
Towards Intelligent Analysis Techniques
for Object Pretenuring

Jeremy Singer, Gavin Brown, Mikel Luján, Ian Watson
University of Manchester, UK

ABSTRACT
Object pretenuring involves the identification of long-lived
objects at or before their instantiation. It is a key optimiza-
tion for generational garbage collection systems, which are
standard in most high performance Java virtual machines.
This paper presents a new study of factors that are used to
indicate object lifespans. We adopt the information theory
measurement of normalized mutual information to compare
these various different factors in a common framework. A
study of garbage collection traces from four standard Java
benchmark programs shows that there is high dependence
on some of these factors such as allocation site and object
type. We also identify and measure new factors based on
object-oriented metrics.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Memory
management (garbage collection)

General Terms
Measurement

Keywords
Object lifetime analysis, pretenuring, information theory

1. INTRODUCTION
Garbage collection (GC) is the process of automatic man-

agement of dynamically allocated memory [13]. Once this
discipline was the province of academic and esoteric lan-
guages, but it has now become a mainstream computer sys-
tems issue. The growing significance of GC is largely due to
the rise of managed programming languages, such as Java
and C#, with their associated virtual machine (VM) sys-
tems.

In these managed environments, GC takes place during
application execution, thus it is accountable for part of the

c©ACM 2007. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published inProceedings of the 5th Interna-
tional Conference on Principles and Practice of Program-
ming in Java, 2007.

overall execution time. The percentage of execution time
spent in GC is generally around 5%, though it can be much
higher for relatively small heap sizes. Time spent in GC is
wasted as far as the application user is concerned. There is
a need to minimise the overall GC time. In addition, for in-
teractive applications, it is desirable to have frequent short
GC pauses rather than occasional longer pauses. These re-
quirements lead to the concept of generational GC.

The basic premise, known as the weak generational hy-
pothesis [18], is that most objects die young. A simple
generational collection scheme may operate as follows. The
heap is split into two regions: the nursery and the mature
space. Objects are initially allocated in the nursery and this
region is garbage collected frequently. Since most objects
die young, then they are collected in the nursery and their
space is recycled. If objects survive for a long time (i.e.
they are not dead when nursery GC takes place) then these
long-lived objects are promoted to the mature space. This
is known as object tenuring. The mature space is collected
less frequently than the nursery, since it fills up more slowly
and we expect that objects in the mature space will remain
alive for a long time.

An optimization for generational GC is pretenuring [7,
6]. The task of a pretenuring scheme is to identify long-
lived objects at or before their dynamic instantiation point
and allocate such objects immediately into the mature space
since they will probably survive the nursery. This saves the
computational cost of processing the object in the nursery,
and of copying it to the mature space. The scanning and
copying of objects are generally the two most expensive op-
erations that occupy significant GC time.

The crucial issue with pretenuring optimizations is that
the analysis must be accurate. The aim is to minimise the
number of pretenured objects that are not long-lived. They
would only waste the mature space, which is collected in-
frequently. Furthermore they could artificially prolong the
lives of objects to which they point. It is also necessary to
consider the high cost of inter-generation references, imple-
mented via write-barriers.

This paper classifies a range of existing indicators used
to predict object lifetimes for pretenuring schemes. We de-
scribe how information theory can be used to evaluate rela-
tive performance of various features as indicators for object
tenuring. We report on some preliminary studies that show
strong promise for the application of machine learning tech-
niques to this area.

The contributions of this paper are:

1. a formal framework based on information theory to

assess good indicators for object tenuring.

2. a study comparing the relevance of common type- and
site-based characteristics for object tenuring.

3. an evaluation of a metrics-based approach as an indi-
cator of object tenuring.

2. BACKGROUND

2.1 Pretenuring
We divide the pretenuring process into two distinct phases:

an analysis phase followed by a transformation phase. The
analysis phase has the task of predicting object lifetimes,
based on input from a corpus of already-processed object
lifetimes, and from the characteristics of the current object
that is about to be allocated. The transformation phase
acts on the analysis by optimizing object allocations to take
advantage of short- and long-lived objects. In general, this
means that objects are allocated in different sections of the
heap based on their predicted lifetime. In this paper, we
focus on the analysis problem.

