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ABSTRACT
Concept assignment identifies units of source code that are
functionally related, even if this is not apparent from a syn-
tactic point of view. Until now, the results of concept as-
signment have only been used for static analysis, mostly of
program source code. This paper investigates the possibil-
ity of using concept information as part of dynamic analy-
sis of programs. There are two case studies involving (i) a
small Java program used in a previous research study; (ii) a
large Java virtual machine (the popular Jikes RVM system).
These studies demonstrate the usefulness of concept infor-
mation for dynamic approaches to profiling, debugging and
comprehension. This paper also introduces the new idea of
feedback-directed concept assignment.

1. INTRODUCTION
This paper fuses together ideas from program comprehen-
sion (concepts and visualization) with program compilation
(dynamic analysis). The aim is to provide techniques to
visualize Java program execution traces in a user-friendly
manner, at a higher level of abstraction than current tools
support. These techniques should enable more effective pro-
gram comprehension, profiling and debugging.

1.1 Concepts
Program concepts are a means of high-level program com-
prehension. Biggerstaff et al [4] define a concept as ‘an ex-
pression of computational intent in human-oriented terms,
involving a rich context of knowledge about the world.’ They
argue that a programmer must have some knowledge of
program concepts (some informal intuition about the pro-
gram’s operation) in order to manipulate that program in
any meaningful fashion. Concepts attempt to encapsulate
original design intention, which may be obscured by the syn-
tax of the programming language in which the system is im-
plemented. Concept selection identifies how many orthog-
onal intentions the programmer has expressed in the pro-
gram. Concept assignment infers the programmer’s inten-
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tions from the program source code. As a simple example,
concept assignment would relate the human-oriented con-
cept buyATrainTicket with the low-level implementation-
oriented artefacts:

{ queue();

requestTicket(destination);

pay(fare);

takeTicket();

sayThankYou();

}

Often, human-oriented concepts are expressed using UML
diagrams or other high-level specification schemes, which are
far removed from the typical programming language sphere
of discourse. In contrast, implementation-oriented artefacts
are expressed directly in terms of source code features, such
as variables and method calls.

Concept assignment is a form of reverse engineering. In
effect, it attempts to work backward from source code to
recover the ‘concepts’ that the original programmers were
thinking about as they wrote each part of the program. This
conceptual pattern matching assists maintainers to search
existing source code for program fragments that implement
a concept from the application. This is useful for program
comprehension, refactoring, and post-deployment extension.

Generally, each individual source code entity implements a
single concept. The granularity of concepts may be as small
as per-token or per-line; or as large as per-block, per-method
or per-class. Often, concepts are visualized by colouring
each source code entity with the colour associated with that
particular concept. Concept assignment can be expressed
mathematically. Given a set U of source code units u0, u1, . . . ,

un and a set C of concepts c0, c1, . . . , cm then concept assign-
ment is the construction of a mapping from U to C. Often
the mapping itself is known as the concept assignment.

Note that there is some overlap between concepts and as-
pects. Both attempt to represent high-level information cou-
pled with low-level program descriptions. The principal dif-
ference is that concepts are universal. Every source code
entity implements some concept. In contrast, only some
of the source code implements aspects. Aspects encapsulate
implementation-oriented cross-cutting concerns, whereas con-
cepts encapsulate human-oriented concerns which may or
may not be cross-cutting.



Throughout this paper, we make no assumptions about how
concept selection or assignment takes place. In fact, all the
concepts are selected and assigned manually in our two case
studies. This paper concentrates on how the concept infor-
mation is applied, which is entirely independent of how it is
constructed. However we note that automatic concept se-
lection and assignment is a non-trivial artificial intelligence
problem.

1.2 Dynamic Analysis with Concepts
To date, concept information has only been used for static
analysis of program source code or higher-level program de-
scriptions [4, 10, 11]. This work focuses on dynamic anal-
ysis using concept information, for Java programs. Such
dynamic analysis relies on embedded concept information
within dynamic execution traces of programs.

1.3 Contributions
This paper makes three major contributions:

1. Section 2 discusses how to represent concepts practi-
cally in Java source code and JVM dynamic execution
traces.

2. Sections 3.2 and 3.3 outline two different ways of visu-
alizing dynamic concept information.

3. Sections 3 and 4 report on two case studies of systems
investigated by dynamic analysis of concepts.

2. CONCEPTS IN JAVA
This section considers several possible approaches for em-
bedding concept information into Java programs. The in-
formation needs to be apparent at the source code level (for
static analysis of concepts) and also in the execution trace
of the bytecode program (for dynamic analysis of concepts).

