
Do I need to fix a failed component now, or can I
wait until tomorrow?

Muffy Calder and Michele Sevegnani

School of Computing Science, University of Glasgow, Glasgow, G12 8RZ, UK.

Email: {muffy.calder,michele.sevegnani}@glasgow.ac.uk

Abstract—We investigate how predictive event-based modelling
can inform operational decision making in complex systems with
component failures. By relating the status of components to
service availability, and using stochastic temporal logic reasoning,
we quantify the risk of service failure now, and in the future, after
a given elapsed time. Decisions can then be taken according to
those risks. We demonstrate the approach through application
to an industrial case study system in which component failures
are sensed and monitored. The system has been deployed for
some time. A novel aspect is we calibrate the model(s) according
to inferences over historical field data, thus the results of our
reasoning can inform decision making in the actual deployed
system.

keywords: ctmc, communications service, safety-critical,
temporal logic, predictive modelling.

I. INTRODUCTION

Operational decision making about which components to
fix and when, in the event of component failures and reduced
redundancy in a deployed critical service, is difficult. Ideally,
when failures are uncovered (e.g. through monitoring and
sensing), an engineer would fix them immediately. But this
might not be possible due to limited resources and/or physical
distance to a device. So how does an engineer prioritise
and make best use of their resources, while still ensuring
the service is operating within acceptable levels of risk of
failure? We hypothesise that in systems in which failures
are monitored and sensed, predictive modelling and reasoning
with a stochastic temporal logic can inform decision making
by relating the status of assets (i.e. components) to service
behaviour so that the risk of service failure now, and in the
future, can be quantified, under assumptions about failure rates.
The aim of this paper is to demonstrate how event-based,
stochastic formal modelling and analysis by model checking
temporal logic properties provides such a predictive modelling
framework. We demonstrate the approach via application to an
industrial case study: a communications service for a safety-
critical system and a software system that senses and monitors
the status of communication links and the service. The system
has been developed and deployed over a number of years in a
large global company. While we focus here on the case study,
our approach and results are applicable to a wide range of
sensor based, monitoring systems and critical services.

We relate asset level behaviour to service level behaviour, in
the context of a system architecture that incorporates redun-
dancy (because the service is critical to higher level safety-
critical system). More specifically, we quantify how the system

architecture is designed to meet service requirements, when
calibrated with specified rates defined by mean time between
failure (MTBF) rates as supplied by manufacturers and system
designers, and quantify how the system architecture actually
meets service requirements, when the models are calibrated
with rates derived from historical, field data.

Our objective is to predict future behaviour and risk from
a system state in which faults have occurred, and thus inform
operational decision making by those who have responsibility
for the system, as it is running. A novelty of this work is
that we apply formal modelling and analysis techniques in
the context of a system that continually senses and monitors
failures and has been running for some time. Thus we have
access to actual field data about failures.

The models and temporal properties are probabilistic. Prop-
erty analysis is performed: to validate the models, to compare
model results with known historical results, and to study
predictive properties about likely future behaviours from a
variety of possible systems states. A typical predictive temporal
property is, from a degraded configuration (i.e. one where a
given fault or faults have occurred), compute the probability
over the next 48 hours of the system reaching a no-service
state. Knowledge of how that probability varies over time could
help us quantify the risk to the system posed by that fault and
the urgency of repair, and contribute to answering questions
such as “do I need to fix the fault now, in the next 4 hours, or
can I wait until tomorrow”? For example, if the probability of
no service is well below the safety threshold during the next
4 hours, but thereafter rises exponentially above the threshold,
we would likely conclude that a repair need not be immediate,
but must be completed within the next 4 hours. There may be
other parameters to minimise/maximise. For example, in some
contexts a repair that is guaranteed to be completed within 24
hours may be relatively low cost, whereas a repair guaranteed
to be completed within 4 hours may have a much higher cost.
If we can demonstrate that safety requirements will be satisfied
over the next 24 hours, then the lower cost repair may be an
option. Longer term, the model(s) and analysis can be used for
experimentation with different monitoring practices, different
system architectures and degrees of autonomy, and, ultimately,
for on-line run-time monitoring.

Our approach is event-based, reflecting the design of the
monitoring system and the events that are sensed, monitored
and logged. A key decision is how to model the passage of time
in the system. We assign rates to events, thus our models are
continuous time Markov chains (CTMCs): the state space is

2014 Tenth European Dependable Computing Conference

978-1-4799-3804-9/14 $31.00 © 2014 IEEE

DOI 10.1109/EDCC.2014.15

66

discrete but time is continuous. We instantiate the models with
rates derived from safety and business cases, with rates derived
from actual historical field data, and with hypothetical values
that reflect possible changes to business or other technical
processes. By adopting CTMCs as our underlying semantics,
we can relate our models to MTBF values: if the MTBF is
r, then the associated rate for the (failure) event is 1/r and
the probability the event occurs/has completed by time t is
exponential, i.e. 1− er·t.

We reason about temporal properties using model checking
techniques. We advocate temporal properties and model check-
ing because together they allow us to quantify all possible
future behaviours, whereas simulation only ever considers one
behaviour (or trace) at a time. Typical temporal properties
concerning service level behaviour include:

• from a given degraded configuration, what is the prob-
ability that the system will reach a state in which no
service is offered within the next n hours,

• from a given degraded configuration, what is the ex-
pected time to repair a given type of fault,

• from a given configuration, what is the expected number
of alarms over the next n hours,

• in the long run, what is the probability that the system
is in a no-service state.

