Accepted Manuscript

Real-time verification of wireless home networks using bigraphs

with sharing

Muffy Calder, Alexandros Koliousis, Michele Sevegnani,

Joseph Sventek

PII:
DOI:
Reference:

To appear in:

Received date:

Revised date:

Accepted date:

S0167-6423(13)00197-4
10.1016/j.scic0.2013.08.004
SCICO 1588

Science of Computer Programming

3 February 2012
5 August 2013
5 August 2013

ISSN 0167-6423

cience of Computer

Please cite this article in press as: M. Calder et al., Real-time verification of wireless home
networks using bigraphs with sharing, Science of Computer Programming (2013),
http://dx.doi.org/10.1016/j.scic0.2013.08.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published
in its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.scico.2013.08.004
http://dx.doi.org/10.1016/j.scico.2013.08.004

Real-time verification of wireless home networks using
bigraphs with sharing

Muffy Calder ', Alexandros Koliousis?, Michele Sevegnani®, Joseph Sventek®

@School of Computing Science, University of Glasgow, UK
bDept of Computing, Imperial College London, UK

Abstract

Home wireless networks are difficult to manage and comprehend because
of evolving locality, co-locality, connectivity and interaction. We define formal
models of home wireless network infrastructure and policies and investigate
how they can be used in a network management system designed to provide
user-oriented support. We model spatial and temporal behaviour of network
interactions and user-initiated network policies and define an online framework
for generation of models from network and user-initiated events. The models
are expressed in an extension to Milner’s bigraphical reactive systems. Analysis
of the models is carried out in real-time by a bespoke bigraph reasoning system
based on checking predicates, which is encoded as bigraph matching. Real-time
model generation and analysis is implemented on the experimental Homework
system router and trialled with synthetic and actual network data.

Keywords: network management, verification, bigraphical reaction systems,
bigraphs with sharing, runtime model generation, bigraph matching

1. Introduction

Wireless home networking is notoriously difficult to install and manage, es-
pecially for non-expert users. The Homework network management system [1]
is an experimental system designed to provide user-oriented support in home
wireless local area network (WLAN) environments. The Homework system is
much more than a user interface for existing network infrastructure. It provides
new network architectures that take into account the sociotechnical nature of
home networking. For example, devices are brought into the home by fam-
ily and friends, and users define policies for explicit management and access.
It also encompasses new approaches to infrastructure measurement and mon-
itoring and user focussed computational models for modelling and analysis in
support of both design and user experience. In particular, the Homework sys-
tem is a platform from which we can investigate how formal models can be used

L Corresponding author. e-mail: Muffy.Calder@glasgow.ac.uk.

Preprint submitted to Elsevier August 19, 2013

iteratively and interactively to contribute to the question “is the proposed net-
work infrastructure fit for purpose”, and more generally, if and how seamfully
exposing models of infrastructure and user behaviour to those being modelled
is useful and can be carried out in real-time, without interruption or delay to
the network management system.

The aim of this paper is to define suitable formal models of the infrastructure
and policies and to investigate how they can be used in an extension to the basic
Homework network management system.

1.1. The standard Homework system

The Homework system architecture consists of three complementary planes:
data, signalling, and information. We focus on the last, which is a monitoring
application that makes available information about network set-up, management
and measurement. It uses a stream database to record (raw and derived) events.
Events include network behaviours such as detecting that a new machine has
joined the network, resulting in new links and granting a DHCP lease, and user-
initiated behaviours such a enforcing or dropping a policy. Policies are defined
by users through a novel user interface that allows drag and drop, comic-strip
style interaction (see [2]). Typically, policies forbid or allow access to network
resources; for example, a policy might block UDP and TCP traffic from a given
website, or restrict internet access for certain users during given time periods.

1.2. Modelling wireless network management

Locality, co-location, interaction, connectivity, and user-perceived events are
key aspects of user-oriented home networking. We require models that expose
these aspects, and their temporal evolution, to both end users and system de-
velopers, and permit computation and analysis of properties in real-time. While
various formalisms might fit these criteria to a greater or lesser extent, we pro-
pose that bigraphs with sharing, an extension of Milner’s universal process al-
gebra that encapsulates both dynamic and spatial behaviour [3], fit all these
criteria particularly well. Specifically, bigraphical reactive systems (BRS) are
well suited to the problem because a) the (human-oriented) graphical form pro-
vides an intuitive representation of locality, co-locality, and connectivity, b)
there is an explict representation of user-perceived events by rewrite rules and
c) there is a (machine readable) algebraic form for computation and verification
of properties.

In our models, each BRS consists of a set of bigraphs that describes spatial
and communication relationships between machines and entities in the network,
and a set of bigraphical reaction rules that define how the bigraphs can evolve
over time. We have extended the basic formalism of BRS to bigraphical re-
active systems with sharing, to permit effective and intuitive representation of
spatial locations that can overlap?. This extension is particularly relevant to

2Henceforth we refer to this extension simply as BRS.

feedback

Network

Raw network
traffic Stream events A(Bigraph Bigraph
database J 'L encoder analysis
updated
bigraph
Policy enforce/drop
Logfiles
T feedback

Figure 1: Real-time model generation, analysis and feedback in the Homework
system.

our requirements, since multiple, overlapping signals are fundamental to wireless
networks.

1.3. Real-time model generation, analysis and feedback in Homework

In our extension to the Homework system, models are generated from events
recorded in the information plane and analysed without interruption or delay
to the network management system.

The system is depicted in Figure 1. As we have indicated above, the Stream
database is part of the standard Homework management system; all network
and policy events are recorded as streams of tuples in the database. The Bi-
graph encoder component is new, and it encodes events as bigraphical reaction
rules. The Bigraph analysis component is also new, and it has two roles. First,
it generates the bigraphical representation of the current configuration of the
WLAN, according to the sequences of reaction rules received from the Bigraph
encoder. Second, it analyses the current configuration by checking properties,
for example, whether or not a configuration violates a user-invoked access con-
trol policy. Properties are expressed as predicates that are encoded as instances
of bigraph matching. The results are logged and can be fed back to the system,
or to the user, using the graphical notation of bigraphs as explanation. This
work flow is carried out in real-time, hence we refer to our approach as real-time
verification.

While our long-term motivation is to aid users in their understanding of the
state of their system (e.g. when and why it is “broken”), and to give feedback to
developers about user experiences, in this paper we concentrate on the technical
details of the representations of networks and policies and the analysis system
itself.

1.4. Owverview of paper

The main focus of this paper is to describe the bigraphical representations
of networks topologies, the events that modify topologies and the access control
policies, and how to represent and check predicates on bigraphs within the
runtime system.

The contributions of the paper are the following:

e representations of network topologies as bigraphs and network events (such
as a machine leaving and joining a network) as bigraphical reaction rules,

e representations of access control policies that forbid and allow behaviours
as bigraphical reaction rules that constrain network evolutions,

e new reasoning techniques for predicates over bigraphs, encoded as in-
stances of bigraph matching and implemented using a SAT solver,

e a solution for the problem of how to check for the non-existence of patterns
in bigraphical reaction rules, and how to reason about topologies with
arbitrary numbers of machines and communication channels, by tagging
and untagging entities,

e on-line generation of bigraphical reactive system models from the current
network topology and activated policies, as recorded in the Homework
information plane, and

e empirical evidence demonstrating that generation and analysis of bigraph
models can be carried out in real-time within the Homework system.