There are obvious advantages and disadvantages with each
approach. The main concerns are:

• ease of marking up concepts, presumably in source
code. We hope to be able to do this manually, at least
for simple test cases. Nonetheless it has to be simple
enough to automate properly.

• ease of gathering dynamic information about concept
execution at or after runtime. We hope to be able
to use simple dump files of traces of concepts. These
should be easy to postprocess with perl scripts or sim-
ilar.

• ease of analysis of information. We would like to use
visual tools to aid comprehension. We hope to be
able to interface to the popular Linux profiling tool
Kcachegrind [1], part of the Valgrind toolset [16].

The rest of this section considers different possibilities for
embedded concept information and discusses how each ap-
proach copes with the above concerns.

public @interface Concept1 { }

public @interface Concept2 { }

...

@Concept1 public class Test {

@Concept2 public void f() { ... }

...

}

Figure 1: Annotation-based concepts in example
Java source code

2.1 Annotations
Custom annotations have only been supported in Java since
version 1.5. This restricts their applicability to the most
recent JVMs, excluding many research tools such as Jikes
RVM [2].

Annotations are declared as special interface types. They
can appear in Java wherever a modifier can appear. Hence
annotations can be associated with classes and fields within
classes. They cannot be used for more fine-grained (statement-
level) markup.

Figure 1 shows an example that uses annotations to support
concepts. It would be straightforward to construct and mark
up concepts using this mechanism, whether by hand or with
an automated source code processing tool.

Many systems use annotations to pass information from the
static compiler to the runtime system. An early example is
the AJIT system from Azevedo et al [3]. Brown and Hor-
spool present a more recent set of techniques [5].

One potential difficulty with an annotation-based concept
system is that it would be necessary to modify the JVM, so
that it would dump concept information out to a trace file
whenever it encounters a concept annotation.

2.2 Syntax Abuse
Since the annotations are only markers, and do not con-
vey any information other than the particular concept name
(which may be embedded in the annotation name) then it is
not actually necessary to use the full power of annotations.
Instead, we can use marker interfaces and exceptions, which
are supported by all versions of Java. The Jikes RVM system
[2] employs this technique to convey information to the JIT
compiler, such as inlining information and specific calling
conventions.

This information can only be attached to classes (which ref-
erence marker interfaces in their implements clauses) and
methods (which reference marker exceptions in their throws
clauses). No finer level of granularity is possible in this
model. Again, these syntactic annotations are easy to in-
sert into source code. However a major disadvantage is the
need to modify the JVM to dump concept information when
it encounters a marker during program execution.

2.3 Custom Metadata
Concept information can be embedded directly into class
and method names. Alternatively each class can have a



special concept field, which would allow us to take advan-
tage of the class inheritance mechanism. Each method can
have a special concept parameter. However this system
is thoroughly intrusive. Consider inserting concept infor-
mation after the Java source code has been written. The
concept information will cause wide-ranging changes to the
source code, even affecting the actual API! This is an unac-
ceptably invasive transformation. Now consider using such
custom metadata at runtime. Again, the metadata will only
be useful on a specially instrumented JVM that can dump
appropriate concept information as it encounters the meta-
data.

2.4 Custom Comments
A key disadvantage of the above approaches is that con-
cepts can only be embedded at certain points in the pro-
gram, for specific granularities (classes and methods). In
contrast, comments can occur at arbitrary program points.
It would be possible to insert concept information in special
comments, that could be recognised by some kind of pre-
processor and transformed into something more useful. The
Javadoc system supports custom tags in comments. This
would allow us to insert concept information at arbitrary
program points! Then we use a Javadoc style preprocessor
(properly called a doclet system in Java) to perform source-
to-source transformation.

We eventually adopted this method for supporting concepts
in our Java source code, due to its simplicity of concept
creation, markup and compilation.

The custom comments can be transformed to suitable state-
ments that will be executed at runtime as the flow of execu-
tion crosses the marked concept boundaries. Such a state-
ment would need to record the name of the concept, the
boundary type (entry or exit) and some form of timestamp.

In our first system (see Section 3) the custom comments
are replaced by simple println statements and timestamps
are computed using the System.nanoTime() Java 1.5 API
routine, thus there is no need for a specially instrumented
JVM.

In our second system (see Section 4) the custom comments
are replaced by Jikes RVM specific logging statements, which
more efficient than println statements, but entirely non-
portable. Timestamps are computed using the IA32 TSC

register, via a new ‘magic’ method. Again this should be
more efficient than using the System.nanoTime() routine.