The contributions of the paper include:

• an event based, parameterised, counter abstraction model
of a deployed communications link monitoring system,

• steady state properties to validate model against expected
and historical behaviour,

• transient properties to quantify criticality of reduced
redundancy configurations and to distinguish between
different sets of degraded configurations,

• example decision making based on transient property
results,

• inference of rates from actual (historical) field data,
• example analysis for an instance of the model with real

case study data.

The next section contains an overview of the communica-
tions link monitoring system and in Section III we review basic
concepts and definition of CTMCs and continuous stochastic
logic (CSL). Section IV contains an overview of the model,
which is parameterised by rates and the topology of the
system. Section V gives an overview of inference of rates
from historical, field data for the case study. Section VI
defines the propositions used in the example analysis. Sections
VII and VIII define the properties used in steady state and
transient analysis, and example results for the case study,
respectively. In section IX we give an example of how transient
property analysis results can inform decision making. Section
X contains a brief overview of the implementation. In section
XI we give an overview of the entire modelling and analysis
approach, indicating how and when it can be used, and in
Section XII we reflect on aspects of the case study. Related
work is discussed in Section XIII, and we conclude in Section
XIV.

For reasons of commercial sensitivity, details of the com-
pany and the application must remain private.

II. OVERVIEW OF THE COMMUNICATIONS LINKS

MONITORING SYSTEM

The primary components of the system are sectors, sites,
frequencies and channels. There are 35 sectors, each of which
is allocated a fixed set of frequencies, plus an emergency
frequency. There are 17 sites, each with several antennas that
send (Tx) and receive (Rx) on different frequencies. Here, we
refer to antennas as channels. There is redundancy by design:
every sector is allocated several frequencies, a frequency is
covered by more than one site, and in every site there are
idle backup channels. We refer to the main channel as the A
channel and the backup channel as the B channel.

Sites are monitored for power line status, communication
link status, and there are sensors for intrusion and flooding.

The company runs a software monitoring system in real-
time that senses component status and uses a colour coding to
indicate the status of components:

• green indicates functioning or serviceable
• red indicates faulty, raise an alarm
• blue indicates under maintenance
• amber indicates reduced redundancy and possibly not

fully functioning (for example when one antenna goes
down for a frequency).

An alarm goes off every time a component turns red. As we
shall reveal later, alarms typically cascade. One motivation of
this work is to help engineers develop a better understanding
of the service-level impact of these alarms.

III. TECHNICAL BACKGROUND

A. Continuous Time Markov Chains
Following [1], given a finite set of atomic propositions AP ,

a (labelled) continuous-time Markov chain (CTMC) is a triple
C = (S,R,L) where S is a finite set of states with a designated
initial state, R : S×S → R≥0 a rate matrix, and L : S → 2AP

a labelling of states. The exit rate E(s) =
∑

s′∈S R(s, s′)
denotes the probability of taking a transition from s within t
time units and is equal to 1−e−E(s)·t. If R(s, s′) > 0 for more
than one state s′, a race between outoing transitions from s
exits. That is, the probability of moving from s to s′ in a single
transition is the probability that the delay of going from s to
s′ finishes before the delays of any other outgoing transition
(from s).

In the remainder of this paper we use an informal, graphical
notation for indicating the states and transitions of a CTMC,
for example, see Figures 1 and 2.

B. Continuous Stochastic Logic
We use Continuous Stochastic Logic (CSL) [2], a stochastic

extension of the Computational Tree Logic (CTL) allowing
one to express a probability measure of the satisfaction of
a temporal property in either transient or in steady-state
behaviours. The formulae of CSL are state formulae Φ with
path formulae Ψ:

Φ ::= true | a | ¬Φ | Φ ∧ Φ | P�� p[Ψ] | S�� p[Ψ]
Ψ ::= XΦ | ΦUI Φ

67

where a ranges over a set of atomic propositions AP , ��
∈ {≤, <,≥, >}, p ∈ [0, 1], and I is an interval of R≥0.
We additionally use the path operator (syntactic sugar): the
eventually operator F (future) where FI Φ ≡ trueUI Φ.

A transient formula P�� p[Ψ] is true in state s, denoted by
s |= P�� p[Ψ], if the probability that Ψ is satisfied by the paths
starting from state s meets the bound �� p. A steady-state
formula S�� p[Ψ] is true in a state s if the steady-state (long-
run) probability of being in a state which satisfies Ψ meets the
bound �� p.

We employ the PRISM probabilistic model checker [3],
which allows one to leave the bound ��p unspecified, in which
case a probability is calculated in PRISM thus: P=?[Ψ] and
S=?[Ψ]. Additionally, PRISM allows for experimentation: the
verification of an open formula, when the range, and step size
of the variable(s) are specified.

C. Language of reactive modules
There are several languages or formalisms for specifying

Markov processes based on rate transition matrix descriptions,
state-transition graphs, or guarded command languages such as
Reactive Modules [4], which is the basis of the PRISM lan-
guage. Processes are represented by modules consisting of
action-labelled guarded commands (transitions) and are com-
posed using the multiway synchronisation operator over all
common actions. Each module has the form: local variable
declarations followed by a non-deterministic choice between
transitions, each which indicates the value of variables in the
next state and may be labelled by an action. A simple transition
has the form: [action]guard → rate : update meaning the
module makes a transition to a state described by the update
at the given rate when the guard is true. The action label
is optional, [] indicates simple non-deterministic choice. In an
update, if x is a variable, then x′ denotes the value of x in the
next state. An update may be a choice between two or more
assignments, for example [action]guard→ rate1 : update1+
rate2 : update2, meaning there is a race condition between
the two updates. The rate of the synchronised transition is the
product of all the individual rates.

