
A Visual Workspace for Hybrid Multidimensional Scaling Algorithms

Greg Ross* Matthew Chalmers†

Department of Computing Science,
University of Glasgow,

Glasgow,
United Kingdom

Abstract

In visualising multidimensional data, it is well known that
different types of data require different types of algorithms to
process them. Data sets might be distinguished according to
volume, variable types and distribution, and each of these
characteristics imposes constraints upon the choice of applicable
algorithms for their visualisation. Previous work has shown that a
hybrid algorithmic approach can be successful in addressing the
impact of data volume on the feasibility of multidimensional
scaling (MDS). This suggests that hybrid combinations of
appropriate algorithms might also successfully address other
characteristics of data. This paper presents a system and
framework in which a user can easily explore hybrid algorithms
and the data flowing through them. Visual programming and a
novel algorithmic architecture let the user semi–automatically
define data flows and the co-ordination of multiple views.

CR Categories: I.5.3 [Pattern recognition]: Clustering –
Algorithms; E.1 [Data Structures]: Graphs and networks; D.1.7
[Programming Techniques]: Visual Programming; I.3.6
[Computer Graphics]: Methodology and Techniques – Interaction
techniques;

Keywords: Data-flow, visual programming, multidimensional
scaling, multiple views, hybrid algorithms, complexity

1 Introduction

There is a multitude of algorithms available for clustering and
laying out abstract data. The different algorithmic approaches
seem to be tailored to specific types of data. Some algorithms
perform well with data sets of low cardinality and dimensionality,
such as the basic spring model [Eades 1984]. Other algorithms
work best with high cardinality data, an example of which is the
self–organising map or SOM [Kohonen et al. 2000]. In training, a
substantial training set allows the SOM to reveal complex non-
linear structure in a very large body of data. Other features of the
data set also affect the applicability of algorithms, such as data
distribution. For example, K-means clustering [MacQueen 1967]
is most effective when the data is distributed in spherical
Gaussian clusters [Bradley and Fayyad 1998].
--
*e-mail: gr@dcs.gla.ac.uk
†e-mail: matthew@dcs.gla.ac.uk

In a working environment, corporate memory and project-specific
databases tend to start off small and gradually evolve into large
information repositories. While it would be feasible to visualise
the inter-object relationships with a force-directed layout
algorithm in the infancy of such a database, it would become less
and less effective as the database matures and demands a more
computationally feasible solution.

Previous work has shown that hybrid algorithmic approaches to
visualisation scale up to relatively high-volume data sets, even
though some of the constituent algorithms would be too costly on
their own if applied to the entire set [Morrison et al. 2002]. This
would suggest that when applied to a growing database,
algorithmic steps could be bypassed in the repository’s infancy
and incorporated as it approaches maturity. Or, in the case that
volume fluctuates, the hybrid algorithm could fluctuate and adapt
with it.

We present an implemented system and framework called HIVE
(Hybrid Information Visualisation Environment) that utilises
direct manipulation to allow users to interactively create and
explore hybrid MDS algorithms. Figure 1 shows screen-shots of
the system. Visual programming and a novel algorithmic
architecture are proposed as a means to let the user
semi–automatically co-ordinate multiple views and define data
flows.

This paper is organised into seven sections. Section two describes
related work including the data-flow model and visual
programming. Section three illustrates the hybrid algorithmic
framework, upon which the system is built. Section four describes
the HIVE architecture and implementation. Early experience of
using HIVE is discussed in section five. Finally, sections six and
seven present future work and conclusions respectively.

2 Related work

The HIVE system permits users to easily create and experiment
with hybrid algorithms for generating visualisations of their data.
This process is a visual one in that algorithms and visualisations
are represented by visual components that afford direct
manipulation. The following sub-sections describe topics in the
literature that have influenced HIVE’s development.