Pretenuring analyses and object lifetime studies can be
characterized according to several simple parameters. Stud-
ies either use exhaustive tracing or statistical sampling of dy-
namic object allocations. They have various levels of preci-
sion for predictions. Some schemes are binary (short/long).
Others are ternary (short/long/immortal). Some are even
continuous and give actual numerical estimates for object
lifetimes. The evaluations presented in this paper are based
on exhaustive tracing using binary predictions, where each
prediction indicates whether an object should be tenured or
not.

Different analyses group dynamic object allocations into
clusters according to some criterion. The most common
two criteria are static allocation site and object type. For
instance, all objects allocated at program counter value x,
or all objects allocated with type Foo, may be clustered to-
gether. Usually, pretenuring predictions are applied on a
per-cluster (rather than per-object) basis. Such a general-
ization is made for efficiency reasons. This paper aims to
study the most effective approaches to clustering dynamic
object allocations, re-examining existing schemes as well as
proposing new ones.

2.2 Information Theory
Information theory provides a rich and sound mathemati-

cal framework for analysis of data sources. Originally devel-
oped in the context of secure communications and cryptog-
raphy, it has been applied in fields as diverse as machine
learning, medical image processing, and financial market
prediction. We explore how these ideas might be used to
assess and improve object lifetime prediction.

The fundamental measure in this framework is entropy,
which explicitly quantifies the information content in a given
source of data: the more ‘randomness’ or unpredictability
in the data source, the higher the entropy value. As an
example consider a device producing symbols according to a
random variable X, defined over a finite alphabet of possible
symbols SX . If we assume each successive symbol si ∈ SX is
independent of the previous ones, the unconditional entropy

is defined as,

H(X) = −

|SX |
X

i=1

p(i) log(p(i)) (1)

where p(i) is the probability of the ith symbol being pro-
duced. Note that all logarithms are taken to base 2. In prac-
tical terms, p(i) can be calculated with frequency counts,
i.e.:

p(i) =
number of occurrences of symbol si

total number of symbols seen
(2)

In this work, we consider the produced symbols to be
a common measurement on a sequence of dynamic object
allocations. For instance we could measure the size of each
newly created object. This gives us a stream of size values,
for which we can calculate an entropy measure.

The conditional entropy measures the dependence between
two different symbol streams. In our case, we could take two
measurements on each element of a sequence of dynamic ob-
ject allocations. For instance we could measure the size of
each newly created object and its lifetime. These are two
different random variables X and Y respectively with two
different alphabets SX and SY but there may be some de-
pendence between them, which we can quantify by condi-
tional entropy.

H(Y |X) = −

|SX |
X

i=1

p(i)

|SY |
X

j=1

p(j|i) log(p(j|i)) (3)

This is the first order conditional entropy. The required
probabilities can again be computed from frequency counts:

p(j|i) =
number of times sj occurs with si

number of occurrences of si

(4)

First order conditional entropy has a minimum value of
zero and a maximum value of log(|SY |). In the example
above, it measures the uncertainty we have in the lifetime
of an object given its size. If lifetime values are produced
uniformly at random over the alphabet SY , then eq.(3) will
converge in the limit to log(|SY |).

The mutual information between X and Y is a measure
of the agreement, or correlation, between them. The mutual
information is,

I(X; Y) = H(Y) − H(Y |X) (5)

This is easily computed from the entropy measurements we
have already described above. This measurement is sym-
metric, i.e. I(X; Y) = I(Y ; X), and quantifies the reduction
in our uncertainty of Y , when the value of X is revealed.
Unlike Pearson’s correlation coefficient, which only detects
linear correlations between random variables, mutual infor-
mation can detect arbitrary nonlinear relationships.

I(X; Y) can be normalized to a value between 0 and 1 by
dividing it by min(H(X), H(Y)). All mutual information
values in this paper are normalized in this way. A high value
of mutual information indicates that there is information in
the symbol sequence to be exploited. A low value of mutual
information indicates that there is little information, and
therefore little opportunity for accurate prediction.

3. RELATED WORK
This section surveys existing work regarding pretenuring

analysis and object lifetime studies. For each paper, we ex-
plicitly state their clustering criteria for dynamic allocations.
Most existing schemes use site-based [6, 5, 14, 9, 7], type-
based, [16, 11]. or context-based clustering [12, 3, 15]. We
evaluate these clustering criteria in a common framework in
Section 4.