The paper is organised as follows. Section 2 contains an informal introduc-
tion to the bigraph notation, bigraphical reactive systems and bigraph matching.
In Section 3 we describe how network topologies are represented as bigraphical
systems and how network events, such as moving in and out of the router’s
range, and granting and revoking of leases, are encoded as reaction rules; in
Section 4 we show how predicates are encoded as bigraphs, and thus can be
checked by bigraph matching. In Section 5 the rules and predicates defined
in Section 3 are used to generate sequences of models in real-time. Section 6
describes how policies that forbid and allow behaviour are represented as bi-
graphical reaction rules and how they constrain network evolutions. In Section
7 we describe how policy events such as enforce a policy, drop a policy or check
a policy, are encoded as reaction rules, and we discuss the interplay between the
(representations of) network and policy events. In Section 8 we show in detail
how a bigraphical model of a WLAN is updated according to the stream of
network and policy events generated in real-time. Section 9 discusses the role of
state predicates in the analysis of network configurations and compliance with
policies; in Section 10, we give an overview of the implementation. A discussion
of the overall approach and the role of the bigraph abstraction is in Section 11
and related work is reviewed in Section 12; we conclude in Section 13.

Machine M1
signal

Router R
signal

Figure 2: Simple WLAN with one machine and a router.

2. Bigraphs with sharing

In this section we give an informal overview of BRS, with some examples.
The overview contains sufficient detail for this paper; a concise semantics of bi-
graphs with sharing is defined in [4]. Details of standard BRS (without sharing)
are in [3].

A bigraph has a graphical and an algebraic form. In this paper, we use both
forms, but primarily the graphical form. In the graphical form, an entity (real
or virtual) is encoded by a node (oval or circle). Spatial placement of nodes is
described by node nesting, which we have extended to directed acylic graphs.
Thus, nodes can be placed in the intersection of other nodes. Each node is
assigned a control. Interaction between nodes is represented by an edge called a
link that connects ports. Each node can have zero, one or many ports, indicated
by bullets. They can be thought of as sockets into which links can be plugged. A
dashed rectangle denotes a region of adjacent parts of the system. A grey square
indicates a site, which encodes part of the model that has been abstracted away.
A link may be only partially specified, in which case it connects ports with a
name. Name closure /z A is used to disallow connections on name z in bigraph
A.

As an example, consider the WLAN depicted in Figure 2: there is one ma-
chine and a router in the network, each associated with a signal.

This network is represented as a bigraph in Figure 3. There are three
controls M1, S, and R; the two signals (of the machine and the router) are
represented by the nodes of control S, the router is indicated by the node of
control R and the machine is represented by the node of control M1. There are
three links: a link between machine M1 and its signal, a link between router
R and its signal, and a link between machine M1 and router R. There are no
names in this bigraph.

The capabilities of a bigraph to interact with the external environment are
given in its interface. For example, we write A : 1 — (2,{z,y}) to indicate

Figure 3: Bigraph representation of simple WLAN with one machine and a
router.

that A has one site, two regions and the names = and y. Controls and links
in a bigraph are classified by means of sorts (ranged over by a, b, ...) and a
formation rule defines sorting properties a bigraph has to satisfy. For example,
in a WLAN representation, a typical formation rule would be: an R node is
always contained in an S node (i.e. a router has a signal). A sort may be a
disjunction, which we denote as follows: ab means that a node can have sort a or
b. The interface of a sorted bigraph is expressed as follows: A : a — (bb, {x,y}).
The notation indicates that the site has sort a and the two regions have sort b.
The structure of a bigraph can also be specified in algebraic form by com-
bining elementary bigraphs and bigraphical operations. A summary is given
in Table 1. Except for sharing, the notation is fairly straightforward. An ex-
planation of the notation for sharing is the following. Sharing is a specialised
version of nesting: share F' by ¢ in G denotes the bigraph in which the regions of
bigraph F' can be placed inside the sites of bigraph G. The association between
F’s regions and G’s sites is specified by placing ¢, which is a bigraph without
nodes. This allows the expression of shared nodes, i.e. nodes situated in the
intersection of other nodes. Numbering of regions and sites proceeds from left
to right starting from zero. Therefore, placings can be expressed by a vector of
sets indicating unambiguously how regions are shared by sites. For example,

share F'by ¢ in G

where F = A || B, G = C | D and placing ¢ = [{0},{0,1}], is depicted in
Fig. 4. This Figure also indicates the difference between the more familiar Venn
diagram graphical notation that we use, and the usual stratified notation. Here,
¢ has length 2 and indicates that the first F' region (the region containing the
A-node) is placed in the first G site (the site in the C-node) while the second
F region (the region containing the B-node) is shared between the first and the
second of G’s site (the sites in the C and D-nodes, respectively). Regarding
elementary bigraphs, 1 denotes an empty region and 0 expresses a site that is
not within a region; the latter only exists because of sharing. Identities are

D |

5 B

def

Figure 4: Two representations of bigraphical term share F' by ¢ in G, where F' =
A || Band G = C | D. Graphical notation using Venn diagrams (left) and
stratified notation highlighting placing ¢ = [{0}, {0,1}] (right).

indicated with id,, x where n € N and X is the elements of a set of names. We
sometimes write id,, when X = () and id for id;.

We note that while it is possible to encode sharing in standard BRS, these
encodings suffer several disadvanges (see [4] for details); moreover, an advantage
of explicit sharing is that it overcomes the asymmetric treatment of roots and
sites in standard bigraphs.

Evolution in a BRS is defined by rewrite rules, called bigraph reaction rules,
which induce a transition relation on bigraphs. Reaction rules are written with
an arrow thus: —», whereas transitions between bigraphs are written with an
arrow thus: —>. We also use —>* to indicate zero or more transitions. As
an example, consider the evolution of a WLAN consisting of two machines and
a router, to one machine and a router, as depicted in Figure 5a. On the left-
hand side, the two machines are part of the network. They can both sense the
router, but not each other. On the right-hand side, one machine has left the
network. This evolution can be represented formally with two bigraphs, W, and
W1, as shown in Figure 5b. Note that on the left-hand side, each signal is linked
to its device and the three devices are linked together to indicate they all are
part of the WLAN. On the right-hand side, M2 and its signal disappear. The
link representing the WLAN now only connects M1 and R. Observe that both
bigraphs W, and W) respect the formation rule described above (i.e. an R node
is always contained in an S node).

Now consider how the transformation of Wy into Wi is specified by the
reaction rule given in Figure 6. In general, the left-hand side of a reaction
rule identifies the parts of a bigraph that are to be modified (this is also called
bigraph matching), and the right-hand side describes how to modify them. In
this example, bigraph R identifies M2 and its signal as the sub-parts of Wy that
are to be modified. The site indicates that other nodes can be present inside
the S node. Similarly, name r represents the fact that M2 can be linked to other
nodes. When the reaction rule is applied to Wy, the site is associated to R and
r to M1. The two regions surrounding node M2, together with the site inside
S, are necessary to express that the site and M2 are in different parts of the

ACCEPTED MANUSCRIPT

Description Algebraic Graphical
Parallel product Az, y) || By, 2)
Merge product Alz,y) | B(y, =)
Nesting A(z,y).B(z, z)

. share A || Bby ¢inC | D
Sharing
¢ = [{0}.{0,1}]
Closure and new L A(x,2) ||y
Empty region 1
Site not within a region 0 -
Identity idy -

Table 1: Elementary bigraphs and operations on bigraphs.

R
signal g

Machine M1

= a

[‘\\\Machine M2

Router R//

AN S

\\\signal

- signal

M1

Machine M1

\\\ Router R/ ///

(a) A machine leaves the WLAN

(b) A bigraphical representation: Wy —> Wy

Figure 5: Evolution of a WLAN: network diagram (a) and bigraphical repre-

sentation (b).

d

Figure 6: Reaction rule R —» R’: machine M2 leaves the WLAN.

system. This is shown in W{, where M2 and R are in different intersections of
S nodes. Right-hand side R’ specifies that the sub-parts of Wy matched by R
are substituted by two regions, a site and a closed link on name r, i.e. M2 and
its signal are removed. When the occurrence of R in Wy is replaced with R, we
indeed obtain the updated WLAN encoded by bigraph W;. Note that this rule
highlights a difficulty of simple Venn diagrams for representing complex spatial
relationships. For example, on the right hand side the grey site is not within
the parent region of S (i.e. the upper right hand region) because this would
impose a relationship between the grey site and this region. While there was
a relationship between this site and signal S on the left hand side of the rule,
when S is no longer present, there is no relationship.