2.1 Visual programming

At around the time when scientific visualisation was being
established, the concept of visual programming was also
becoming prominent [Haeberli 1988], [Upson et al. 1989].
Conventional programming languages, whether high level or low
level, tend to be built around a vocabulary where the ‘words’
consist of primitives (characters). Visual programming languages

are at a higher level of abstraction than conventional languages.
Haeberli [1988] states that a visual programming environment is
any system that has adopted a graphical 2D notation for the
creation of programs. The visual primitives that make up the
vocabulary of these programs are essentially representations of
well-defined aggregates and the (direct) manipulation of these
aggregates means that complex programs can be produced more
easily than with conventional languages. This is because the
abstraction allows a greater degree of code or function reuse and
the workings of the programs themselves are more readily
understood and communicated due to their visual and spatial
properties. It can also be argued that if the manipulation of the
visual constructs is flexible enough—for example, the user may
wish to place them arbitrarily on the display surface—then this
allows greater freedom for externalising the plans and thoughts of
the user [Hendry and Harper 1999].

Using visual programming for constructing InfoVis algorithms
reinforces our commitment to and interest in graphical interaction
in computing. With regard to the means-end relationship, the
means are a visual process and the end result is a tool that
produces the visual information originally sought
after—visualisations are useful for producing other visualisations.

2.2 Data-flow model

Before visual programming was available in scientific
visualisation tools, the functional components of the tools were
hidden from the users and they had no control of the flow of data
between them. The stream of data from input through calculation
functions to mapping, filtering and rendering graphics and their
control was pre-set and the scientists and engineers had to make
do as best as they could for their tasks. In the words of Haeberli,
“Instead of the user driving an application, the user is often
driven and constrained by the application.”

Visual programming addressed a number of these problems,
moving away from these monolithic and static applications and
providing integrated environments where a user without
programming expertise could customise his or her applications.

Visual programming in the application design cycle takes the
form of a data–flow architecture. In this architecture, users are
presented with a library of modules—application
components—with specific functions. The users can select which
modules will be useful in their application and draw, via direct
manipulation of graphical representations, a block diagram and
create connections between modules for the data to flow through.
This quick and easy process meant that scientists and engineers
could concentrate on the problems being studied instead of
dealing with the overhead of re-coding and configuring
monolithic applications.

2.3 Multiple-view co-ordination

Multiple view co–ordination allows two or more related views of
data to run concurrently, with views evolving as data flows into
them from some common ancestor in the data flow graph, or as
the user interacts with one of them. A well–known example of
this is brushing and linking [Becker and Cleveland 1987]. By co-
ordinating multiple views so that changes made in one view are
reflected in other views, interaction can be said to flow between
them. This lets the user focus on specific parts of the data set, and
see them within the context of other views.

In evaluating their snap-together visualisation system, North and
Shneiderman have found that this enhances user-performance in
data analysis tasks [North and Shneiderman 2000]. Co-ordination
of activity across multiple views gives the user greater control
over the visual representations of the data. This ultimately
nurtures discovery. In [Buja and Swayne 1996] it is described as
linking “…a graphical query to a graphical response”, and in
[Eick and Wills 1995] it is stated that it gives users the impression
that they are touching the data.

HIVE takes advantage of the data-flow model and visual
programming. To create a hybrid algorithm, a user drags
components from the system’s tool bar into the drawing region
(see figure 1) and then interconnects them by dragging links
between ports on the components. Not only is the data-flow set up
in this manner, but the view co-ordination can also be defined this

Figure 1. Two screen-shots of the HIVE interface. The image on the left illustrates interconnected components that import,
transform and render multidimensional data. The algorithmic components collectively represent the O(N÷N) hybrid MDS
algorithm of [Morrison et al. 2002]. Thick lines that link modules represent data-flows while thin ones, connecting
scatterplots and other visualisations, represent the connections between interlinked interactive views. The image on the
right shows the same scatterplots enlarged and supplemented with a fisheye table component. The data consists of 5000
points sampled from a 3D ‘S’ shaped distribution.

way. After connecting visualisation tools such as scatterplots to
the output ports of algorithmic components, ‘Select’ ports can be
linked between view components to establish ‘brush and link’
functionality.

