.

We examine the main section in each programming language’s
canonical manual that describes the for loop construct in that lan-
guage. We study the natural language descriptions and compare
metrics on them. Table 5 describes the source texts used in the anal-
ysis.

As Table 5 shows, the descriptions of for loops become more
verbose with more recent languages. The manual authors use more
sentences in their descriptions. The sentence length increases with
the modernity of the language. Note also that the average sentence
length is greater for modern languages (Java and Scala) than for
older languages (Pascal and C). This increase in description length
reflects the corresponding increase in for loop semantic richness.
Whereas Pascal for loops merely increment or decrement the index
variable at each iteration, C for loops can perform an arbitrary
update of any number of index variables. The original version
of Java retains the C semantics, but since has been extended to
include for each style loops operating over iterable data structures.
The Scala for loop supports a variety of iteration styles including
traditional integer index variables, iterating over data structures,
and list comprehension style iteration.

In terms of source code provided in the manuals, modern lan-
guage manuals provide more source code fragments, although the
density of source code to natural language is much lower. The

modern manuals (Scala and Java) provide much more commen-
tary on the source code fragments. For instance, Odersky et al. [13]
present a Scala grep utility function, accompanied by the follow-
ing comment: ‘A variable named trimmed is introduced halfway
through the for expression. That variable is initialized to the result
of line.trim. The rest of the for expression then uses the new
variable in two places. . . ’

This level of detail is lacking in the earlier manuals. For instance
Jensen and Wirth [8] present an 18-line program that iteratively
computes the sum of a series of real valued numbers using four
different orderings of the numbers. There is no accompanying nat-
ural language commentary, and after the source code, the question
is posed: ‘Why do the four “identical” sums differ?’ The reader is
expected to infer that the answer is due to loss of precision in the
floating-point arithmetic.

In the earlier manuals (particularly [8]) the language is concise
and technical. In the later manuals, the language is more informal
and richer in metaphor. For instance, Odersky et al. [13] introduce
the Scala for loop as follows: ‘Scala’s for expression is a Swiss
army knife of iteration. It lets you combine a few simple ingredients
in different ways to express a wide variety of iterations. ’

Observed Evolution: Later languages have more
complex constructs that require extended descriptions
and examples.

5. Threats to Validity
Unrepresentative Language Selection: As outlined in Section 2,

we followed a principled approach in selecting the four lan-
guages used for this study. Other languages that meet the speci-
fied criteria include C++ and C# but time restrictions prevented
their consideration. It would be interesting to apply the same
metrics to Fortran as a form of calibration since agglomeration
has clearly happened with this language (as successive stan-
dards are always backwards compatible).

Inappropriate Artifacts: We attempted to remain as general as
possible, so we did not consider particular compilers for each
language. Instead we restricted our attention largely to language
specifications and canonical documentation. We note that the
study of ISO style documentation would be more authoritative,
but this is only possible for standardized languages like Pascal
and C. Further, we focused on the languages rather than any
corpus of programs written in those languages. Again, this is in
the interests of generality. We did not examine the relative sizes
of language standard libraries. In some cases, e.g. Smalltalk, the
core language has relatively little syntax and many constructs
like iteration constructs are actually library calls.

3 2014/7/24

http://ccia.ei.uvigo.es/docencia/PL/doc/bison/pascal/pascal.y
http://ccia.ei.uvigo.es/docencia/PL/doc/bison/pascal/pascal.y
http://www.lysator.liu.se/c/ANSI-C-grammar-y.html
http://www.lysator.liu.se/c/ANSI-C-grammar-y.html
http://www.cs.dartmouth.edu/~mckeeman/cs118/notation/java11.html
http://www.cs.dartmouth.edu/~mckeeman/cs118/notation/java11.html
http://lampsvn.epfl.ch/svn-repos/scala/scala-documentation/trunk/src/reference/SyntaxSummary.tex
http://lampsvn.epfl.ch/svn-repos/scala/scala-documentation/trunk/src/reference/SyntaxSummary.tex
http://lampsvn.epfl.ch/svn-repos/scala/scala-documentation/trunk/src/reference/SyntaxSummary.tex


language manual section (pages) sentences words/sentence code fragments
Pascal [8] 4.C.3 (23–26) 12 13.2 9
C [10] 3.5 (60–63) 47 16.7 11
Java [1] 10.5 (208–212 57 21.5 13
Scala [13] 7.3 (154–159) 70 18.1 13

Table 5. For loop descriptions in canonical language manuals

Inappropriate Metrics: We applied a range of metrics to the lan-
guage artifacts in Sections 3 and 4. The metrics calculations are
intuitively straightforward and independently reproducible.

Analysis Bias: With only four data points for each study and a
natural clustering of older imperative languages versus newer
object-oriented languages, some subjective analysis bias is
likely. This could be mitigated by a larger study, involving more
languages and a wider range of metrics.

6. Related Work
Chen et al. [4] provide a detailed study of 17 programming lan-
guages including C, Java and Pascal. They apply statistical analysis
to correlate a range of quantitative factors such as generality and
machine independence for each language. They derive equations
to predict the relative popularity of programming languages based
on multivariate regression. Their quantification approach could be
perceived as an arbitrary scheme, since it is based on a subjective
assignment of values to categorical features. In contrast, we have
used a metrics-based approach to assess language complexity.