Bigraph matching and rewriting

Like in any rule-based system, a given reaction rule is applicable to a given bi-
graph (the target) when the the left-hand side of the reaction rule (the pattern)
matches the target. Thus bigraph matching is fundamental to the transition
relation —>. Bigraph matching was first defined in [5] by a set of inference
rules characterising the occurrence of an abstract pattern in an abstract tar-
get. However, these rules do not lead to an efficient implementation, nor can
they be extended in an efficient way to bigraphs with sharing. In particular,
there is only one way to extend the rules to deal with sharing and it increases
significantly the amount of unnecessary blind search into the inference process.
Whereas the matching problem without sharing is (in general) an instance of
the subforest isomorphism problem, in most cases (for example, when a reaction
rule is applied) it is an instance of the subtree isomorphism problem, which can
be efficiently solved in polynomial time. However, the matching problem for
bigraphs with sharing is a special case of the subgraph isomorphism problem,
which is NP-complete. We have defined and implemented an efficient algorithm
for matching bigraphs with sharing based on a SAT-encoding, which has proven
effective for solving several other NP-complete problems (e.g. graph colouring
problem, bounded model checking). Since (standard) bigraphs are a special
case of bigraphs with sharing, our algorithm works for standard bigraphs as
well. Full details of the algorithm are given in [4]. Details of experiments with

10

synthetic and actual network data are given in Section 10, where we note the
slowest update (including checking several predicates) is less than 0.1s.

A rewriting paradigm we encounter several times when modelling home wire-
less network management is the need to apply a rewrite rule(s) a fixed number
of times to certain terms in the representation. For example, we may require to
apply a reaction rule to (the represesentation of) every machine in the network.
But, we are dealing with a dynamic network topology, and we do not have a
fixed number of machines. Alternatively, we may need to distinguish between
machines that are connected to the network and those that are not, so that we
can apply a treatment to only one type. Our solution is to “tag” terms that
have been treated (or conversely, have still to be treated). This means adding
additional reaction rules to apply and remove the markings, a process we refer
to as “tagging” and “untagging”. The first occurrence of this paradigm is in
Section 3.4 where we consider granting leases to machines in the network.

3. Bigraphical models of network topology and network events

In this section we outline how a given network topology is represented by a
bigraph, and then how network events, such as moving in/out of the router’s
range and granting/revoking leases, are represented by reaction rules.

3.1. Network topology

We use a node to represent each entity present in the network, which can
be physical e.g. router, wireless signal, machines, or virtual e.g. configuration
properties, the Internet, communication channels. Links connect related enti-
ties. For instance, a machine is linked to its signal and to its properties. The
sorting discipline ensures that only bigraphs with a meaningful structure are
constructed. For example, it enforces that a node representing a machine lies
within a node representing its signal.

The controls and sorts used to represent the network are listed in Table 2.
An explanation is as follows. Sort p is assigned to controls indicating MAC
addresses, such as control 01:23:45:67:89:ab. We use a special control MAC, to
indicate a generic MAC address, controls Hostname and IP, to indicate a generic
host-name and IP address, respectively. The formation rule is given in Table 3.
Informally, it states that most of the entities are atomic (e.g. machines, input,
output, etc.) and each machine is placed inside a signal and is connected to
it. Analogously, the router lies within its signal and is linked to it. Machines
are also connected to a property box that contains various configuration details.
Note that whereas in the introductory material in Section 2 we had two controls
for machines, i.e. M1 and M2 in Figure 4, here we have only one control for
machines, M. Individual machines are distinguished by a link to their MAC
address. Machines that are part of the WLAN share a link with the w-node
inside the router. Finally, property boxes (and the Internet) are linked to each
other via a pair of communication channels. These are represented by an i-node
linked to an o-node.

11

Control Meaning Sort Graphical notation
R Router r Circle

S Wireless signal s Oval

M Wi-Fi enabled machine m Circle

Internet Outside world J Box

Properties, . .. Configuration settings b Box

W WLAN w Circle

I, ... Input i Small rectangle
o, ... Output o Small arrowhead
MAC, ... MAC address p Rounded box
Hostname, ... Hostname p Rounded box

P, ... IP address p Rounded box

Table 2: Controls and sorts for WLAN.

all nm-nodes are atomic

all children of an s-node have sort rm

an r-node has a w-child

all p-nodes are children of a b-node

all io-nodes are children of a l;j—node

all s-nodes are always linked to a rm-child
a b-node is always linked to an m-node

a w-node may only be linked to m-nodes
an i-node may only be linked to an o-node
an o-node may only be linked to an i-node

Table 3: Formation rule for WLAN.

12

(@]

O
Internet

Figure 7: Initial configuration Sj.

The initial configuration of a WLAN is given by bigraph Sy in Figure 7. It
models the scenario in which only the router and the external world are present.
The interface is Sy : € — (s, 0), € indicates no sorted site, i.e. the interface of Sy
is a constant. The algebraic form is Sy = /z fy (S(x).R(2).W(y).1) | Internet.1

Now we turn our attention to the reaction rules that represent the network
events, which include moving in and out of the router’s range, and the granting
and revoking of DHCP leases. We discuss each event in turn, using the graphical
form. A summary of all the reaction rules is given in algebraic form in Table 4,
and the interfaces are in Table 5, respectively.

8.2. Mowing into the signal range of the router

The first reaction rule, given in Figure 8, models the appearance of a new
machine in the signal range of the router. On the left-hand side, in the expression
denoted by Rj, the router is in the range of its signal and possibly other signals.
This is expressed by the region surrounding the r-node. On the right-hand side,
in the expression denoted by R} (n.b. in general, the text accompanying a rule
describes the right-hand side), a new machine is in the range of the router’s
signal. The router senses the new machine’s signal and possibly other signals.
This is expressed by nodes R and M being in the intersection of the two s-nodes
and the region surrounding R. A property box (i.e. a b-node) is also linked to
M. Note that the only configuration setting specified at this stage is the MAC
address of the new machine M. This is witnessed by the p-node placed inside
Properties.

Observe that this reaction rule forces all m-nodes to be shared by only two
s-nodes. This means our model does not capture any interference between the
signals of the machines in the system: our model is based solely on information
provided by the router. In other words, we only model what the router senses.

8.8. Mowing out of the signal range of the router

Another reaction rule, given in Figure 9, models the evolution of the system
when a machine is no longer in the router’s signal range. This happens because
either a machine switches off its network interface or it moves into a location
not reachable by the router’s signal. On the left-hand side, in expression Ra,
an m-node is linked to a b-node and placed within an s-node. These correspond

13

Properties

range.

Lk Properties

§ L

Figure 9: Reaction rule Ry—» R): a machine is no longer in the router’s signal
range.

to a machine, its configuration properties and its signal range, respectively.
The extra region enclosing M and the site are necessary to allow the machine
modelled in Ry to be in the range of the router and possibly other machines. On
the right-hand side, in expression R}, all the nodes have disappeared and only
the bigraphical interface is preserved (see Table 5). This models the absence of
the machine from the system. Note that on the left-hand side, there could be
another entity in the site (e.g. the router), which would persist even after we
remove the signal S.