In order to change the runtime behaviour at concept bound-
aries, all that is required is to change the few lines in the
concept doclet that specify the code to be executed at the
boundaries. One could imagine that more complicated code
is possible, such as data transfer via a network socket in a
distributed system. However note the following efficiency
concern: One aim of this logging is that it should be unob-
trusive. The execution overhead of concept logging should
be no more than noise, otherwise any profiling will be in-
accurate! In the studies described in this paper, the mean
execution time overhead for running concept-annotated code
is 35% for the small Java program (Section 3) but only 2%
for the large Java program (Section 4).

// @concept_begin Concept1

public class Test {

public void f() {

....

while (...)

// @concept_end Concept1

// @concept_begin Concept2

}

...

}

// @concept_end Concept2

Figure 2: Comments-based concepts in example
Java source code

Figure 2 shows some example Java source code with con-
cepts marked up as custom comments.

There are certainly other approaches for supporting con-
cepts, but the four presented above seemed the most intu-
itive and the final one seemed the most effective.

3. DYNAMIC ANALYSIS FOR SMALL JAVA
PROGRAM

The first case study involves a small Java program called
BasicPredictors which is around 500 lines in total. This
program analyses textual streams of values and computes
how well these values could be predicted using standard
hardware prediction mechanisms. It also computes informa-
tion theoretic quantities such as the entropy of the stream.
The program was used to generate the results for an earlier
study on method return value predictability for Java pro-
grams [23].

3.1 Concept Assignment
The BasicPredictors code is an interesting subject for con-
cept assignment since it calculates values for different pur-
poses in the same control flow structures (for instance, it is
possible to re-use information for prediction mechanisms to
compute entropy).

We have identified four concepts in the source code, shown
below.

system: the default concept. Prints output to stdout, reads
in input file. Reads arguments. allocates memory.

predictor compute: performs accuracy calculation for sev-
eral computational value prediction mechanisms.

predictor context: performs accuracy calculation for context-
based value prediction mechanism (table lookup).

entropy: performs calculation to determine information the-
oretic entropy of entire stream of values.

The concepts are marked up manually using custom Javadoc
tags, as described in Section 2.4. This code is transformed
using the custom doclet, so the comments have been re-
placed by println statements that dump out concept in-
formation at execution time. After we have executed the



instrumented program and obtained the dynamic execution
trace which includes concept information, we are now in a
position to perform some dynamic analysis.

3.2 Dynamic Analysis for Concept Proportions
The first analysis simply processes the dynamic concept
trace and calculates the overall amount of time spent in each
concept. (At this stage we do not permit nesting of concepts,
so code can only belong to a single concept at any point in
execution time.) This analysis is similar to standard func-
tion profiling, except that it is now based on specification-
level features of programs, rather than low-level syntactic
features such as function calls.

The tool outputs its data in a format suitable for use with
the Kcachegrind profiling and visualization toolkit [1]. Fig-
ure 3 shows a screenshot of the Kcachegrind system, with
data from the BasicPredictors program. It is clear to see
that most of the time is spent in the system concept. It is
also interesting to note that predictor context is far more
expensive than predictor compute. This is a well-known
fact in the value prediction literature [19].

3.3 Dynamic Analysis for Concept Phases
While the analysis above is useful for determining overall
time spent in each concept, it gives no indication of the
temporal relationship between concepts.

It is commonly acknowledged that programs go through dif-
ferent phases of execution which may be visible at the mi-
croarchitectural [7] and method [9, 15] levels of detail. It
should be possible to visualize phases at the higher level of
concepts also.

So the visualization in Figure 4 attempts to plot concepts
against execution time. The different concepts are high-
lighted in different colours, with time running horizontally
from left-to-right. Again, this information is extracted from
the dynamic concept trace using a simple perl script, this
time visualized as HTML within any standard web browser.

There are many algorithms to perform phase detection but
even just by observation, it is possible to see three phases
in this program. The startup phase has long periods of
system (opening and reading files) and predictor context

(setting up initial table) concept execution. This is fol-
lowed by a periodic phase of prediction concepts, alternately
predictor context and predictor compute. Finally there
is a result report and shutdown phase.

3.4 Applying this Information
How can these visualizations be used? They are ideal for
visualization and program comprehension. They may also
be useful tools for debugging (since concept anomalies often
indicate bugs [22]) and profiling (since they show where most
of the execution time is spent).