Blackburn et al. [5, 6] present a scheme for static pre-
tenuring of Java programs implemented in Jikes RVM. This
scheme analyses offline object lifetime information produced
by exhaustive tracing of object lifetimes. The clustering of
objects is based on allocation sites classifying these into im-
mortal, long-lived or short-lived. Loosely speaking, given an
allocation site, this scheme would classify it, for example, as
immortal when most objects allocated by the allocation site
are classified as immortal. The actual definition of what
‘most objects’ means is done in terms of homogeneity fac-
tors. The scheme requires exploring the adequate values for
these homogeneity factors by trial-and-error. Once an al-
location site is given a classification, this is fixed and this
prediction is specialized for those programs for which the
object lifetime information has been analysed. Blackburn et
al. [5] measure entropy for allocation sites to illustrate their
homogeneity.

Jump et al. [14] also present a pretenuring scheme for
Java programs implemented in Jikes RVM, but it is dynamic
pretenuring. This scheme performs online statistical sam-
pling of object lifetime per allocation site. Allocation sites
are either classified as to be pretenured or not depending
on whether the survival rate for the allocations is above a
threshold. Again the scheme requires exploring the adequate
values for the threshold which is done offline.

Harris [9] implements the first dynamic pretenuring scheme
for Java programs in Sun’s Research VM. Harris reports
statistics on information that could be used at runtime to
classify an allocation site as to be pretenured: object class,
allocation site and dynamic call context up to a depth of
five. Although object class and dynamic call context pro-
vide reasonable predictors of an object lifetime, the dynamic
call context combined with allocation site reduces the mis-
classification rate. Nonetheless, Harris uses only allocation
site to evaluate the runtime pretenuring scheme. Jump et
al. [14] and Harris [9] differ on the sampling techniques to
obtain object lifetime information and also on the backsam-
pling strategies.

Cheng et al. [7] investigate a pretenuring scheme for ML
programs using offline analysis and clustering on allocation
sites. They find that a few allocation sites consistently gen-
erate long-lived objects while most allocations sites gener-
ated short-lived objects. Accordingly allocation sites with
long-lived objects above a threshold of 80% (found empiri-
cally) are modified so that their objects are pretenured.

Huang et al. [11] also describe a dynamic pretenuring
scheme for Java programs implemented in Jikes RVM, but
they cluster objects according to object class (type) ignor-
ing allocation site. Jump et al. [14] criticize this clustering
choice by stating ‘Type is not a good predictor of lifetime’,
although without reporting experimental data to illustrate
it.

Shuf et al. [16] introduced the term prolific types to charac-
terize those relatively few object types that account for large
volumes of objects allocated in their set of Java benchmarks.

Based on static analysis of the object lifetime traces, they
propose the prolific hypothesis: prolific types create objects
that die younger than objects of non-prolific type.

Inoue et al. [12] investigate the construction of object life-
time predictors taking into account the dynamic call context
(up to depth 20) and object type. The predictor is created
by associating those dynamic call contexts and object types
for which every object created (and captured in the offline
analysis) has the same lifetime.

Barrett and Zorn [3], and Seidl and Zorn [15] describe ob-
ject lifetime predictors for C programs. Barrett and Zorn
[3] use dynamic call contexts and object size to determine
whether objects are short-lived or long-lived. On the other
hand, Seidl and Zorn [15] only consider the dynamic call
context but try to classify objects into one of four cate-
gories: highly referenced, not highly referenced, short-lived
and others.

To sum up, none of the cited papers have used information
theory to identify good predictors for tenuring behaviour.
All these papers have disregarded some of the features and
focus on others. They selected features on the basis of ob-
served improvements in execution times for their particu-
lar GC implementations and benchmarks, and disregarded
other features that did not lead to improvements. Thus,
there is a lack of a common theoretical framework for the
comparison of features as predictors for object tenuring be-
haviour.

4. EMPIRICAL STUDIES OF TENURING
This section evaluates existing pretenuring analysis design

choices as well as new possibilities. The experiments operate
by measuring correlation of various features with tenuring
behaviour, using the Normalized Mutual Information (NMI)
metric introduced in Section 2.2.

4.1 Experimental Framework
We obtain the object allocation data and tenuring in-

formation using Jikes RVM [1, 2] and MMTk [4]. Jikes
RVM is a production-quality open-source optimizing VM,
used extensively in research-based studies of Java programs.
MMTk is an extensible research-oriented memory manage-
ment toolkit. (Note that the majority of other pretenuring
studies also use Jikes RVM and MMTk for their empiri-
cal evaluations.) All our experiments are conducted with
Jikes RVM v2.4.6. We have instrumented the VM to record
statistics about allocations in the nursery, and promotions
from the nursery to the mature space. This information is
dumped to trace files, which are postprocessed to extract
the relevant information.