3.4. Granting leases

The next three reaction rules describe how the system changes when a ma-
chine joins the WLAN and a DHCP lease is granted. This requires distinguishing
between the new machine and those already in the network. We do so by tag-
ging the latter. The first rule, R3, —» Rj,, implements the tagging, the second
rule, R3, —» R}, , establishes the network aspects of the untagged machine (i.e.
TP address etc.), and the third rule, R3. —» R}, establishes the communication
channels between the new machine and the tagged machines and then it revokes
the tags.

14

Figure 10: Reaction rule Rs, —» R5,. A new machine joins the WLAN: all
stations already in the WLAN are tagged.

A
Properties
V e
Internet - Tntemet

Figure 11: Reaction rule Rs, —» RY},. A new machine joins the WLAN: Host-

name and IP address are set and communication channels with the Internet are
established.

Reaction R, —» Rj,, in Figure 10, is used to tag all the machines in the
system that are already part of the WLAN. On the left-hand side we have an m-
node linked to the w-node. The actual tagging is implemented in the right-hand
side, where a node of control Properties’ takes the place of the corresponding
node of control Properties in Rg,.

Reaction rule Rs, —» R}, models the DHCP server granting a lease to the
machine, as depicted in Figure 11. On the left-hand side, a machine is not part
of the network and the only configuration property already specified is the MAC
address. This is shown by the absence of a link between the m-node and the
w-node and the absence of a site inside the node of control Properties. On the
right-hand side, R, the machine joins the WLAN, IP address and hostname are
set, and two communication channels with the external world are established.
Note that the channels are directional.

In reaction rule Rs. —» R, a pair of communication channels is established
between the new machine and the machines already part of the WLAN, see
Figure 12. On the left-hand side, Rs., a node of control Properties and a node of
control Properties’ specify the configurations of the new machine and a machine
already in the WLAN, respectively. On the right-hand side, Rj., a pair of

15

MAC - MAC -
= A

i Properties i i Properties
A==

1 . M

i Properties' ; i Properties

Figure 12: Reaction rule R3. —» R%,.. A new machine joins the WLAN: Com-
munication channels are created between the station and all the machines al-
ready present in the WLAN.

communication channels is established and a node of control Properties replaces
the corresponding node of control Properties’ in Rj..

We note that initially, all machines that have already joined the WLAN are
tagged, using reaction Rs, —» RY%,. This means the reaction is applied n times,
where n is the number of machines in the network. The resulting interleaving
of applications is confluent, therefore, only one sequence need be considered.
Reaction Rs, —» RY, is applied once. Finally, reaction Rs. —» R5, is applied
n times. Again, due to confluence, only one sequence need be considered.

3.5. Revoking leases

Now consider a machine leaves the WLAN and the lease is revoked, which
is represented by two rules. Note, this does not automatically imply that the
machine is also leaving the router’s signal range.

Reaction rule Ry, —» R}, is given in Figure 13. Ry, specifies a property
box for the machine and a pair of channels. The site also allows the reaction
to be applied when other nodes are inside the node of control Properties. On
the right-hand side the interface is preserved and only the two communication
channels are removed.

Reaction rule Ry, —» R/, revokes the machine’s DHCP lease. This is en-
coded by the removal of nodes of control Hostname and IP and the breaking of
the link between M and W, as depicted in Figure 14.

Note that reaction Ry, —» R}, is applied first, until no other channels can be
removed. Again, the order in which the channels are removed is not important
and only one sequence of reactions need be considered. Second, reaction rule
Ry, —» R}, is applied once.

16

Reaction rule

Algebraic form

Ry —» Rll

R /o (share R(z).W(y).1 || id
by ¢
inS(2).(id | id) | id...)
Ry < o)z Jp (share R(z)W(y).1 || &y M(y,z,p).1 | id

by ¢’
in (S(z).(id | id) | S(z) | Properties(p).MAC.1)

H idlﬂﬂ%%?

¢ = [{1,2},{0}] ¢' = [{1,2,3},{1,2},{0}]

Ry —p» RIQ

Ry ™ i p (shave fy M(y,@,p).1 | id

by ¢

in (S(2).(id | id) | Properties(p).MAC.1) || id1 ..,
Ry=1]1]0

R3a —» Réa

Rsa ™ Jp (M(y, 2,p).L || W(y).L || Properties(p))
def .
e o (M(y, 2. p).1 | W(y).1 | Properties’ (1))

Rs3, —» Rgb

Ry o (fuM(y,,p).1 || W(y).1 | P | Internet)
Ry, = Jo Jn i (M(y,,p).1 | W(y).1 || P" || 1)
P = Properties(p).MAC.1
P’ = Properties(p).
(MAC.1 | Hostname.1 | IP.1 | I(h).1]| O(]).1)
I = Internet.(id | 1(1).1 | O(h).1)

Rs. —» Rgc

Rs. = Properties(x).(id | MAC.1) || Properties’ ()
L = Ji /n (Properties(x).C || Properties(y).C")
C =id | MAC.1 | 1(1).1 | O(h).1
C"=id | 1(h).1]0(1).1

Ryq —» Rﬁm

Ry, & /i /h (Properties(y).C || (I(k).1] O(1).1))
e =f Properties(y).(id | MAC.1) || 1

Ry, —» R:Lb

Ry = fp (M(y,2,p).1 | W(y).1 || P)
def i
w = /p (JlyM(y,z,p).1| W(y).1 || Properties(p).MAC.1)
P = Properties(p).(MAC.1 | Hostname.1 | IP.1)

Table 4: Reaction rules for network events.

17

>

o

Properties Properties

Figure 13: Reaction rule Ry, —» R),. A machine leaves the WLAN: Pairs of
communication channels are removed.

() (@ (Costrame) _[@®

M —’\ M

A\ Properties X 7__!?(99_(_3_[t_i_<_e_§__§

W w

Figure 14: Reaction rule Ry, —» R),. A machine leaves the WLAN: DHCP
leases are revoked.

Interfaces

Rl cmr— <S/l\)r7 {y}>
Ry : - (sbr, {y})
Ry : mr — (sbm, ()
RYy : mr — (sbm, 0)

Rs, : ;;B — (mwb, {z,y})
Rap @ i0 — (mwbj, {x,y})
Ra. : [;'\05'\0 — <bb7 {$7y}>
Ryq : pio — (bio, {z,y})
Ryp, Rl - € — (mwb, {z, y})

Table 5: Rule interfaces for network events.

18

([==
| R 9P =

Properties : i Internet

Figure 15: Bigraph encoding predicate “Laptop has Internet connection”.

4. Predicates

Predicates for bigraphs can be expressed in the logic BiLog [6]. However, if
we restrict to an intensional fragment of BiLog, which omits the Boolean opera-
tors and product and composition adjuncts, then any predicate can be encoded
(syntactically) as a bigraph (see [4] for formal details), which can be then be
checked by reduction to bigraph matching. We have found this restriction to be
suitable for the predicates we require in this application. For example predicates
typically express spatial, static properties of the systems such as “TCP traffic is
blocked for machine with IP address 192.168.0.3”,“Machine 01:23:45:67:89:ab is
in the range of the router’s signal”, and “Laptop has Internet connection”. The
latter property is represented by the bigraph in Figure 15.

Definition: Let « be a predicate and B,, its bigraph encoding. Let S be
a bigraph. We define S | « iff B, is a match in S. S }£ « denotes B, is not a
match in S.

We often require to reason about whether or not a machine is in the system
or part of the WLAN, especially in the context of enforcing or revoking a policy.
We therefore define the following two predicates (parameterised by a machine
address):

e pmac is true iff the machine MAC is present in the system,
e Ymac is true iff the machine MAC is part of the WLAN.
The corresponding algebraic forms are:
By = Properties(p).(id | MAC.1)
Byyue = Jp (M(y, 2,p).1 | W(y).1 || Properties(p).(id | MAC.1))

These predicates are encoded by bigraphs B
Figure 16.

ouac a0d By, depicted in
5. Generating models of network events in real-time

The model of the current configuration is generated and stored in the Bigraph
analysis component. Note, we generate and store the algebraic form, whereas
we use the graphical form for feedback.