Steele [15] argues that languages with restricted vocabularies
(whether natural languages or programming languages) are cum-
bersome. Although small languages may be learnt quickly, it is less
efficient to communicate using small languages. He states that Java
began as a small language and is growing gradually over time. Java
programmers have evolved with the language. We provide empir-
ical evidence for the growth of Java in Table 4. We suggest that
Steele’s argument also applies to a family of related languages.

Overbey et al. [14] study the evolution of Fortran. They ap-
ply refactoring transformations to legacy Fortran code to remove
outdated constructs which are difficult to optimize for modern ar-
chitectures. Thus they support all language constructs, but trans-
parently map legacy constructs to newer language idiom. This is
a transparent form of backward compatibility. Modern compilers
may support similar optimizations, e.g. loop vectorization in GCC
effectively turns a sequential for loop into a parallel for loop.

7. Conclusions
In this paper, we present quantitative evidence to show that Java
and Scala are larger and more complex than C and Pascal. It seems
inevitable that languages which retain some element of backwards
compatibility (or at least, syntactic familiarity) are bound to be
larger than the languages they are intended to replace. This is a nat-
ural feature of programming language evolution across languages.
However the concern is that newer languages will agglomerate so
many legacy language features that they can never discard. Thus
newer languages become excessively large and unwieldy, hence no
longer useful.

The JavaScript language is multi-paradigm: it is a modern,
widely adopted language that supports many different program-
ming styles. However some experienced developers recommend
the use of an elegant subset of the language, which Crockford [5]
calls ‘the good parts’ of JavaScript. On a similar note, recent imple-
mentations of JavaScript support strict mode, which prevents the
use of certain problematic constructs such as the with statement

[11]. Perhaps every large, modern language has an elegant subset?
Should this subset be a moving target over time, as newer features
are introduced? Brooks [3] suggests the existence of a ‘sweet spot’
in language complexity, at which point a language is sufficiently
expressive to be useful but not excessively complex to become
intractable.

Should languages retain backwards compatibility features in
perpetuity? In the same way that Java APIs can be marked as
deprecated, perhaps programming language constructs could be
deprecated too? A compiler could issue warnings to users that cer-
tain constructs are not well-supported, perhaps because of perfor-
mance issues. This would encourage the developer to rewrite code
to use alternative constructs.

In summary, we advocate that such questions should be ad-
dressed in the context of a diverse, co-evolving family of languages,
rather than for a single language only.

References
[1] K. Arnold, J. Gosling, and D. Holmes. The Java programming lan-

guage. Addison-Wesley, 4th edition, 2005.

[2] J. Backus. Specifications for the IBM formula translating system,
FORTRAN. Technical report, IBM, Nov. 1954.

[3] J. Brooks, F.P. No silver bullet: Essence and accidents of software
engineering. IEEE Computer, 20(4):10–19, 1987.

[4] Y. Chen, R. Dios, A. Mili, L. Wu, and K. Wang. An empirical study
of programming language trends. Software, IEEE, 22(3):72–79, May
2005.

[5] D. Crockford. JavaScript: the good parts. O’Reilly, 2008.

[6] J. Gosling. Java: An overview, 1995.

[7] J. Gruska. Complexity and unambiguity of context-free grammars and
languages. Information and Control, 18(5):502–519, 1971.

[8] K. Jensen and N. Wirth. Pascal user manual and report. Springer, 2nd
edition, 1974.

[9] B. W. Kernighan. Why pascal is not my favorite program-
ming language. Technical Report 100, Bell Laboratories, 1981.
URL http://www.fh-jena.de/~kleine/history/languages/
Kernighan-WhyPascalIsNotMyFavoriteProgrammingLanguage.
pdf.

[10] B. W. Kernighan and D. M. Ritchie. The C programming language.
Prentice Hall, 2nd edition, 1988.

[11] Mozilla Developer Network. Strict mode. URL https:
//developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Functions_and_function_scope/Strict_mode.
accessed 21 July 2014.

[12] M. Odersky. The Scala experiment: can we provide better language
support for component systems? In POPL, pages 166–167, 2006.

[13] M. Odersky, L. Spoon, and B. Venners. Programming in Scala.
Artima, 1st edition, 2008.

[14] J. Overbey, S. Negara, and R. Johnson. Refactoring and the evolution
of fortran. In Software Engineering for Computational Science and
Engineering, 2009. SECSE ’09. ICSE Workshop on, pages 28–34, May
2009.

[15] G. L. Steele, Jr. Growing a language. Higher-Order and Symbolic
Computation, 12(3):221–236, 1999.

4 2014/7/24

http://www.fh-jena.de/~kleine/history/languages/Kernighan-WhyPascalIsNotMyFavoriteProgrammingLanguage.pdf
http://www.fh-jena.de/~kleine/history/languages/Kernighan-WhyPascalIsNotMyFavoriteProgrammingLanguage.pdf
http://www.fh-jena.de/~kleine/history/languages/Kernighan-WhyPascalIsNotMyFavoriteProgrammingLanguage.pdf
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions_and_function_scope/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions_and_function_scope/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions_and_function_scope/Strict_mode


[16] B. Stroustrup. A history of C++: 1979–1991. In The Second ACM
SIGPLAN Conference on History of Programming Languages, pages
271–297, 1993.

5 2014/7/24


	Introduction
	Contributions

	Selected Languages
	Language Syntax Study
	Keywords
	Grammars

	Language Manual Study
	Manual Size
	Linguistic Comparison

	Threats to Validity
	Related Work
	Conclusions