IV. OVERVIEW OF THE MODEL

A channel is characterised by three parameters: whether
it is receiver (Rx) or transmitter (Tx), the frequency, and
the site reference. There are four possible states for a re-
ceiver/transmitter: S for serviceable (green), F for faulty (red),
M for under maintenance (blue) and E for external site failure
(red). Note there is no reduced redundancy in a single channel
(i.e. there is no amber).

We do not represent channels individually, but employ a
counter abstraction in which a pair of A and B channels
is represented by a single module: the state labels indicate
the counts of the constituent channels. For example, state
SS means that both A and B channels are serviceable, state
SF means that one channel is serviceable and the other is
faulty. States are colour coded according to three classes:
green for serviceable, amber for reduced redundancy, and red
for no service. The state transition diagram for a pair of

channels is given Figure 2. For the purposes of reasoning about
service availability, a component that is under maintenance is
considered not serviceable, as indicated in Figure 2.

The external environment of a site is characterised by
major physical events that cause a failure of the site (e.g.
instrusion, powerline and backup generator failure, flooding)
or minor events (e.g. powerline failure but backup generators
functioning) that mean the site is more likely to fail, but is
still functioning. Thus it has three states: E0 for serviceable
(green), E1 site event (amber), and E2 site failure (red).

A site is represented by the concurrent composition of three
modules: the transmitters, the receivers, and the site environ-
ment. Thus a state is a triple consisting of the channel pairs
and site environment. States are classified by three colours:
W for serviceable site (green), R for reduced redundancy site
(amber), and N for no service site (red). A key aspect of
the model is the interaction between the site environment and
the channels: the transition between E1 and E2 in the site
environment synchronises with any channel transition to state
E; that is an external site event causes the channel to move
to state E. Similarly, the (site environment) transition between
E2 and E0 synchronises with a channel (reset) transition to
serviceable.

Figure 1 contains state transition diagrams for a channel pair
and site environment, indicating synchronisation between the
two and symbolic rates.

An n-ary sector is represented by its n constituent sites.
Without loss of generality we assume here a sector with three
sites. Again, states are labelled and colour classified: W W
W for serviceable sector (green), N N N for no service sector
(red), and amber for reduced redundancy sector, which consists
of all remaining states, i.e. the language defined by L \ ({W
W W} ∪ {N N N}), where L = (W|N|R) (W|N|R) (W|N|R).
Note that the notation for a channel pair assumes symmetry;
for example, we do not distinguish SF from FS and so the latter
is not a state. On the other hand, the notations for a site and a
ternary sector do not assume symmetry; for example, site SF
SS E0 is distinguished from SS SF E0. The former denotes
a configuration where the transmitter is reduced redundancy
and the receiver is serviceable, whereas the latter denotes
a configuration where the transmitter is serviceable and the
receiver is reduced redundancy. However, we note that the rates
for events for transmitters and receivers are identical and if
either the transmitter or receiver is no service, then the entire
site is no service. Also, note that the rates for events will
usually differ from site to site; for example, for a given sector,
the rate for an event e for the first site may be different from
the rate for the same event e for the second site (in that sector).

Not all configurations are reachable. For example, the site
configuration SS E E2 is not possible because of synchro-
nisation on site-failure: when a site-failure occurs, both the
transmitter and receiver synchronise on this event and move
to (channel) state E.

For a given frequency, a sector is represented by the con-
current composition of its constituent sites, which typically
varies between 2 and 5 sites. Note that sites within a sector
are independent (i.e. no synchronisation).

Table I contains a summary of the (labels of the) states

68

SS

SF

FF

S
M

F
M

M
M

E

A/B CHANNELS

E0

E2

E1

SITE

2a b

b
b

c c

d

c

d

d

a a

e f f

g

Fig. 1: State transition systems for site environment and channel pair. Synchronisation on red and green transitions. Rates: a = channel failure,
b = channel quick repair, c = channel slow repair, d = channel under maintenance repair, e = site event, f = site repair, g = site failure.

SS

SF

FF

S
M

F
M

M
M

SERVICE

UNDER MAINTENANCE

F
M

M
M

S
M

REDUCED
REDUNDANCY

NO SERVICE

Fig. 2: Levels of service.

that are represented in a model with a ternary sector, using
regular expression notation, e.g. ‘|’ for disjunction and ‘*’ for
wildcard. Strictly speaking, the labels of states in a CTMC are
the propositions that are true in that state. Here, we introduce
a convenient labelling for states that indicates the properties
of that state.

As example, Figure 3 gives the PRISM module for a generic
transmitter (Tx) for channel with site reference X and the Site
environment, in the context of rate declarations. Note that the
last two transition choices in the transmitter are labelled by
actions that cause the transitions to synchronise with the site
environment. Further, we include alarm labels for transitions

to red states, so that we can use PRISM rewards to count the
number of alarms, if required.