19

Figure 16: Bigraphs By, (left) and By, (right).

The reaction rules and predicates defined in the previous section are used to
generate sequences of models, e.g. Sy, S1, ..., from network events. For a given
model S, in a sequence, we generate a successor model S, 11 when S,, —>* .5, 11.
Strictly, any model .S such that S,, —>* S is a successor model, however, often
we store only the model obtained after several rewriting steps, for example when
tagging and untagging is required. This means that the sequence of stored
models corresponds exactly to the sequence of events. Generation is carried out
in real-time, without interruption or delay to the network management system.

An example illustrates the generation process.

Assume the Stream database generates a (derived) network event specifying
that machine A is present in the system and a DHCP lease has been granted.
Let the current model be denoted by S,,, and assume the generated event has
been sent to the Bigraph encoder component. The sequence of reaction rules to
be applied to S, is determined by whether or not machine A is already present
in the system and if it has joined the WLAN. Therefore, the Bigraph analysis
component is queried to check if S,, = pa and S, = ¥a. The results are sent
back to the Bigraph encoder component. We then have three cases of model
generation, summarised as follows:

e If S, &= ¢a and S,, = 9¥a, then the system remains unchanged and no
reaction rule is applied.

e If S, = ¢a but S, }~ 9a, then machine A has to join the WLAN. The
generated sequence of reactions is: Rs, —» R5,, Rg, —» RY,, R3. —» RS,
which is sent to the Bigraph analysis component to update the model:
Sp =3, —1>g, —>3, Sny1. For brevity, we denote this sequence of ap-

! ~ 3a 3b
plications as S, —>3 Snt1-

o If S, [~ va, then machine A has to appear in the range of the router
and then to join the WLAN. The generated sequence is: R; —» Rf,
R3, —» RS, R3, —» RY,, R3. —» Rj., which is sent to the Bigraph anal-
ysis component to update the model: S, —>, >3 Snt1-

Encodings for the four network events, e.g. move in and out of range, grant and
revoke leases, are summarised in Table 6.

20

Event Encoding Notation

Move in range —>,

* * *
Grant lease —Dia —>,, 5. —Di
Revoke lease — 0 —>
Move out range —>,

Table 6: Encodings for network events.

Control Meaning Sort Graphical notation
Port, ... Port number p Bold rounded box
WWW;, ... External host p Bold rounded box
P, ... Protocol p Bold rounded box
BLOCKED All traffic forbidden p Bold rounded box

Table 7: New controls and sorts for modelling policies.

6. Bigraphical models of policies

Now we turn our attention to the representation of access control policies by
reaction rules. Access control policies constrain behaviours, for example they
can constrain traffic between machines, or types of traffic. New entities are
therefore required. For example, new controls are needed to express the ban of
a given port or protocol. The additional controls are listed in Table 7, which we
call constraints. The formation rule given in Table 3 is also modified by allowing
io-nodes to be linked to p-nodes.

Policies are categorised as forbid policies or allow policies. The latter are
relatively simple to represent because matching can detect the existence of a
constraint that is required to be removed. However, the representation of forbid
policies is a little more complex.

The key idea of representing a forbid policy is to link chains of p-nodes to
communication channels. A chain of constraints represents a conjunction of
constraints, and several chains linked to a channel represent a disjunction of
constraints. Some policies can be represented by a single reaction rule, whereas
others require several when a form of tagging is needed in the representation
(because we consider arbitrary network topologies). We illustrate the possible
forms of representation with three example forbid policies. A summary of the
reaction rules (algebraic form) for these policies is given in Table 8.

Policy 1: Consider a policy that forbids the machine named Laptop from
receiving incoming traffic from remote host WWW, defined by the reaction rule
in Figure 17. This can match only Laptop’s properties box, its out-going channel
to the external world and Internet box. In the right-hand side, constraint WWW
is attached to the channel’s link. Note that constraints like WWW are always
placed within the sender’s bj-box. The inverse reaction P; —» P; models the
policy being dropped.

21

I __ I
i Properties i Properties
_’ ..
™ W ()
i Internet : i Internet

Figure 17: Reaction rule P, —» P;. All incoming traffic from WWW to Laptop
is blocked.

While this policy (Py) is represented by a single reaction rule, we note that it
must be applied carefully, to avoid multiple or inconsistent applications. The fol-
lowing example illustrates the problem. Consider a bigraph S in which machine
Laptop is already forbidden from receiving traffic from WWW, i.e. a WWW-node
is already linked to the channel from Laptop to Internet (this is indicated by the
open link on name ¢ in P;). The reaction rule P; —» P; could be applied to
this bigraph, and as a result of the rule application, we would obtain a bigraph
in which two copies of the same constraint are linked to the channel. To avoid
this, we must check, before any rule applications for the policy, whether traffic
from WWW to Laptop is forbidden. Specifically, the Bigraph analysis compo-
nent is queried to check whether S = ¢ py;, where predicate ¢p; corresponds to
the bigraph P|. The reaction rule for the policy is applied only if the predicate
is false (i.e. P is not a match in S). Since the predicate holds for S, reaction
rule P, —» P would not be applied in this case.

Policy 2: A more complex model arises when TCP connections with any
host using destination ports 8080 or 6881 and source port 6882 are forbidden.
First, rule Py, —» Py, is applied once to all the channels in the system. This
results in a bigraph in which all io-nodes are tagged, which is necessary in order
to ensure that rule Po, —» Py, is applied only once. Second, rule Po, —» Py, is
applied to all the tagged channels; this is depicted in Figure 18. The left-hand
side Py, matches any tagged channel. On the right-hand side Pj,, the con-
straints are placed by linking them to the channels and io-nodes are untagged.
Constraints on source ports are placed inside the box containing node O (i.e.
sender’s Properties box), while constraints on destination ports are inside the
box containing node | (i.e. receiver’s Properties box). The order in which chan-
nels are tagged and untagged is irrelevant. Thus, only one interleaving need be
considered.

As in the previous example, the Bigraph analysis component is queried prior
to the application of the reaction rules modelling this policy in order to avoid
double entries and inconsistent constraints.

22

X y C y
O oo
Properties Properties
D
m
Properties Properties

Figure 18: Policy reaction rule Py, —» Pj,. TCP connections with any host
using destination ports 8080 or 6881 and source port 6882 are blocked.

X y C X y c
(192.168.0.9) +{BLOCKED
m - -
Properties Properties
192.168.0.84) \Y/ 192.168.0.84) \v
| | W
Properties Properties
Figure 19: Policy reaction rule P; —» Pj. Traffic from 192.168.0.9 to

192.168.0.84 is forbidden.

Policy 3: Finally, consider a policy that forbids traffic from host 192.168.0.9
to host 192.168.0.84, defined as a reaction rule in Figure 19. The left-hand side
matches the channel blocked by the policy. On the right-hand side, special
constraint BLOCKED is linked to the channel.

7. Generating models of policy events in real-time

Reaction rules describing policies are used by the Bigraph analysis compo-
nent to generate sequences of models encoding the policy events generated by
the Stream database at runtime. The possible policy events are enforce, drop or
check policy compliance. Forbid policy events are more difficult to encode than
allow policy events, and so we consider these first.

7.1. Encoding forbid policy events

A forbid policy is represented by linking constraints (p-nodes) to channels.
Again, we employ tagging to indicate when rules may or may not be applicable.