Extensions are possible. At the moment we only draw a
single bar. It would be necessary to move to something
resembling a Gantt chart if we allow nested concepts (so a
source code entity can belong to more than one concept at
once) or if we have multiple threads of execution (so more
than one concept is being executed at once).

4. DYNAMIC ANALYSIS FOR LARGE JAVA
PROGRAM

The second case study uses Jikes RVM [2] which is a reason-
ably large Java system. It is a production-quality adaptive
JVM written in Java. It has become a significant vehicle for
JVM research, particularly into adaptive compilation mech-
anisms and garbage collection. All the tests reported in this
section use Jikes RVM version 2.4.4 on IA32 Linux.

A common complaint from new users of Jikes RVM is that
it is hard to understand how the different adaptive runtime
mechanisms operate and interact. So this case study selects
some high-level concepts from the adaptive infrastructure,
thus enabling visualization of runtime behaviour.

After some navigation of the Jikes RVM source code, we
inserted concepts tags around a few key points that en-
capsulate adaptive mechanisms like garbage collection and
method compilation. Note that all code not in such a con-
cept (both Jikes RVM code and user application code) is in
the default system concept.

4.1 Garbage Collection
Figure 5 shows concept visualization of two runs of the
_201_compress benchmark from SPEC JVM98. The top
run has an initial and maximum heap size of 20MB (-Xms20M
-Xmx20M) whereas the bottom run has an initial and max-
imum heap size of 200MB. It is clear to see that garbage
collection occurs far more frequently in the smaller heap,
as might be expected. In the top run, the garbage collec-
tor executes frequently and periodically, doing a non-trivial
amount of work as it compacts the heap. In the bottom
run, there is a single trivial call to System.gc() as part of
the initial benchmark harness code. After this, garbage col-
lection is never required so we assume that the heap size is
larger than the memory footprint of the benchmark.

Many other garbage collection investigations are possible.
So far we have only considered varying the heap configu-
ration. It is also possible to change the garbage collection
algorithms in Jikes RVM, and determine from concept visu-
alizations what effect this has on runtime performance.

4.2 Runtime Compilation
In the investigation above, the compilation concept only
captures optimizing compiler behaviour. However since Jikes
RVM is an adaptive compilation system, it has several lev-
els of compilation. The cheapest compiler to run (but one
that generates least efficient code) is known as the base-
line compiler. This is a simple macro-expansion routine
from Java bytecode instructions to IA32 assembler. Higher
levels of code efficiency (and corresponding compilation ex-
pense!) are provided by the sophisticated optimizing com-
piler, which can operate at different levels since it has many
flags to enable or disable various optimization strategies. In
general, Jikes RVM initially compiles application methods
using the baseline compiler. The adaptive monitoring sys-
tem identifies ‘hot’ methods that are frequently executed,
and these are candidates for optimizing compilation. The
hottest methods should be the most heavily optimized meth-
ods.



Figure 3: Screenshot of Kcachegrind tool visualizing percentage of total program runtime spent in each
concept

Figure 4: Simple webpage visualizing phased behaviour of concept execution trace



Figure 5: Investigation of garbage collection activity for different heap sizes

We use the _201_compress benchmark from SPEC JVM98
again. Figure 6 shows the start of benchmark execution
using the default (adaptive) compilation settings (top) and
specifying that the optimizing compiler should be used by
default (bottom, -X:aos:initial compiler=opt). In the
top execution, the baseline compiler is invoked frequently for
a small amount of time each invocation. On the other hand,
in the bottom execution, the optimizing compiler is invoked
more frequently. It takes a long time on some methods (since
it employs expensive analysis techniques). However note
that even with the optimizing compiler as default, it is still
the case that there are some baseline compiled methods.
This is not necessarily intuitive, but it is clear to see from
the visualization!

Figure 7 shows the same execution profiles, only further on
in execution time. The top visualization (default compila-
tion settings) shows that many methods are now (re)compiled
using the optimizing compiler. As methods get hot at differ-
ent times, optimizing compiler execution is scattered across
runtime. In the bottom visualization, once all the methods
have been compiled with the optimizing compiler, there is
generally no need for recompilation.

Note that both Figures 6 and 7 demonstrate that the opti-
mizing compiler causes more garbage collection! The com-
pilation system uses the same heap as user applications, and
there is intensive memory usage for some optimizing com-
piler analyses.

There are plenty of other investigations to be performed with
the Jikes RVM compilation system. In addition, we hope to
identify other interesting concepts in Jikes RVM.