A. Rates
The model is governed by seven rates a, . . . , g, as indicated

in the graphical representation of the modules given in Figure
1 and the PRISM code snippet in Figure 3. Note there are
two transitions from the repairing state: a quick, local repair
that returns to the serviceable state, and a slower transition to
the under maintenance state. The former reflects an error that
can usually be fixed by a remote reboot. The latter reflects
the fact it may take some time for an engineer to physically

69

component colour states description
channel green S serviceable channel

blue M under maintenance channel
red F faulty channel
red E site failure

channel green SS serviceable AB
pair amber SF|SM reduced redundancy AB
(A,B) red FF|FM|MM|E no-service AB

site green SS SS E0 W serviceable site
(Tx,Rx,Env) amber SS SS E1 R reduced redundancy site

amber SF (SM|SF|SS) (E0|E1) R reduced redundancy site
amber SM (SM|SF|SS) (E0|E1) R reduced redundancy site
amber (SM|SF|SS) SF (E0|E1) R reduced redundancy site
amber (SM|SF|SS) SM (E0|E1) R reduced redundancy site

red E E E2 N no-service site
red (FF|FM|MF) * * N no-service site
red * (FF|FM|MF) * N no-service site

ternary sector green W W W serviceable sector
(site,site,site) amber all other combinations reduced redundancy sector

red N N N no-service sector

TABLE I: State labelling and colour coding in counter abstraction
model.

reach a site and/or repair the fault. Interviews with engineers
indicated the ratio between these rates is typically about 3 : 1.

Rate a indicates the failure rate of a single channel. Intu-
itively, it describes the transition of a channel from state S
to state F (downwards arrows in the diagram). Since state SS
contains two channels that can individually and independently
fail, the rate for transition SS → SF must be 2a.

Rate b is the rate of a quick repair. It describes the transition
of a channel from state F to state S (without passing through
an M state). Interviews with engineers revealed that the time
employed to repair a single channel and a pair of channels
is the same, we use b instead of 2b as the rate for transition
FF → SF.

Rate c is the rate for slow repairs and describes the transition
of a channel from state F to state M. Events of this kind are
always in a race condition with b-rated events. In order to
reflect the 1:3 ratio between quick and slow repairs, c is defined
as b/3.

Similarly, rate d is the duration of a repair of an under
maintenance channel (M), i.e. a transition of a channel from
state M to state S.

Rates e and g are the rates for external site events and site
failures, respectively, and g is the rate of (external) site repair.

To quantify how the system architecture is designed to
meets service requirements, we instantiated the rates with
derived from typical MTBF values, interviews with engineers,
and inspection of the business case; to quantify how the
system architecture actually meets service requirements, we
instantiated the rates according to historical, field data. Since
the latter is a novel and challenging aspect of our approach,
we discuss how the rates are derived in the next section and
use those rates in the analysis in sections VII to IX.

V. INFERRING RATES FROM FIELD DATA

After our initial development of the (parameterised) model
and investigation of how the architecture is designed to meet

//Ratio quick repairs to slow repairs
const double x = 3;
// Channels - mean times in hours
const double failure = ..
const double repair = ..
const double qrepair = ..
// Site environment
const double event = ..
const double site_failure = ..
const double fix_event = ..
//Rates
const double a = 1/failure;
const double b = 1/qrepair;
const double c = b/x;
const double d = 1/repair;
const double e = 1/event;
const double f = 1/fix_event;
const double g = 1/site_failure;

module Site_X_Tx // channel pair
s0_X : [0..6];
[alarm_0_X]s0_X=0 -> 2*a:(s0_X’=1); //SS
[alarm_0_X]s0_X=1 -> a:(s0_X’=2); //SF
[]s0_X=1 -> b:(s0_X’=0) + c:(s0_X’=3); //SF
[]s0_X=2 -> b:(s0_XL’=1) + c:(s0_X’=4); //FF
[alarm_0_X]s0_X=3 -> a:(s0_XL’=4); //SM
[]s0_X=3 -> d:(s0_X’=0); //SM
[]s0_X=4->b:(s0_X’=3)+c:(s0_X’=5)+d:(s0_X’=1);//FM
[]s0_X=5 -> d:(s0_X’=3); //MM
[alarm_f_X]true -> 1:(s0_X’=6); // E
[fix_X]true -> 1:(s0_X’=0); // E
endmodule

module Site_env_X
env_X : [0..2];
[alarm_e_X] env_X=0 -> e:(env_’=1);
[alarm_f_X] env_X=1 -> g:(env_’=2);
[fix_X] env_X=1 -> f:(env_’=0);
[fix_X] env_X=2 -> f:(env_’=0);
endmodule

Fig. 3: Generic Tx Site module and Site environment module.

service requirements, the company gave us access to their SAP
incident ticketing system, which they employ for long term
storage of data concerning logged failures. The data logs record
failure occurrences and repair durations, as well as a textual
description, which allow us to categorise events.

In the case study, inference of rates was by manual inspec-
tion of historical field data for failures, sector by sector, for
nominated time periods. We note that longer term, we aim to
influence the design of readouts and tickets, and subsequently
we will automate the inference process.

As an example, we give results for a nominated sector,
which we call X, over a one year period: February 2012 to
February 2013. The data included 61 alarms and 24 site events.
From this data we calculated inter failure times and then mean
inter failure times, which we then used to define failure rates
(namely rates a, e and g), and we calculated and used repair
duration times and mean repair duration times to define repair

70

rate inferred value
Mean inter-failure time 452 h
Mean repair time 18 h

Response 57 m

Site event 1107 h

Percentage of quick repairs 15

Site failure 1 every 11.33 years

TABLE II: Inferred rates from historical.

rates. The final results are reported in Table II.
Our study of the field data for the nominated sectors

confirms our assumption (as told to us during interviews with
engineering staff) that the duration of repairs is independent
of the number of channels requiring repair. Moreover, the
inferred rates are of the expected orders of magnitude (again,
as indicated by interviews with engineers).