Hybrid algorithms can exhibit a lower run-time than spring
models run upon the whole data set, as discussed in [Morrison et
al. 2003], but they also lend themselves to the production of
intermediate visualisations. The benefits of this hybrid approach
are two-fold: efficiency is enhanced and intermediate views
provide more insight into the data. For example, the hybrid
algorithm depicted in Figure 1 (left) uses a spring model of a
sample of the full data set, to gain an initial small-scale 2D layout.
In the left frame of Figure 1, the sample and the remainder have
both been fed into spring models, to allow for comparison. The
two layouts have been positioned by the user on the right hand
side of the frame. The sample layout is also fed into another
module, which interpolates the remainder of the set to produce a
third and final scatterplot, shown in the middle of the frame. In
the right hand frame in the figure, the fisheye table shows the
layout points sorted on the y dimension. If we then use brushing
to select a range of rows in the table, we highlight the
corresponding points in the scatterplot and reveal more of the
structure of the data.

3 Hybrid algorithmic architecture

HIVE has been inspired by some of the existing data-flow and
visual programming systems that are prominent in the literature
and common in the marketplace. Upson et al’s Application
Visualisation System (AVS) [Upson et al. 1989] and North and
Shneiderman’s snap-together system [North and Shneiderman
2000] are two good examples. AVS is predominantly aimed at
scientific visualisation, for modelling or simulating physical
processes such as fluid dynamics, and concentrates on channelling
data through algorithmic processes for transformation and
rendering. The emphasis here is on the data-flow. North and
Shneiderman’s snap-together system, on the other hand, is
concerned with information visualisation. In this system there is
less emphasis upon the algorithmic processes for transforming
data and more on the transformation of graphical representations
by way of multiple interconnected views. Here the flow of
interaction takes precedence.

HIVE borrows from the data-flow model of AVS to be flexible in
creating efficient algorithms for the visualisations. However, to be
in line with the goal of information visualisation, it concentrates
on exploration rather than simulation. This is achieved by
supplementing the data-flow with interaction flow across multiple
views, rather like the snap-together system. It must be said,
however, that this approach does not come without drawbacks. It
is important to note that if the level of abstraction used in the
visual programming language is too low then there might be too
many visual modules, in that programming would become
complicated and the flow networks too large and hard to manage
in the available screen space. One solution being considered is to
allow the user to dynamically increase the level of abstraction by
aggregating groups of modules, simplifying the graph of
interconnected modules and the programming task.

As well as implementing visual programming to steer data-flow
and co-ordinate multiple views, HIVE has at its core a novel
hybrid algorithmic framework, exploring a general approach to
the composition of efficient and flexible hybrid algorithms. The

choice of each algorithmic component is influenced by many
characteristics including computational cost, the cardinality,
dimensionality and distribution of the data, and the other
interaction components that might be used within a larger
workspace, such as scatterplots and fisheye tables. We suggest
that these choices can be made incrementally, so that the user
employs intermediate representations as they work with and
explore their data. We also suggest that the system can assist the
user by using a pre-authored classification of data—based on,
initially, cardinality and dimensionality of data sets—and a
corresponding classification of available algorithmic components
based on the classes of data each is suited for. This offers us an
incremental and combinatorial approach to the creation of
efficient and informative hybrid visualisations.

Our work has focused on data set cardinality, N , and the
dimensionality or number of variables associated with each
object: D. We roughly categorise D and N using an ordinal range
(high, medium and low), and then we can categorise an
algorithmic component with values of D and N for ‘good’ inputs
and for the component’s outputs, effectively stating our opinion
that the component is best suited to such combinations of D and
N. For example, we consider that the input to K-means clustering
should be medium to high in D and N, whereas a canonical O(N2)
spring model algorithm can only handle low N and low to medium
D.