Statistics are gathered for a single run of each benchmark
program, using the default production build of Jikes RVM
for IA32 Linux, running in adaptive compilation mode. This
incorporates a generational mark-and-sweep GC scheme. We
fix1 the initial and maximum heap size to be 50 MB (16 MB
for the smaller health benchmark). We also fix the nurs-
ery size to be 12 MB (4 MB for health). The remainder
of the heap is used for mature space, immortal space and
large object space. All the trace information relates solely
to objects and arrays allocated in the nursery space, which

1We also conducted our experiments using variable sized
heaps and nurseries, which are the default for Jikes RVM.
We found very little difference in our correlation results.

name suite description input
202 jess SPECjvm98 expert system shell s100
213 javac SPECjvm98 Java compiler s100
228 jack SPECjvm98 parser generator s100
health JOlden process simulator 6/128

Figure 1: Description of the benchmark programs

used in this study

are candidates for promotion to the mature space.
We have chosen four benchmarks from the pretenuring

study by Blackburn et al. [6]. They are studied in most Java-
based pretenuring papers. The benchmarks are described in
Figure 1. Blackburn et al. [6] identify these particular pro-
grams as benefitting from pretenuring optimizations to a
greater extent than other benchmarks from the same suites.
Note that all our experiments include runtime activity from
Jikes RVM, since this is a Java-in-Java VM. This means that
VM objects are also candidates for pretenuring optimiza-
tions. Blackburn et al. show that this can lead to greater
optimization opportunities.

The trace files contain the following features for each ob-
ject allocation: object type; static allocation site; dynamic
calling context; object size; tenuring information. These fea-
tures are cheap to generate and small enough to be stored
efficiently. Other more complex features could be used, but
they may be too expensive to obtain and store given the
real-time constraints of typical GC schemes, so they would
not be used in practice.

4.2 Benchmark Characteristics
Figure 2 presents the number of bytes allocated in the

nursery space for each benchmark program. These include
object and array allocations, for both VM and application
code. The graph also shows the number of bytes promoted
from the nursery to the mature space, and again how this
figure is split between objects and arrays. Note that in gen-
eral, a higher proportion of tenured space is due to objects
rather than arrays. This is because only small, relatively
short-lived arrays are allocated in the nursery. Larger arrays
are allocated directly in the Jikes RVM large object space,
which is not part of this empirical study. We take advantage
of this tenuring preference for objects in Section 4.4, which
focuses on object-specific metrics rather than array-based
metrics for pretenuring.

4.3 Evaluation of Standard Clustering Tech-
niques

This section evaluates how well the standard clustering
techniques correlate with object tenuring behaviour. We in-
clude several variations of clustering that we have identified
in the literature. We use the information theory measure-
ment of NMI to report correlation. Recall that an NMI
score of 0 indicates no correlation, and 1 indicates perfect
correlation.

The left-most column for each benchmark in Figure 3
shows how object type (including arrays) correlates with
tenuring, for all types.

We have already discussed the notion of prolific types [16].
The hypothesis suggests that these are generally short-lived
and should not be tenured. We measure NMI scores for
type versus tenuring for the ten types responsible for the

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

he
al

th

_2
28

_j
ac

k

_2
13

_j
av

ac

_2
02

_j
es

s

nu
m

be
r

of
 b

yt
es

arrays
objects

tenured arrays
tenured objects

Figure 2: Number of bytes allocated in nursery and

promoted from nursery for various benchmarks

most allocations for each benchmark. We manually select
these as prolific types. The second column for each bench-
mark in Figure 3 shows these results. We note that the NMI
scores are generally reduced (compared with the scores when
including non-prolific types) due to the elimination of sin-
gleton clusters, which tend to inflate NMI scores. The NMI
score is reduced when different dynamic allocations within
a single cluster have different tenuring behaviour. Within
a singleton cluster, only one tenuring behaviour is possible
so these cannot serve to degrade the NMI score. Note that
213 javac has a high NMI value for prolific types. The orig-
inal paper [16] has its best results on this benchmark, so this
would confirm their findings.