23

Reaction rule Algebraic form

Py = Properties(y).
(id | Laptop.1 | I(¢).1) || Internet.(id | O(c).1)

Pl - Pl/ / def . .
P| = Properties(y).(id | Laptop.1 | I(c).1)
| Internet.(id | /o WWW(c, h).1 | O(c).1)
d’if
Pow—» P, Py, = 0(c).1 | I(e).1

P 0/ (e).1 | I'(e).1

id | O'(¢).1) || Properties(x).(id | I'(c).1)

Py, = Properties(y)
y).(id [Cs | O'(e).1)

.(id
Py, = Properties(y).(id
Pay —» P} . || Properties(z).(id | Ca1 | Caz | I'(c).1)
Cs = /q(6882(c,q).1| /r TCP(q,7).1)
1
1
d

R
(i
1
Ca1 = Jqr (8080(c, q1).1 | jr TCP(qy, 7
).
(

1)
Caz = Jg2 (6881(c, o 1)
1

| r TCP(ga, T

)
)
P3 = Properties(y).(id | 192.168.0.9().1 | O(c).1)
| Properties(z).(id | 192.168.0.84().1 | (c).1)
P; —» P P} = Properties(y).
(id | 192.168.0.9().1 | /e BLOCKED(c, ¢).1 | O(c).1)
|| Properties(x).(id | 192.168.0.84().1 | I(c).1)

Table 8: Reaction rules for example policies

In the case of enforce, we employ tagging to ensure that constraints are only
added once. In the case of checking policy compliance, the use of tagging is
more subtle. The problem we need to overcome is how to check for the non-
ezistence of a pattern in a bigraph, namely, we require to check that we cannot
(bigraph) match the left hand-side of a policy enforcement rule. So, we tag
channels that comply with the policy. If all the channels are tagged, then a
(bigraph) match is not possible, denoted by match, and we can conclude the
entire model complies with the policy. Thus, for a policy P, we denote by ¢p
the predicate for compliance with policy P and B, the corresponding bigraph.
An explanation of the sequence of reaction rules that encode a forbid policy
is given below, the rules are summarised in Table 9, assuming a current model S.
The rules are grouped according to three functions: tag, enforce/remove/check,
and untag. We note that tagging and untagging is required when enforcing or
checking a (forbid) policy because we are dealing with an arbitrary topology
(with an unknown number of communication channels). Without tagging we
would be unable to determine how many channels to check. Moreover, we can’t
just match patterns of the form /c(O(c).1 || I(¢).1) to search for channels without
constraints because if such match does not exist, it does not assure us that the
policy holds. It may not hold because the channel is linked to other constraints.
When a forbid policy is to be enforced, generate and apply the following

24

Event Encoding Notation

tag enforce untag
1

Enforce policy P " " —>7
remove
*
Drop policy P —> —D;
tag
*
S—> T

B, match T = S |~ ¢p
By, match T = S = ¢p

untag
1

T—"8

Check policy P

Table 9: Encodings for forbid policy events.

sequences of rules, in order, to the current model:

1. (tag) a sequence of rules that tag channels in the model that comply
with the policy (i.e. tag the channels that are linked to the appropriate
constraint),

2. (enforce) a sequence of rules that link the constraint specified by the
policy to the un-tagged channels, and then tag these channels so they are
not considered again,

3. (untag) a sequence of rules that removes the tags applied in steps 1
and 2.

When a forbid policy is dropped, generate and apply one sequence of rules:

1. (remove) a sequence of rules that removes the policy constraints from
channels.

When a forbid policy is checked, generate and apply the following sequences
of rules, in order, to the current model:

1. (tag) a sequence of rules that tag channels in the model that comply
with the policy (i.e. tag the channels that are linked to the appropriate
constraint),

2. (check) whether the predicate @p holds for the tagged model (from step 1),
by attempting to match B,,. If a match is possible, i.e. there is an un-
tagged channel, then conclude S [~ pp, otherwise conclude S = vp,

3. (untag) a sequence of rules that removes the tags applied in step 1.

7.2. Encoding allow policy events

Allow policies are much easier to encode because constraints are removed,
instead of being added to the model. Thus, we can take advantage of the fact

25

Event Encoding Notation

enforce
*
Enforce policy P —> —>7

B, match S = S I~ vp

Check policy P B, matcli § — 5 = op

Table 10: Encodings for allow policy events.

that bigraph matching tests for the existence of a pattern. An overview of allow
policy enforce/check is the following, which is also summarised in Table 10.
Again, assume current model S.

When an allow policy is to be enforced, simply generate and apply a sequence
of rules that enforce the policy by removing the relevant constraints. There is
no need for tagging.

When an allow policy is checked, simply attempt to match B,,. Again, if
a match is possible, then conclude S [~ pp, otherwise conclude S = vp.

We note that is not possible to drop an allow policy. If the user wishes to
block some behaviour, it has to be specified explicitly as a forbid policy.

7.8. Interplay between network and policy events

When a network event occurs, the Bigraph analysis component applies a se-
quence of reaction rules as described in Section 5. However, this may lead to a
system in which some policies are not enforced. For example, assume a current
model, S,,, of a WLAN where every machine is forbidden to receive data from re-
mote host WWW. Further, assume a new machine joins the WLAN. As a result,
the Bigraph analysis component updates S, to S,y1 thus: S, —>, —l>; Snt1-
But in model S,, 41, the new machine is not forbidden from receiving data from
WWW, thus the policy has to be re-enforced.

Let us call a policy that has been enforced, but not dropped, an active policy.
In general, in the bigraph model, active policies need to be checked /enforced /dropped
(by the Bigraph analysis component) before and/or after network and policy
events. The exact sequence depends on the event. Informally, consider each
possible event and the requirements to check/enforce/drop active policies:

1. grant a lease - enforce active policies after granting a lease, then check
all active polices

2. revoke a lease - drop active policies before revoking a lease, enforce all
active polices afterwards, then check all active policies

3. move into signal range - check active policies after moving into signal
range

4. move out of signal range - check active policies after moving out of signal
range

5. enforce a policy - enforce new policy, and add new policy to active set,
then check all active policies

26

6. drop a policy - drop the policy and remove from active set, then check
all active policies.

We can make this more precise as follows, referring to network and policy
events by the abbreviations above. For policy ¢, set of active policies ®, and
sequence of network and policy events S, we define the expansion of a sequence

of events according to the function [| _ || as follows:
1. [| grant; S |] ® = grant; enforce ®; check @; ([| S |] ®)
2. [| revoke; S |] ® = drop ®; revoke; enforce ®; check ®; ([| S |] @)
3. [|in; S |] ® = in; check ®@; ([| S |] @)
4. [| out; S |] & = out; check ®; ([| S |] @)
5. [| enforce ¢; S || ® = enforce ¢; check {¢} U ®; ([| S|] {¢} U ®))
6. [| drop ¢; S [] @ = drop ¢; check ® \ {¢}; ([| S [] (®\ {}))

We illustrate the process, in detail, in the next section.

8. Example of interplay between network events and policy events in
real-time

We show step-by-step how updates are made to the current bigraphical
model of the WLAN, according to the events from the Stream database. We
indicate sequences of WLAN models by Sp, Si, Due to confluence proper-
ties, we consider only one possible sequence of updates.

Initially, no stations are present, as given by bigraph Sy in Figure 7. Now
consider the following scenario, a summary of which is given in Table 11.