However, our analysis of the field data raised some issues
that require further consideration.

First, some events were impossible to detect by analysing
the chosen data set. For example, the textual descriptions for
repair events did not specify whether an event was a quick or
a slow repair. Therefore, in order to infer the ratio between
rates b and c, we assumed that repair events with a duration
greater than 2 hours were slow repairs. Second, rare events
such as site failures did not occur in the time span covered
by the data set; we had to look at data from previous years to
find an occurrence. Third, we identified two classes of events
that may require a different representation model:

• dependent events such as the contemporaneous failure
of both the A and B channels, and

• deterministic events such as scheduled maintenance.

We will return to these issues in Section XII, now we turn
our attention to the analysis of instantiations of the model.

VI. PROPOSITIONS

Fundamental to any analysis is the set of propositions
that are checked in a given state. Since our primary in-
terest is level of service, i.e. the (monitoring) colour of
a configuration as defined in Table I, we define proposi-
tions accordingly. Namely, we define propositions that indi-
cate whether a channel/site/site environment/sector is service-
able/noservice/reduced redundancy thus:

serviceable chan(c) = (c = SS)
serviceable env(e) = (e = E0)
serviceable site(s) = serviceable chan(Txs)
∧ serviceable chan(Rxs) ∧ serviceable env(Envs)

serviceable sector(A) =
∧

s site in A serviceable site(s)

noservice chan(c) = (c = FF) ∨ (c = FM) ∨ (c = MM)
∨(c = E)

noservice env(e) = (e = E2)
noservice site(s) = noservice chan(Txs)
∨ noservice chan(Rxs) ∨ noservice env(Envs)

noservice sector(A) =
∧

s site in A noservice site(s)

Colour Model result Result from historical data
serviceable 88.46% 86.54%

reduced redundancy 11.53% 13.56%

no service 10−8 0.00%

TABLE III: Comparison of model long run behaviour and manual
analysis of historical data.

rr chan(c) = (c = SF) ∨ (c = SM)
rr env(e) = (e = E1)
rr site(s) = ¬(serviceable site(s) ∨ noservice site(s))
rr sector(A) =

∨
s site in A rr site(s)

We also compute expected rewards, associated with states
or transitions. For example, we use rewards to compute the
expected number of alarms, over a period of time.

VII. STEADY STATE PROPERTIES

Steady state properties express long run behaviour and we
use these properties for validation of the model. Typically
we examine steady state behaviour for a given sector,
computing the probability to be in a service state, a reduced
redundancy state, or a no service state, in the long run. For
sector X, the respective PRISM steady state properties are:
S=?[(rr sector(A))], S=?[(serviceable sector(A))], and
S=?[(noservice sector(A))].

We checked these properties in the model for sector X, the
results are given in the left hand column in Table III. We note
that in the long run, the sector is serviceable for the majority
of time (over 88%), and this accords with the experiences of
the engineers we interviewed.

For further validation, we then analysed (by hand) the
historical data for that sector (over one year), to calculate the
percentage time spent in a service state, etc. These results are
indicated in the right hand column in Table III. As can be seen,
the model results align very well with actual performance in
that sector over a one year period.

VIII. TRANSIENT PROPERTIES

A. Transient properties for prediction
Transient properties are used to express the probability of

reaching a state that satisfies a proposition within a period of
time. In this system, we compute the probability of reaching
no service in a given sector within time T , which is expressed
for sector X by the property P=?[F

≤Tnoservice sector(X)].
We experiment in PRISM with instantiations of the variable
T , to give a plot of how the probability changes over over
time.

But the property alone is not sufficient to characterise criti-
cality in a deployed system: the key question when considering
transient properties is what is the state from which we compute
the probability? In other words, we calculate probabilities of
reaching certain states from given state(s). In standard model
checking, the initial state is the pre-defined, initial state of the
system. In our case, this would be the all-green configuration
(serviceable channels, sites, sectors, etc.). However, we are
considering a deployed system in which failures have occurred

71

Fig. 4: Distinguishing degraded configurations: time to a no service
configuration depends on the current configuration.

and the interesting cases are the degraded, amber configura-
tions. Specifically, once we have reduced redundancy, we want
to be able to quantify the criticality of the situation and take
informed decisions – in other words, do I need to fix a fault
now, or can I wait? And how long?

B. Degraded configurations
The amber colour coding denotes a degraded configuration

in which, through the occurrence of a fault, there is some
degree of reduced redundancy, though of course the service
is still available. One goal of our analysis is to enable us
to distinguish between different amber configurations. It is
important to note that the length of the path to a no service
state number is possibly irrelevant. For example, from one
amber configuration it may require only two events to reach a
no-service configuration, yet both those events are very rare.
On the other hand, from another amber configuration, it may
take between 10 and 15 discrete events (i.e. failures) before
we reach no-service, yet all of them may be quite likely. So, in
the former case, the probability of reaching no service within a
fixed time may well be lower than in the latter case, depending
on our choice of the time interval. Figure 4 gives a pictorial
representation: on the left (the source state) we have the initial
green state and on the right (the sink states) the red no service
states, the degraded configurations states are the majority of
states in between these two extremes. We aim is to distinguish
subsets of these states and quantify the probability of reaching
a no service state from them.