The third column for each benchmark in Figure 3 shows
how static allocation site correlates with tenuring informa-
tion. Note that site is always a more accurate indicator of
tenuring policy than type. This is a quantitative confirma-
tion of the assertion of Jump et al. [14] that type is not
as good as site. In fact site subsumes type, since only ob-
jects of a single type can ever be allocated at any one static
allocation site.

To parallel the prolific types idea above, we investigate
whether prolific sites are also good indicators of tenuring
policy. For each benchmark, we identify the 25 static al-
location sites that are responsible for the most allocations
and we measure the correlation for these prolific sites alone.
The fourth column for each benchmark in Figure 3 shows
the results. Again there is a slight reduction in NMI scores
due to the elimination of singleton clusters. However site
seems to be a better indicator of tenuring behaviour than
type, in the prolific case as well as the general case.

Figure 4 shows how dynamic calling context correlates
with tenuring information. The graph shows that correla-
tion increases with the context depth. However, the im-
provements level off after around four methods in the con-
text. In comparison with static allocation site, context alone
is not a good indicator. The situation is probably worse
for Java programs than for ML (in which the scheme was
originally evaluated) since Java methods may have more
allocations than ML functions, so it is less likely that all
allocations in a single context will have the same tenuring
behaviour.

Figure 5 shows how static allocation site concatenated

with dynamic calling context correlates with tenuring be-
haviour. This gives the best correlation of all the standard
schemes we have measured until now.

4.4 Clustering Based on Object Features
As outlined above, objects appear to be more important

than arrays since they are more likely to be tenured. In this
section we distinguish between object and array allocations.
We want to address the problem of how to generalize over
objects. This will allow pretenuring analyses to make pre-
dictions for previously unseen objects, given that they can
relate such objects to existing objects in their training cor-
pus. For instance, if we know that objects of type X are
always tenured, then if type Y is similar to type X, will
objects of type Y also be consistently tenured? The key is-
sue here is determining how to measure similarity between
objects and types. It is not enough to use any general ob-
ject similarity metric. We need to measure whether a given
metric correlates with object lifetime.

First we investigate how object size correlates with tenur-
ing behaviour. We distinguish between class-based objects
and arrays. Figure 6 shows that neither object size nor ar-
ray size are good indicators of pretenuring behaviour for our
four benchmarks, with the possible exception of object size
for health. We need to use alternative metrics of similar-
ity between classes if we are to predict tenuring behaviour
accurately.

To extrapolate object tenuring behaviour based on type,
we use type-based metrics obtained from the Chidamber
and Kemerer suite [8]. This is a set of metrics specifically
designed to measure the object-oriented nature of source
code. We measure the metrics using the ckjm tool [17] for
the benchmarks and the VM, creating a set of scores for each
class file. We use these metrics to cluster together ‘similar’
object types, and measure their correlation with tenuring
behaviour. The metrics are described in Figure 7.

We measure the NMI for each of these type-based metrics
against the tenuring behaviour of objects. A NMI score close
to 1 should indicate that the metric is a good predictor for
pretenuring.

Figure 8 shows the results for this study. Some metrics
(such as weighted methods per class) always seem to cor-
relate consistently with tenuring information whereas other
metrics (coupling between object classes) are less consistent.
Note that Hirzel et al. [10] claim that object connectivity is a
good indicator of object lifetime. Connectivity is indirectly
related to one or more CK metrics.

5. CONCLUSIONS
This paper has shown how information theory can be used

to evaluate indicators for pretenuring analyses. We have
compared different existing dynamic allocation clustering
schemes, under a sound and unified framework. The alloca-
tion site combined with context contains the most informa-
tion among the available schemes on the set of benchmarks.
We have introduced and measured a novel concept of iden-
tifying objects with similar tenuring behaviour based on the
use of object-oriented metrics to determine similarity. We
aim to build on this work by constructing predictors that
use such features to learn effective pretenuring policies.