1. The user specifies and enforces a new policy that all out-going TCP traffic
for any machine is forbidden. This user-action generates a policy event, which
triggers the generation of the reaction rules for a forbid policy. We denote the
policy by P4 and give the reaction rules in Figure 20. A brief explanation of the
rules is the following. Reaction rule Ppy, —» P}, tags any out-going channel
of any machine that is part of the WLAN? and complies with P4. Reaction rule
Ppyy, —» P}, matches any untagged channel and thus it enforces the policy.
On the right hand-side, P}, a TCP-node is linked to the matched channel and
the channel is tagged (to avoid further treatment). Untagging reaction rule
Ppy. —» P}, removes the tags. Bigraph B, matches any untagged out-going
channel and as described in Section 7, P4 is violated when B, is a match
in the temporary state in which all blocked out-going channels are tagged. At
this point, the Bigraph analysis component enforces P4 on Sy and we have
So —>, So, 1.e. no reaction rule is applicable because no machines are present
in Sp. Policy P4 is also checked. Since B, is not a match, P4 holds.

2. Machine MACL enters a location covered by the router’s signal. Since
So & wmaci, the Bigraph encoder component instantiates® reaction rule Ry —» R

3A channel is present thus a DHCP lease has already been granted.
4Special control MAC is replaced by actual address MACL.

27

I?I

I
@ %

Properties

Properties

—
o0&

PP4”' - Plé’4a,
y C

L
I?I

I
@ %

Properties

Properties

(b)

Ppyy —» Py,

s

(C) Prye —» P|;4C

c y ¢

o
?

TCP

-
I?I

Properties

Properties

(d) Pryg —» PF/’4d

y

C

L
I?I

Properties

(e) Bopy

Figure 20: Policy P4: forbid all out-going TCP traffic for any machine. Tag

- *
sequence is —>¢, .

M *
drop sequence is —>, .

enforce sequence is

—> —>7

b4y Untag sequence is

B,,, is the bigraph for predicate ypy.

28

P4c¢’

and

Properties Properties
A
A==

Internet Internet

Properties

@)D
A

YV =2

Internet

Figure 21: States S; (upper left), S (upper right), S3 (lower). In State Ss
MACL1 is part of the network and P4 is enforced.

and the Bigraph analysis component updates the system: So—> S51. After
this step, the Bigraph encoder component checks whether P4 is violated. In this
case, reaction rule Pps, —» P}, is not applicable and B, is not a match in
S1. Therefore, the policy is not violated.

3. A DHCP lease is granted to machine MAC1. In the current state we
have S1 | vmac1 and Sy £ ¥maci. Therefore, the Bigraph analysis component
updates the system by applying instantiated rules Rs, —» R5,, Rs, —» RY;,
and Rz —» Ry Sy —>; —>,, —>5 Sa. After the topology update, the Bi-
graph analysis component enforces P4 in Ss. The following updates are per-
formed: S —>;, —>F —>F, S3°. We indicate this sequence of rules by
—>5,- States Sp, So and S3 are shown in Figure 21.

4. MAC2 enters a location covered by the router’s signal. — Since Ss [~
pmace, the Bigraph analysis component performs the same sequence described
in step 2 above when machine MACL entered the signal range. Specifically, first,
the topology is updated with S3 —>, S4. Second, P4 is enforced by the usual
tagging, matching, untagging sequence: Sy —>7, Ss. Observe that no update
is performed because reaction rule Ppy, —» P}, is not applicable (there are no

PrPa

5In this case —>* is —> because only one machine is part of the network in Ss.

29

TCP
= A
Properties
v =
S
Properties Internet

Figure 22: State Sy: MAC2 enters the router’s signal range, MACL is part of the
WLAN and P4 is enforced.

/ ? o4
N2 $
>]
” <

P
Properties

@ac) (P (N2) /4, =
-
]

Properties Internet

Figure 23: State S5: MAC1 and MAC2 joined the WLAN and P4 is enforced.

out-going channels requiring to be blocked in machine MAC2). Finally @py is
checked. Since B,,, is not a match in T}, P4 is not violated. The bigraph for
updated model Sy is given in Figure 22.

5. A DHCP lease is granted to machine MAC2. The status of the configu-
ration is Sy | omace and Sy - tmace. Hence, the Bigraph analysis component
updates the model by applying the sequence of reaction rules encoding a join
event: Sy —>3S). Then, the policy is enforced with S —>¢, S5. Finally, the
Bigraph analysis component checks whether ¢py holds. Since B, does not
occur in T5, we have S5 |= wps. The bigraph for S is given in Figure 23.

The sequence of events and the corresponding model updates described are
summarised in Table 11.

9. Bigraph model analysis

At any point in the model generation process we can check whether the
bigraphical representation of the current system satisfies compliance with a pol-
icy, or an invariant, or indeed any property that can be defined in the fragment

30

Event Updates WLAN model Policy

S() *I>;4 So

So 7>;4 TO 1
1. P4 enforced B, a 5T, | check P4 So So = wps

TO 7>;4c SO

So = emact

SO *I>1 S1 7>;4_S1
2. MACL1 in Sig— Sl —>;4a T Sl 51 ': ©Op4
nal range B, match Ty | check P4

Tl 7>;4c Sl

S1 = emact and S1 = Ymact

S *l>§ So *I>;4_53
3. MAC1 lease S5 —>75,. 5 Ss S3 = vpa
granted B, match T3 | check P4

T3 7>>};4C 53

S3 = pmace

53 7|>1 4(>;4 54_
4. MAC2 in Sig— S4 7>;’4a T4 54 54 ': ©P4
nal range By, match T, | check P4

T4 7>;4c S4

Sy = omace and Sy = Ymace

Sy —P3 =5, S5
5. MAC2 lease S5 —>5,. 15 S S5 = ¢pa
granted By, match T5 | check P4

T5 7>;4c SE’

Table 11: Generation of models Sg —> - -+ —> Ss.

of BiLog. For example, we check invariants after every update of the system,
logging any violations and reporting them, as required, to the system and/or
user. We can also detect conflicting policies, as follows. We assume the right-
hand side of reaction rules for policies as invariants. A new policy conflicts with
an existing one whenever its application invalidates an invariant. As a simple
example, consider reaction rule P; —> P and its inverse P; —> P; introduced
in Section 6. Assume that Laptop is the only machine in the system and no
constraints are in place. Call the bigraph representing this state S,,. When the
system is updated by P; —> Py, right-hand side P is adopted as an invariant.
The evolution of the system is given by S, —>, Si4+1. Now consider an appli-
cation of the inverse rule, so the system evolves: Sy11 —>,, Spya = Sp. At
this point the invariant is checked. Since Pj is not a match in S, 12 (node of
control WWW cannot be matched), then S,,12 ¥~ P/, thus indicating a conflict
between the two policies. This is a simple example: a policy and its inverse are
trivially in conflict and in this case the policies are implemented by single rules.

31

Transition system

Figure 24: Generating all possible evolutions from current state S,,.

In general, checking for conflicts will be more complicated because a policy is
implemented by a sequence of reactions (e.g. because of tagging/untagging). In
any event, the run-time system can either indicate this to the user, deny the
enforcement of the second policy, or just keep track of conflicts in a logfile.

It is possible to reason about the evolution of the system with temporal prop-
erties such as “Fventually machine 01:23:45:67:89:ab will be connected to Lap-
top”, “TCP traffic is always blocked for machine with IP address 192.168.0.3”,
“A lease is granted to machine 01:23:45:67:89:ab until it is not in the range of
the router’s signal”. These properties can be expressed in an appropriate (e.g.
linear or branching time) temporal logic and then checked in a transition system
of all possible evolutions, generated from the current state. See Figure 24 for an
illustration. In order to generate a finite structure, a fixed set of machines and
policies would have to be specified. Further, to reflect likely user behaviours,
allowable events have to be specified (otherwise, from any state we could return
to Sp). For example, we might wish to reason about future behaviour, based
on the assumption that no machines leave the network, or no new policies are
enforced.