C. Results
The degraded configurations we examined for the example

sector X with three sites A, B, and C are given in Table IV.
We refer to Table I for the definitions of W, R and N. Observe
that both N and R can be the result of many different site
configurations, and we randomly select one of those for each
occurrence of R and N. For example, R could be SF SM E0
or SF SS E1; N could be E E E2 or FF SS E0 or E E E2.

Figures 5, 6, and 7 give the results for the probability of
reaching a no-service configuration, from different degraded
configurations, over a time interval of 48 hours.

We are considering a critical service in a safety-critical do-
main and so we expect probabilities to be very low. However,

A B C
W W N
W N N
W W R
W R R
R R R
R R N
R N N

TABLE IV: Selected degraded configurations for sector X.

observe the orders of magnitude difference on the Y axis. In
Figure 5, the scale is 10−7, whereas in Figure 6, the scale is
10−4, and in Figure 7, the scale is 10−3. Also, observe that in
Figure 5 the steepest trajectory is WWN, which contains one
no service site, and in Figure 7, the trajectory with highest
probability, RNN, has two no service sites. However, in the
same Figures, WNN also contains two no service sites, but one
serviceable site and the overall probability of service failure is
constantly low.

Following similar analysis of different sector topologies, we
observe the contribution of additional sites increases service
availability, however that increase is inversely proportional
to the number of additional sites. The example in Figure 8
illustrates this: the difference between 3− and 4−ary sites is
negligible. Overall, these results show that site redundancy
(ı.e. sector topology) is the most crucial factor affecting the
behaviour of the system and we also conclude the system is
not sensitive to the number n of sites, when n > 3. This
implies the plots for the ternary site given in Fig. 5 to 7 can
be used as a good approximation for sectors with more sites.

Finally, we remark that channel redundancy within a site
is also a contributory factor to overall behaviour. When both
channels A and B are serviceable, i.e. the site is W, then this
redundancy guarantees safe service levels in the time frame
0− 48 hours, even in the extreme configuration in which only
one site is in configuration W. For examples of this, see Figure
6, in which the plot for WRR is effectively flat, and similarly
in Figure 7, in which the plots for WRN and WNN are also
effectively flat.

IX. TRANSIENT PROPERTIES FOR DECISION MAKING

We now show with reference to an example how predic-
tions of no service can inform operational decision making.
Consider the following scenario:

1) the current configuration of the system is RRR,
2) the system safety threshold (i.e. probability of no ser-

vice) is 4× 10−3, and
3) the mean repair time is 20 hours.

We can predict the behaviour of the system by checking the
transient property of reaching no service as explained in the
previous section; the plot, from the current configuration, is
indicated with the solid line in Figure 9. We remark that this
solid line denotes the expected behaviour if no assumptions are
changed in the system, that is, if we assume the current failure
and repair rates. Now consider the shaded area in Figure 9,
which indicates the probabilities above the safety threshold.
The prediction shows that the system is likely to become

72

 0

 1e-07

 2e-07

 3e-07

 4e-07

 5e-07

 6e-07

 7e-07

 8e-07

 5 10 15 20 25 30 35 40 45

P
ro

ba
bi

lit
y

Time (h)

WWW
WWR
WWN

Fig. 5: Comparison of prediction of no-service from WWW, WWR and WWN configurations.

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 5 10 15 20 25 30 35 40 45

P
ro

ba
bi

lit
y

Time (h)

WRR
RRR

Fig. 6: Comparison of prediction of no-service from WRR and RRR configurations.

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 5 10 15 20 25 30 35 40 45

P
ro

ba
bi

lit
y

Time (h)

RNN
WRN
RRN
WNN

Fig. 7: Comparison of prediction of no-service from RNN, WRN, RRN and WNN configurations.

73

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 5 10 15 20 25 30 35 40 45

P
ro

ba
bi

lit
y

Time (h)

1 site
2 sites
3 sites
4 sites

Fig. 8: Comparison of prediction of no-service for 1 to 4-ary sector topologies.

unsafe after 20 hours. We reach the conclusion that within
20 hours, we want to be on another trajectory, which is below
the system safety threshold. We can do this by altering one
or more rates so as to, in effect, transition the system into an
alternative, more favourable “current” configuration, i.e. one
that is less likely to lead to no service, within the given time
frame.

For example, we could ensure that maintenance on one of
the no service sites is prioritised, effectively pushing down
the mean repair time to 15 hours. In this case, the expected
behaviour of the system over the next 48 hours improves
because the system becomes unsafe only after 34 hours instead
of 20 hours. This is shown in Figure 9 with the dashed line.
Now consider the behaviour from a configuration with one
serviceable site, WRR; this is the configuration of the current
system (RRR) after the site repair is successfully completed.
The expected behaviour is indicated by the dotted line in
Figure 9. As can be seen, configuration WRR is much safer
because within the time frame, the safety threshold is never
reached.

Further, assume we choose to prioritise site maintenance and
the one site is repaired after 20 hours (a random value taken
by the exponential variable when the mean repair time is 15
hours). The transient property never reaches the system safety
threshold, as shown by the solid line in Figure 10. The dotted
line shows the original trajectory: the probability of no service
if the repair is never performed. The discontinuity indicates
exactly when the current state of the system is updated to
WRR (at time 20h) because the site has became serviceable.
Figure 11 gives a graphical illustration of our decision with
reference to the state space: we make a discrete transition to
another (more favourable) state.