As shown in Figure 2, the choice of components and how they are
connected allows one to solve familiar problems in new ways.
The hybrid algorithm of [Morrison et al. 2003] transforms a large
set of data of high D to low D. It can be thought of as a move
across the grid of combinations of D and N, stepping from (H, H)
to (L, H)—but taking an indirect route via (H, L) and (L, L) that
involves sampling, spring model layout of the sample, and
interpolation based on that intermediate representation.

Cardinality (N)

H, H H, M H, L

M, H M, M M, L

L, H L, M L, L

D
im

en
si

on
al

it
y

(D
)

Figure 2. Data input to components in a hybrid
algorithmic architecture can be categorised by the
ranges of dimensionality and cardinality they are best
suited for—high, medium or low. Each component
transforms the data, effectively moving across the 3x3
grid. Our hybrid layout algorithm produces a low-
dimensional layout of a large high-dimensional data set
i.e. a move from (H,H) to (L,H) that involves several
steps shown as dotted lines in the figure: sampling, which
reduces N , then a spring model of the sample, which
reduces D, and then interpolation, which increases N.

Tentative default values for these ordinal categories of data are as
follows. We derived these values from our own experience of
constructing hybrid algorithms, however, HIVE allows the user to
tailor them:

Low D < 3

3 <= Moderate D <= 100

High D > 100

Low N < 1000

1000 <= Moderate N <=25000

 High N > 25000

The HIVE system has been designed and implemented with this
hybrid algorithmic approach in mind, and serves to provide a
workspace for experimental algorithm design and exploratory data
analysis. The visual modules that have been implemented so far
include a CSV data-importer, Chalmers’ 1996 spring model
[Chalmers 1996], radial interpolation [Morrison et al. 2002], K-
means [MacQueen 1967], neural PCA [Oja 1982], stochastic
sampling, scatterplot, histogram and fisheye table. These
components are the ingredients used in an algorithmic
‘cookbook’, in which components deemed to suit particular data
characteristics can be automatically connected to form hybrid
algorithmic paths that span the grid of Figure 2. Examples are
discussed in Section 5, following the next section’s discussion of
HIVE’s internal structure and component composition model.

4. Implementation

The software has been implemented in Java SDK 1.4. The system
architecture has been designed to let users compose visualisation
tools using modular components for importing data, algorithmic
processing and graphical rendering. In general terms, the
architecture involves a graph manager that supports the user’s
composition of a flow of data through components such as
scatterplots, K-means clustering, spring model layouts, table
views and so forth. A view manager handles linked user
interaction with these components.

The graph manager allows the user to incrementally create
executable networks of components. It employs a
scripting/composition model [Nierstrasz et al. 1991] to impose
constraints upon which modules can be connected and through
which ‘ports’, depending upon factors such as the categorisation
of data type mentioned in section 3, as well as graph structure and
port polarity (input only, output only, two-way). A user can
manually connect together components, but be warned of
potentially unsuitable or inefficient connections. Another mode
offers an automatically generated default path through the grid of
Figure 2, instantiating components based on the system’s
classification of the input data set.

The graph manager defines three types of components to support
the construction of hybrid visualisations. These are (1) data source
components to allow the import of disparate data sets and perform
the required variable type transformations; (2) algorithmic
components to transform data into metadata and intermediate
representations; and finally, (3) visualisation components for
rendering. It should be noted that this system is not strictly a data-

flow model since it is not the original data that is passed between
components through links and ports, but references to the data and
any transformations that are applied. The primary benefit of this is
the more efficient support for tightly coupled interaction, e.g.
brushing.

To facilitate extensibility, the visual modules that represent
algorithmic processes and visualisations are all derived from a
common Java class. This means that to accommodate new
algorithms and visualisations, the programmer need only extend
the base class and implement his/her own specific methods.

