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Parallel Architectures

Parallel architectures are increasingly multi-level e.g. clusters of
multicores.
A hybrid parallel programming model is often used to exploit
parallelism across the cluster of multicores e.g. using MPI + OpenMP.
Managing two abstractions is a burden for the programmer and
increases the cost of porting to a new platform.
The Main Goal: Providing efficient control of hierarchical architectures
using GpH.
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GpH(Glasgow Parallel Haskell)

Semi-explicit parallel Haskell.
Parallelism is expressed by two primitives added to the Haskell
program: par and pseq.
Example:

  parfib :: Int -> Int 
  parfib n | n <= 1    = 1 
           | otherwise = runEval $ do 
                           x <- rpar (parfib (n-1)) 
                           y <- rseq (parfib (n-2)) 
                           return (x + y) 
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GpH(Glasgow Parallel Haskell)

Evaluation strategies: polymorphic and higher order functions
controlling parallelism.
Potentially add extensions to refine placement e.g parBound.
Tow main implementations :

GHC-SMP - shared memory.
GHC-GUM - distributed memory.
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GUMSMP

A multilevel parallel Haskell implementation for clusters of multicores.

Integrates the advantages of the distributed memory GHC-GUM and
the shared memory GHC-SMP implementations.
Provides improvements for automatic load balancing.
The main potential benefits of GUMSMP are:

Provides a scalable model.
Efficient exploitation of the the specifics of distributed and shared
memory on different levels of the hierarchy.
Provides a single high-level programming model.
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GUMSMP Design Overview

Memory Management: the same virtual shared heap as GHC-GUM.
Communication: the same mechanism implemented in GHC-GUM.
Load Balancing: the combination of GHC-SMP and GHC-GUM
mechanisms(using the hierarchy-aware policy).
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Work Distribution in GHC-GUM

Load Balancing:
1 Searching for Local Work.
2 Searching for Remote Work.

PE1  

Scheduler   

PE2  

Scheduler   

PE3  

Scheduler   

PE1 needs work 
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Work Distribution in GHC-SMP

Load Balancing:
Processor’s Spark Pool is implemented as a bounded work-stealing
queue.
The owner can push and pop from one end of the queue without
synchronization.
Other threads can steal from the other end of the queue.

Thread 2  

CPU 1  

Thread 3  

CPU 2   

Thread 1  

CPU 0   

PE1 creates  ‘spark  thread’  to get work 
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GUMSMP Work Distribution Mechanism

Work distribution of GUMSMP is hierarchy aware.
It uses a work-stealing algorithm, through sending FISH message, on
networks (inherited from GHC-GUM).
Within a multicore it will search for a spark by directly accessing spark
pools (inherited from GHC-SMP).
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GUMSMP Design Objectives

Hierarchy aware load balancing Important to maintain even load
distribution, but accept imbalances as the communication cost
increases.

Mostly passive load distribution Essential to maintain passive load
distribution, but switch to active in some cases e.g high-watermark.
Effective latency hiding The system must be designed so that
communication cost is not in the critical path of cooperating
computations.
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GUMSMP Design Decisions

Spark Placement: where to place a spark, that has been imported from
another processor ?

1 Assign it to the spark pool of the first idle processor.
(+) Keep utilization high.
(-) Lead to higher fragmentation.

2 Separate spark pool, dedicated to imported sparks.
(+) Keep related piece of work together.
(+) Useful in some situation e.g no idle processors any more.
(-) Requires additional stealing step.
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GUMSMP Design Decisions

Fishing: when to send a spark requesting message to a remote PE ?

1 Send a message when the PE is idle.
(-) Might not be idle any more.

2 Low-Watermark mechanism.
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GUMSMP Design Decisions

Work-offloading: How to process the received work-requesting message ?

1 Select spark from the processor with largest spark pool.
(-) Impose additional overheads.

2 Random.
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Ongoing Work

The shared memory component of the hybrid system shows
performance within 7% of the original GHC-SMP implementation.
Complete the implementation of the enhanced work distribution policy.
Assess the quality of the enhanced work distribution policy on
hierarchical architectures.
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Conclusion

The design of the new multi-level parallel Haskell implementation
GUMSMPis presented.
Designed for high-performance computation on multilevel architectures
e.g. networks of multi-cores.
The design focuses on flexible work distribution policies.

Hierarchy aware load balancing.
Mostly passive load distribution.
Effective latency hiding.

The main benefits:
scalable model.
efficient exploitation of distributed and shared memory on different
levels of the hierarchy.
single programming model.
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GUMSMP

Thank You..
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