We employ a similar approach to predict the behaviour of
the system after certain specific events occur, such as scheduled
maintenance or rare site failures (since they have such a
small influence over transient probabilities, within a short
time frame). In these cases, we are moving the trajectory up,
instead of down at the the discontinuity, i.e. we are increasing

Fig. 12: Tablet GUI for setting rates and topologies.

likelihood of no service.

X. IMPLEMENTATION AND GUI

Briefly, the system is a client-server architecture based on
a nodejs web server and a web interface. The models are
parameterised by rates and the topologies of each sector. To
make the models accessible to engineers in the company,
we developed a a bespoke GUI, which runs on several web
browsers and on a tablet, as illustrated in Figure 12. Default
rates and topologies are altered using sliders on the interface.

XI. THE MODELLING AND ANALYSIS FRAMEWORK

Our overall framework is depicted in Figure 13 and sum-
marised as follows. Model definition and analysis is indicated
by solid lines, feedback from the analysis is indicated by the
dashed lines.

74

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 5 10 15 20 25 30 35 40 45

P
ro

ba
bi

lit
y

Time (h)

20h
15h

WRR

Fig. 9: Transient property for service availability and a system safety threshold.

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 5 10 15 20 25 30 35 40 45

P
ro

ba
bi

lit
y

Time (h)

Fig. 10: Transient property for service availability before and after discrete transition to a new state, in context of 4 × 10−3 system safety
threshold.

Fig. 11: Changing current state after analysis of transient property for service availability.

75

We model an event-based (sub) system with the Markovian
property by a CTMC parameterised by event rates and system
topology. The model relates component level failures to service
availability. Event rates can be instantiated to investigate
system design (e.g. from safety and business cases), or to
investigate operational behaviour (e.g. from field data). A GUI
aids parameter setting. We validate the model by examining the
results of steady state temporal logic properties, and comparing
them with the expected (or required) results from the safety
and business cases, and with the observed, operational results
inferred from the field data (dashed lines). This is indicated on
the left hand side of Figure 13. An example result of steady
state property analysis is given in the bottom left hand side of
the Figure, in the bar chart format produced by our GUI and
PRISM.

On the right hand side of the Figure we indicate how the
model is used to inform decision making by providing quanti-
fied predictions, which are the result of transient temporal logic
properties. A typical example is the probability of reaching
no service within a fixed time frame. An example result of a
tranisent property analysis is given in bottom right hand side
of the Figure, in the graphical format produced by our GUI
and PRISM.

A decision is a system intervention (dashed line), for exam-
ple making a repair or scheduling maintenance, within another
time frame. Recall there are numerous factors to consider when
considering which new rates and configurations are plausible
(e.g. cost or physical assessability) and the consequences of
each, in terms of system behaviour.

In general, there are four ways in which this framework can
be used:

1) at design time, to investigate whether or not a particular
architecture meets service requirements,

2) after the system has been deployed, to investigate
whether or not a particular architecture actually meets
service requirements, when the model is parameterised
by operational data,

3) in real-time, on-line, to inform operational decision
making,

4) a combination of the second and third in which a
“catalogue” of predictions (generated off-line) for a
wide variety of degraded configurations is provided and
then consulted by the duty engineer as the system is
operating.

In our case study, the original interest by the company was
the second and the fourth options, as their primary concern
was the current operational system. However, they are now
showing considerable interest in the first option, for future
developments. We note they have little interest in the real-
time option; moreover, they have little interest in behaviours
much beyond the 48 hour time frame.

We have chosen CTMCs as our underlying semantics, but
there are other possibilities for discrete systems such as hybrid
or probabilistic timed automata, or models such as bigraphs
that incorporate spatial aspects. Regardless of the semantics,
our overall approach remains the same: to analyse a component
based system and consider quantify behaviour from selected
degraded configurations. While we have applied our approach

Field Data

Event Rates

Parameterised CTMC
Model

 counter abstraction
of system

Prediction

Transient properties

Validation

Steady state properties

PRISM
model checker GUI

Data analysis

Safety cases
Business cases

GUI

Intervention

Fig. 13: Modelling and analysis process.

here to communications link status, our approach is applicable
to any critical service with discrete events and failures, for
example systems in process control or signalling.

XII. REFLECTIONS ON THE CASE STUDY

As indicated in Section V, when we inspected the historical
data, we found evidence of dependencies between channel A
and B faults, and evidence of scheduled maintenance. Neither
of these issues had been raised with us previously, and so
while on the one hand it was disappointing to uncover possible
omissions in the model, on the other hand it demonstrated the
value of inspecting historical data. Concerning the first, the
cause of dependencies is as yet unclear, in part due to the
formats for recording faults and the use of free text. Possible
contributory factors are transmitters and receivers are usually
commissioned at the same time (and therefore failures occur
a similar times), and more likely, communications network
failures that affect both channels simultaneously. Determining
causes requires further investigation, however, modifications to
the model are relatively straightforward and would involve the
introduction of synchronised Tx and Rx failures. Concerning
the second, we could model scheduled maintenance with a new
event and suitable rate(s), or as deterministic, timed events
(which would require enhanced model semantics). Given the
data we have seen for scheduled maintenance is so far rela-
tively sparse, we have not yet incorporated maintenance into
the model, this will be further work.