Visual components ‘listen’ to each other by way of their ports.
When a programmer writes a component, he or she must declare
the ports that are necessary for the functioning and
communication of the component. Ports operate by extending the
Java ‘Observable’ class and implementing the ‘Observer’
interface [http://java.sun.com/api/], so that when a link is made
between two components, the ports at each end of the link register
with each other. This simple approach means that a component
can send a message to another connected component by sending
data through one of its (observable) output ports to the (observer)
input port of the other component.

There are five types of port that a visual component can
implement. These consist of the one-way data-in, data-out,
trigger-in and trigger-out ports, as well as the two-way ‘select’
port. When declaring ports, this type must be defined. However,
data-in and data-out ports may also define the structure of the data
that will pass through them as well as the variable types
comprising those data. Two forms of data structure that the ports
cater for are high–dimensional feature vectors that can consist of
real, integer, string and date variables, and 2D real–valued co-
ordinate vectors.

The system’s composition model is responsible for laying down
the rules for which ports can be connected, based upon these port
types. These rules comprise the default composition model,
however visual component implementations can override them to
tighten or loosen connection constraints when required. An
overview of these rules is as follows:

• polarity – one-way ports can only be connected to their
complement. Likewise, two-way selection ports can only be
connected to other selection ports.

• Self-connection – ports on the same component cannot be
connected

• fan-in – one input port can only be connected to one output
port

• fan-out – one output port can be connected to many input
ports

• data-structure compatibility – data-in and data-out ports
can only be connected when they are declared to handle the
same data structure.

• data-variable compatibility – data-in and data-out ports
can only be connected when they are declared to handle the
same variable types.

A pair of buttons in the interface allows switching between two
modes of interaction with the system. The first, as in the left
frame of Figure 1, shows all the components and their
interconnections. The second hides all but the visualisation

components, as in the right of Figure 1. Automatically generated
hybrid algorithms can be shown in this more minimal mode,
hiding graph structure until the user wishes to explore or adjust it.

When all the components are visible, the data flows can be
programmed using the graph manager, and similar mouse-based
interaction also allows interlinking of components for interaction.
Tight coupling between interactive visualisation components can
thus be visually programmed. The system’s view manager handles
this in the traditional ‘model-view-controller’ style.

5 Preliminary experience using HIVE

Early experience of the HIVE system was gained when exploring
a data set gathered from an eScience project within the Equator
Interdisciplinary Research Collaboration (www.equator.ac.uk).
The eScience team has set up a remote sensing probe at a frozen
lake in the Antarctic, which transmits data including ice thickness,
water temperature, UV radiation levels etc. to environmental
scientists at the University of Nottingham. The aim of this is to
learn about carbon cycling processes. The data set was composed
of 2202 probe measurements, each consisting of 14 variables
measured at five-minute intervals between 17th January 2003 and
31st January 2003. This was converted into CSV format before
importing it into HIVE.

Two algorithms were set up in parallel in HIVE and used to
perform dimensional reduction of the data so that they could be
rendered as a point distribution in scatterplots. One algorithm
consisted of a neural PCA component and the other was generated

automatically after the user specified the data set and visualisation
tool, in this case a scatterplot. This latter algorithm was similar to
the hybrid algorithm illustrated in Figure 1 with the exception that
it used K-means instead of stochastic sampling in initially
reducing the representative cardinality. Both algorithms took less
than five seconds to run. By setting up these two algorithmic
paths in parallel, it was possible to directly compare the
visualisations produced (Figure 3).

One notable difference between the visualisations was a small
cluster made prominent by the hybrid spring model, especially in
the intermediate view after the interpolation phase, which was not
apparent in the PCA output. By linking a histogram to the
scatterplots it was found that this cluster of points represented
data where the photosynthetically active radiation (PAR)
measurements at a depth of 10 metres were invalid. It turned out
that these erroneous measurements were caused by the light level
exceeding the sensor’s maximum input threshold.