 0

 0.2

 0.4

 0.6

 0.8

 1

he
al

th

_2
28

_j
ac

k

_2
13

_j
av

ac

_2
02

_j
es

s

no
rm

al
iz

ed
 m

ut
ua

l i
nf

or
m

at
io

n

type-based
profilic type-based

site-based
prolific site-based

Figure 3: Correlation of various allocation clustering

schemes with tenuring behaviour

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

no
rm

al
iz

ed
 m

ut
ua

l i
nf

or
m

at
io

n

context length

_202_jess
_213_javac

_228_jack
health

Figure 4: Correlation of context with tenuring be-

haviour

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

no
rm

al
iz

ed
 m

ut
ua

l i
nf

or
m

at
io

n

context length

_202_jess
_213_javac

_228_jack
health

Figure 5: Correlation of site and context with tenur-

ing behaviour

 0

 0.2

 0.4

 0.6

 0.8

 1

he
al

th

_2
28

_j
ac

k

_2
13

_j
av

ac

_2
02

_j
es

s

no
rm

al
iz

ed
 m

ut
ua

l i
nf

or
m

at
io

n

objects
arrays

Figure 6: Correlation of object and array size with

tenuring behaviour

name description
WMC weighted methods per class
DIT depth of inheritance tree
NOC number of children
CBO coupling between object classes
RFC response for a class

LCOM lack of cohesion in methods

Figure 7: Metrics used to group types

 0

 0.2

 0.4

 0.6

 0.8

 1

he
al

th

_2
28

_j
ac

k

_2
13

_j
av

ac

_2
02

_j
es

s

no
rm

al
iz

ed
 m

ut
ua

l i
nf

or
m

at
io

n

WMC
DIT

NOC
CBO
RFC

LCOM

Figure 8: Correlation of various CK metrics with

pretenuring behaviour

6. REFERENCES
[1] B. Alpern et al. The Jalapeño virtual machine. IBM

Systems Journal, 39(1):211–238, Feb 2000.

[2] B. Alpern et al. The Jikes research virtual machine
project: Building an open source research community.
IBM Systems Journal, 44(2):1–19, Feb 2005.

[3] D. A. Barrett and B. G. Zorn. Using lifetime
predictors to improve memory allocation performance.
In PLDI, pages 187–196, 1993.

[4] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil
and water? High performance garbage collection in
Java with MMTk. In ICSE, pages 137–146, 2004.

[5] S. M. Blackburn, M. Hertz, K. S. Mckinley, J. E. B.
Moss, and T. Yang. Profile-based pretenuring. ACM
Transactions on Programming Languages and
Systems, 29(1):1–57, 2007.

[6] S. M. Blackburn, S. Singhai, M. Hertz, K. S.
McKinley, and J. E. B. Moss. Pretenuring for Java. In
OOPSLA, pages 342–352, 2001.

[7] P. Cheng, R. Harper, and P. Lee. Generational stack
collection and profile-driven pretenuring. In PLDI,
pages 162–173, 1998.

[8] S. Chidamber and C. Kemerer. A metrics suite for
object oriented design. IEEE Transactions on
Software Engineering, 20(6):476–493, 1994.

[9] T. L. Harris. Dynamic adaptive pre-tenuring. In
ISMM, pages 127–136, 2000.

[10] M. Hirzel, J. Henkel, A. Diwan, and M. Hind.
Understanding the connectivity of heap objects. In
ISMM, pages 36–49, 2002.

[11] W. Huang, W. Srisa-an, and J. M. Chang. Dynamic
pretenuring schemes for generational garbage
collection. In IEEE International Symposium on
Performance Analysis of Systems and Software, pages
133–140, 2004.

[12] H. Inoue, D. Stefanovic, and S. Forrest. On the
prediction of Java object lifetimes. IEEE Transactions
on Computers, 55(7):880–892, 2006.

[13] R. Jones and R. Lins. Garbage Collection: Algorithms
for Automatic Dynamic Memory Management. Wiley,
1996.

[14] M. Jump, S. M. Blackburn, and K. S. McKinley.
Dynamic object sampling for pretenuring. In ISMM,
pages 152–162, 2004.

[15] M. L. Seidl and B. G. Zorn. Segregating heap objects
by reference behavior and lifetime. In ASPLOS, pages
12–23, 1998.

[16] Y. Shuf, M. Gupta, R. Bordawekar, and J. P. Singh.
Exploiting prolific types for memory management and
optimizations. In POPL, pages 295–306, 2002.

[17] D. Spinellis. ckjm—Chidamber and Kemerer Java
metrics, 2005. http://www.spinellis.gr/sw/ckjm/.

[18] D. Ungar. Generation scavenging: A non-disruptive
high performance storage reclamation algorithm. In
Proceedings of the First ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical
Software Development Environments, pages 157–167,
1984.