76

Our system has huge variation in orders of magnitude
of rates of events, and in likelihoods of the properties we
analyse. We note though that this has not caused any numerical
problems (e.g. stiffness).

XIII. RELATED WORK

While there has been work in formal modelling for safety-
critical systems, especially in the context of formal system
development [5], and runtime models for managing self adap-
tation and the complexity of evolving software behaviour while
it is executing [6], there appears to be scant work on formal
modelling to inform (human) operational decision making
during the execution of safety-critical systems. One issue for
quantitative analysis of dependable systems development is
state space explosion and numerical simulation difficulties in
the presence of rare events [7]. We note we have not encoun-
tered state space explosion problems nor numerical difficulties,
because our modelling approach is a counter abstraction and
we do not analyse the system from the standard “initial state”,
but from degraded configurations that can occur as the system
is running (regardless of the probability of reaching them).

If we choose in future to model scheduled maintenance
by deterministic, timed events, as mentioned in Section XII,
then the result will be a model with both stochastic and
deterministic transitions. Such models have been considered
in [8], where a system with rejuvenation – a system that
is periodically stopped and then restored in a robust state
after maintenance – is modelled as a Markov regenerative
process and then Markov renewal theory is applied to carry
out quantitative analysis. This may provide a suitable semantic
framework for our further work.

We note an approach with some similarity is our work for
domestic network management [9] in which, as the system
is running, we generate a simulation trace in real time, con-
sisting of formal, bigraph models. These are analysed, in real
time, according to various state properties, and notification of
violations are fed back to the system and to human users.

XIV. CONCLUSIONS AND FUTURE WORK

We have proposed that predictive modelling and probabilis-
tic temporal logic reasoning can inform operational decision
making in complex systems with component failures and
monitoring, by providing temporal analysis of predicted risks.
To investigate this hypothesis we developed an event based, pa-
rameterised, counter abstraction model of a deployed industrial
communications link monitoring system; the model is param-
eterised by event rates and sector topologies. We used steady
state properties to validate instances of the model against
expected and historical behaviour, and transient properties to
quantify criticality of reduced redundancy configurations, from
different sets of degraded configurations. We indicated how
transient property results could inform decision making, giving
examples based on accepted system safety thresholds, in the
context of event rates inferred from actual (historical) field data
for the case study.

We have implemented the entire modelling and analysis
framework in the PRISM language and model checker. The

models and analysis techniques are parameterised; these are
modified easily through a GUI that facilitates interaction.

While our original motivation was behaviour in an opera-
tional system, the framework also incorporates analysis of how
an architecture is designed to meet service requirements, based
on event rates derived from safety and business cases.

Further work includes new representations for scheduled
maintenance and dependent events; analysis of further sectors
and frequencies in the case study, including examination of
more field data and incorporation of spatial aspects.

ACKNOWLEDGMENT

We thank our industrial collaborators for working with us
on this interesting problem. This work was partially funded
by the EPSRC grant Verifying Interoperability Requirements
in Pervasive Systems EP/F033206/1 and the University of
Glasgow EPSRC funded Impact Acceleration Account.

REFERENCES

[1] M. Kwiatkowska, G. Norman, and D. Parker, “Stochastic model check-
ing,” in Formal Methods for the Design of Computer, Communication and
Software Systems: Performance Evaluation (SFM’07), ser. LNCS (Tuto-
rial Volume), M. Bernardo and J. Hillston, Eds., vol. 4486. Springer,
2007, pp. 220–270.

[2] C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen, “Model-
Checking Algorithms for Continuous-Time Markov Chains,” IEEE Trans.
Software Eng., vol. 29, no. 6, pp. 524–541, 2003.

[3] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification of
probabilistic real-time systems,” in Proc. 23rd International Conference
on Computer Aided Verification (CAV’11), ser. LNCS, G. Gopalakrishnan
and S. Qadeer, Eds., vol. 6806. Springer, 2011, pp. 585–591.

[4] R. Alur and T. A. Henzinger, “Reactive Modules,” Formal Methods in
System Design, vol. 15, no. 1, pp. 7–48, 1999.

[5] A. Galloway, F. Iwu, J. A. McDermid, and I. Toyn, “On the formal
development of safety-critical software,” in VSTTE, 2005, pp. 362–373.

[6] U. Aßmann, N. Bencomo, B. H. C. Cheng, and R. B. France,
“Models@run.time (Dagstuhl Seminar 11481),” Dagstuhl Reports,
vol. 1, no. 11, pp. 91–123, 2012. [Online]. Available: http:
//drops.dagstuhl.de/opus/volltexte/2012/3379

[7] D. Reijsbergen, P.-T. de Boer, W. R. W. Scheinhardt, and B. R. Haverkort,
“Rare event simulation for highly dependable systems with fast repairs,”
Perform. Eval., vol. 69, no. 7-8, pp. 336–355, 2012.

[8] S. Garg, A. Puliafito, M. Telek, and K. Trivedi, “Analysis of software
rejuvenation using markov regenerative stochastic petri net,” in Software
Reliability Engineering, 1995. Proceedings., Sixth International Sympo-
sium on, 1995, pp. 180–187.

[9] M. Calder, A. Koliousis, M. Sevegnani, and J. Sventek, “Real-time
verification of wireless home networks using bigraphs with sharing,”
Science of Computer Programming, vol. 80, Part B, pp. 288–310,
2014. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0167642313001974

77