The two algorithms used here are examples of ‘recipes’ that are in
the algorithmic cookbook mentioned in Section 3. Since the data
set used here is deemed to be of moderate cardinality and
dimensionality, K-means is applicable in reducing the
representative cardinality (centroids) to make it low enough for
Chalmers’ spring model to converge very quickly and reduce the
dimensionality to 2 dimensions. From here, the rest of the data set
is interpolated onto the layout to restore the representative
cardinality. A final spring model step is added to run for a small
constant number of iterations to refine the final layout. This
algorithm was generated by HIVE to span the grid in Figure 2
from (M, M) to (L, M). If however, the cardinality of the data set
was high, the algorithm would have had to span from (M, H) to
(L, H), in which case HIVE would have generated a variant of the
hybrid algorithm. In this case stochastic sampling would be
employed instead of K-means in the initial phase, to speed things
up. The other algorithm used in the exercise, neural PCA, was
composed manually and can be regarded as a direct jump from
(M, M) to (L, M) with respect to the algorithmic space in Figure 2.

This exercise demonstrated the fact that some algorithms can be
more effective than others when employed in MDS. If PCA had
been used alone, the anomalous data might have been overlooked,
whereas the hybrid spring model made the cluster immediately
apparent. Also, the value of the intermediate view after
interpolation boosted the cluster’s separation and made it more
visible.

6 Ongoing and Future Work

Our ongoing work is focused on implementing further visual
modules to be included in the cookbook of hybrid algorithms that
will span the simple 3x3 space represented in Figure 2.
Algorithms to be considered include SOMs [Kohonen et al. 2000]
and Random Mapping [Kaski 1998]. We are also experimenting
with new algorithmic components such as Morrison and
Chalmers’ O(N5/4) hybrid algorithm [Morrison and Chalmers
2003]. These algorithms are being analysed with respect to the
data types they can handle, their complexity in time and space,
whether or not they produce visualisations as useful intermediate
representations, and the order in which they should be applied in a
hybrid conjunction. We will also investigate aggregation of visual
modules, as described in Section 3, as a means of increasing
abstraction and therefore simplifying visual programming. Given

Figure 3. The leftmost scatterplot shows the output
of neural PCA. The middle scatterplot shows the
data after interpolation around the K-means
centroids while the right scatterplot illustrates the
output of the final spring model component. The
highlighted cluster is a small subset of erroneous
PAR measurements. These clusters are much clearer
in the hybrid algorithm’s plots than with PCA. The
histogram shows the PAR distribution at a depth of
10 metres. The outlying peak (far-left) has been
selected and this highlights the clusters in the
scatterplots.

a larger ‘palette’ of components, we will then carry out user trials
of the workspace and the framework.

One boundary issue that could impact on the implementation and
usage of the proposed HIVE framework relates to applicable data
formats. There are several well-established standards for encoding
and handling data including the hierarchical data format (HDF)
and others such as the common data format (CDF). For the HIVE
framework to be adopted as a feasible information visualisation
workspace in a non-experimental setting, the formats of data that
it should be capable of importing, modifying, and possibly
exporting, should employ these standards.

7 Conclusion

A framework for hybrid algorithmic development has been
described and a system, HIVE, embodying the framework has
been implemented. From our early experience with our prototype,
we suggest that the hybrid approach has two-fold benefits:
significant improvements in run times of MDS algorithms can be
achieved, and intermediate views of the data and the visualisation
program structure can provide greater insight and control over the
visualisation process. In the near future, we intend to carry out
user trials to test this opinion, and to derive system improvements
and new design ideas.