5. RELATED WORK
Hauswirth et al [13] introduce the discipline of vertical pro-
filing which involves monitoring events at all levels of ab-

straction (from hardware counters through virtual machine
state to user-defined application-specific debugging statis-
tics). Their system is built around Jikes RVM. It is able
to correlate events at different abstraction levels in dynamic
execution traces. They present some interesting case studies
to explain performance anomalies in standard benchmarks.
Our work focuses on user-defined high-level concepts, and
how source code and dynamic execution traces are parti-
tioned by concepts. Their work relies more on event-based
counters at all levels of abstraction in dynamic execution
traces.

GCspy [18] is an elegant visualization tool also incorporated
with Jikes RVM. It is an extremely flexible tool for visual-
izing heaps and garbage collection behaviour. Our work ex-
amines processor utilization by source code concepts, rather
than heap utilization by source code mutators.

Sefika et al [20] introduce architecture-oriented visualiza-
tion. They recognise that classes and methods are the base
units of instrumentation and visualization, but they state
that higher-level aggregates (which we term concepts!) are
more likely to be useful. They instrument methods in the
memory management system of an experimental operating
system. The methods are grouped into architectural units
(concepts) and instrumentation is enabled or disabled for
each concept. This allows efficient partial instrumentation
on a per-concept basis, with a corresponding reduction in
the dynamic trace data size. Our instrumentation is better
in that it can operate at a finer granularity than method-
level. However our instrumentation cannot be selectively
disabled, other than by re-assigning concepts to reduce the
number of concept boundaries.

Sevitsky et al [21] describe a tool for analysing performance
of Java programs using execution slices. An execution slice
is a set of program elements that a user specifies to belong



Figure 6: Investigation of initial runtime compilation activity for different adaptive configurations. Top
graph is for default compilation strategy, i.e. use baseline before optimizing compiler. Bottom graph is for
optimizing compilation strategy, i.e. use optimizing compiler whenever possible.

Figure 7: Investigation of later runtime compilation activity for different adaptive configurations. (Same
configurations as in previous figure.)



to the same category—again, this is a disguised concept!
Their tool builds on the work of Jinsight [17] which creates
a database for a Java program execution trace. Whereas
Jinsight only operates on typical object-oriented structures
like classes and methods, the tool by Sevitsky et al handles
compound execution slices. Again, our instrumentation is
at a finer granularity. Our system also does not specify
how concepts are assigned. They allow manual selection or
automatic selection based on attribute values—for instance,
method invocations may be characterized as slow, medium
or fast based on their execution times.

Eng [8] presents a system for representing static and dy-
namic analysis information in an XML document frame-
work. All Java source code entities are represented, and
may be tagged with analysis results. This could be used for
static representation of concept information, but it is not
clear how the information could be extracted at runtime for
the dynamic execution trace.

Other Java visualization research projects (for example, [6,
12]) instrument JVMs to dump out low-level dynamic exe-
cution information. However they have no facility for deal-
ing with higher-level concept information. In principle it
would be possible to reconstruct concept information from
the lower-level traces in a postprocessing stage, but this
would cause unnecessarily complication, inefficiency and po-
tential inaccuracy.

6. CONCLUDING REMARKS
Until now, concepts have been a compile-time feature. They
have been used for static analysis and program comprehen-
sion. This work has driven concept information through
the compilation process from source code to dynamic exe-
cution trace, and made use of the concept information in
dynamic analyses. This follows the recent trend of retain-
ing compile-time information until execution time. Consider
typed assembly language, for instance [14].

Feedback-directed concept assignment is the process of (1)
selecting concepts, (2) assigning concepts to source code,
(3) running the program, (4) checking results from dynamic
analysis of concepts and (5) using this information to repeat
step (1)! This is similar to feedback-directed (or profile-
guided) compilation. In effect, this is how we made the
decision to examine both baseline and optimizing compilers
in Section 4.2 rather than just optimizing compiler as in
Section 4.1. The process could be entirely automated, with
sufficient tool support.

With regard to future work, we should incorporate these
analyses and visualizations into an integrated development
environment such as Eclipse. Further experience reports
would be helpful, as we conduct more investigations with
these tools. The addition of timestamps information to the
phases visualization (Section 3.3) would make the compar-
ison of different runs easier. We need to formulate other
dynamic analyses in addition to concept proportions and
phases. One possibility is concept hotness, which would
record how the execution profile changes over time, with
more or less time being spent executing different concepts.
This kind of information is readily available for method-
level analysis in Jikes RVM, but no-one has extended it to

higher-level abstractions.
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