Overall, we suggest that the growth in the number, variety and
internal complexity of visualisation algorithms is a similar
situation to the growth in the size and complexity of the data we
visualise. While we are not yet at the stage of having hundreds or
thousands of components to visualise, we feel that the task of
constructing, adapting and using information visualisation tools is
becoming a user activity that may benefit from system assistance.
Visual programming is a promising first step in this direction, as
we hoped to demonstrate in this paper, but there may be rich and
useful work to do in using InfoVis techniques to support the
understanding and use of InfoVis systems.

Acknowledgements

We thank Luc Girardin and Dominique Brodbeck (Macrofocus)
for the ‘S’ data set used in Figure 1, Alistair Morrison (U.
Glasgow) for earlier work on the hybrid algorithms in Figures 1
and 3, and Stefan Rennick Egglestone and Chris Greenhalgh (U.
Nottingham) for the Antarctic data.

References

Bradley, P. S., Fayyad, U. M. 1998. Refining Initial Points for K-Means
Clustering. in Proceedings of the Fifteenth International Conference on
Machine Learning 1998. 91-99.

Buja, A., Cook, D., Swayne, D. F. 1996. Interactive high-dimensional data
visualization. Journal of Computational and Graphical Statistics 1996,
78-99.

Becker, R., Cleveland, W. 1987. Brushing scatterplots. Technometrics 29,
2, 127-142.

Chalmers, M. 1996. A Linear Iteration Time Layout Algorithm for
Visualising High-Dimensional Data. in Proceedings of IEEE
Visualization 1996, San Francisco, 127-132.

Eades, P. A. 1984. A heuristic for graph drawing. Congressus
Numerantium 42.

Eick, S. G., Wills G. J. 1995. High Interaction Graphics. European
Journal of Operational Research 84, 445-459.

Haeberli, P. E., 1988. ConMan: a visual programming language or
interactive graphics. Computer Graphics 22, 4, 103-111.

Hendry, D.G., Harper, D. J., 1999. An informal information--seeking
environment. Journal of the American Society for Information Science,
48, 11, 1036-1048.

Kaski, S. 1998. Dimensionality reduction by random mapping: Fast
similarity computation for clustering. In Proceedings International
Joint Conference on Neural Networks 1, 413-418.

Kohonen, T., Kaski, S., Lagus, K., Salojrvi, J., Paatero, V., Saarela, A.
2000. Self Organization of a massive document collection. IEEE
Transaction Neural Networks, 11, 3, 574-585.

MacQueen, J., 1967. Some methods for classification and analysis of
multivariate observations. in Proceedings of 5th Berkeley Symposium,
281-297.

Morrison, A., Chalmers, M. 2003. Improving Hybrid MDS with Pivot-
Based Searching. To appear in Proceedings of the IEEE Symposium on
Information Visualisation.

Morrison, A., Ross, G., Chalmers, M. 2002. Achieving Sub-quadratic
Multidimensional Scaling through the Combination of Sampling,
Clustering and Layout Algorithms. in Proceedings of the IEEE
Symposium on Information Visualisation. 152-158.

Morrison, A., Ross, G., Chalmers, M. 2003. Fast Multidimensional
Scaling through Sampling, Springs and Interpolation. Information
Visualisation 2, 1. 68-77.

Nierstrasz, O., Tsichritzis D., Vicki de Mey, Stadelmann, M. 1991.
Objects + Scripts = Applications. in Proceedings of ESPRIT
Conference. Kluwer Academic Publishers, 534-552

North, C., Shneiderman, B. 2000. Snap-together visualization: can users
construct and operate coordinated visualizations? International Journal
of Human-Computer Studies 53, 715-739.

Oja, E., 1982. A Simplified Neuron Model as a Principal Component
Analyzer, Journal of Mathematical Biology 15, 267--273.

Upson, C., Faulhaber Jr, T., Kamens, D., Laidlaw, D., Schlegel, D.,
Vroom, J., Gurwitz, R., Van Dam, A., 1989. The application
visualization system: a computational environment for scientific
visualization. IEEE Computer Graphics and Applications. 30-42