Given a finite transition system, checking a temporal property involves bi-
graph matching for state formulae and standard model checking techniques for
the temporal operators. The latter is computationally expensive and may not
be tractable in real-time, depending on the number of machines and policies and
on the temporal formula. So far, we have not found a need for temporal prop-
erties: state formulae are currently sufficient for all verification needs expressed
by the Homework system users.

10. Implementation

A prototype system is fully implemented on the Homework router, which
is hosted on a variety of small form-factor PCs. The bigraph generation is
implemented in OCaml; the matching engine is based on the MINISAT solver [7]
and is written in C+4. The Bigraph encoder and Bigraph analysis components
are part of the more extensive BigraphER (Bigraph Evaluator and Rewriting)
System [8]. The software runs on a standard Linux Ubuntu distribution. Access
control is enforced via NOX (which implements the custom DHCP server) and
Open vSwitch, as dictated by the Ponder2 policy engine [9], based on events
recorded in the Homework database.

32

0.1 T T T T T 3
0.09]
0.08 | A
0.07 A E
0.06 b i
0.05 | A -
0.04 |- L .
0.03 | S .
0.02 | T -
001 F et

Average update time (s)

-
H 1

1 5 10 15 20 25 30
Machines

Figure 25: Average time to perform an update as a function of the number of
machines in the network (x axis). Each update was performed 100 times and
the average time is reported on the y axis.

We trialled the system with both synthetic and experimental data using a
router hosted on an Asus Eee PC laptop with the following specification: 1.2GHz
Intel Atom CPU, 2GB RAM, 200GB SATA HDD, 802.11b/g, 1Gbit ethernet,
and a USB-to-ethernet adapter.

For the synthetic data, we added 30 stations to the initial configuration,
firing reaction rule Ry —» R} 30 times starting from bigraph Sp. The final
state, a network with 30 stations, is a bigraph with 123 nodes. The time to
update the (network) bigraphs increases with the number of nodes, as indicated
in the graph of update times averaged over 100 runs, as shown in Figure 25.
Note that the slowest update requires just under 0.10s.

Experimental data was taken from actual network trials. For example, the
router sensed the signals of 6 stations, then 4 new devices joined the WLAN
and were connected to the Internet. The final state was a bigraph with 71
nodes. The update times were similar to those shown above. Evidence from
network trials suggests there are rarely more than 20 signals present in a home
network and the rate of topology change is much slower than the times used in
our (synthetic) experiment. Moreover, our times include a system overhead to
generate and store on disk a graphical representation of each bigraph (involving
an external invocation of the graph layout generator dot). While we expect
that considerable speed-ups and optimisations are possible to the verification
system, we conclude that the prototypical system can update and analyse the
bigraphical representations of actual home networks in real-time. We note that
the current implementation contains some optimisations. For example, when a
DHCEP lease is revoked we drop active policies only for the machine concerned
(cf. Section 7.3). This means that we can skip the enforce step and so the
sequence of events, for machine M, is: drop ® on M; revoke; check ®.

33

11. Discussion

In this section we give an overview of modelling and design decisions we have
made and the implications for our overall approach.

11.1. Why model with BRS?

Our models are one of the first applications of BRS to a real world problem
and modelling the management of wireless networks with BRS has some advan-
tages over other process calculi. Arguably the most important advantage is the
ability to express spatial aspects of computation in a natural, hierarchical way,
a feature lacking in formalisms such as the m-calculus and CCS where the un-
derlying spatial structure is assumed to be flat. Cardelli and Gordon’s calculus
of mobile ambients [10] is closer to BRS and allows the location hierarchy to be
organised into a tree structure. Additionally, this structure can be represented
graphically by using boxes to encode locations and the nesting of boxes to en-
code their topology. However, computation is encoded solely by changes in the
spatial structure. In BRS, computation can also be encoded by changes in the
link graph structure. While these process calculi are fundamentally equivalent,
bigraphs allow for an easier representation of complex systems by keeping the
concepts of space and computation separated. In contrast, as a consequence of
the structural operational semantics of process calculi, non-trivial protocols are
required when encoding complex state modifications.

Nevertheless we did encounter one drawback with BRS modelling, which
arises from the declarative nature of reaction rules (and suffered by all process
calculi). Recall, we employed tagging in our reaction rules to overcome problems
in three scenarios:

1. the requirement to apply a rule n times, because we have arbitrary topolo-
gies,

2. the requirement to ensure that we do not duplicate the application of a
rule,

3. the requirement to encode universal quantification (e.g. there does not
exist a non-match for a given predicate).

Essentially, these problems are a consequence of the declarative nature of rewrite
rules and rewriting: in these scenarios we require a notion of control. We could,
for example, define that control explicitly, with a reaction rule for each value
of m. But this is rather clumsy and would obscure the clarity of the model;
it also assumes we can define a static upper bound. A better solution would
be to introduce parameterised reaction rules into BRS, as syntactic sugar, thus
avoiding the need for tagging. This is future work.

11.2. Do we have the right abstraction?

We currently model exactly what the router senses and the subsequent events
stored in the Stream database. But we could add additional features such as the
physical location of devices, or ownership of machines, if they can constrain

34

behaviour. Moreover we could also add aspects of real-time, such as the rate
of events or timed policies (e.g. a policy applies between 18:00 and 24:00 every
day, or on a given day), if these become relevant. More generally, we aim to
model the events recognised and stored by the Homework network management
system; if the system monitors more detailed behaviour, then the abstraction
and the subsequent formal models must reflect that.

11.3. Do we have the abstraction right?

In other words, are our models faithful to the actual system, do they abstract
from the same semantics? This is a problem for any modelling approach. In
the case of network events, it is fairly straightforward to see our abstraction is
faithful. In the case of the policies, there are often subtleties about how exactly
to interpret a policy, which may depend on user intentions. We have presented
policy enforcement and dropping in detail deliberately, so as to expose these
subtleties and why and how user comprehension and implementation can be
difficult. Throughout the project we have discussed policy design and imple-
mentation with the developers of the policy engine, using the bigraph graphical
notation. This has provided informal validation that bigraph models can help
policy language designers agree on interpretations and resolve ambiguity.

11.4. Can we use the sequence of models in other ways?

The approach we have described here is a form of runtime verification, in
that we construct a directed simulation and test for behaviors satisfying or
violating certain properties. Our approach is not based on data traces or dead-
lock detection, rather it is a form of runtime formal modelling. While this has
significant overheads, compared to more conventional runtime verification, we
propose that the additional requirements of behaviour that is both spatial as
well as temporal, can justify this. The result is much richer feedback that in-
forms the user’s cognitive model. For example, traditional verification might
report that a packet was observed on a channel, or a variable has a particular
value, whereas we can report a much more detailed model (of the state of the
system) that explains current spatial relationships and communication links.
We could make further use of the sequence of generated models, for example
for debugging and for supporting understanding the causes of failure (e.g. we
could rollback and replay), or for generating tests from the results of the failed
verifications.

11.5. Can we improve feedback?

As we have stated earlier, our long-term motivation is to aid users in their
understanding of the state of their system, and to give feedback to developers
about user experiences. We have not yet carried out a formal evaluation of this,
but informal evaluations from the (Homework) system developers is that the
bigraphical feedback from the runtime verification is helpful to them. However,
while bigraphs permit a straightforward and intuitive graphical representation,

35

we conjecture that our system representations, which are based on Venn dia-
grams, may be too unfamiliar and/or detailed for non-expert users. We plan
to experiment with other graphical representations that can be generated au-
tomatically from our bigraphs. For example, can we generate the cartoon in
Figure 2 from the bigraph in Figure 3; can we generate the cartoons used in the
Homework system drag and drop interface for policies? Are there constraints
on the style of cartoons that can be generated from our bigraphs? Furthermore,
we may not wish to reveal all the detail initially, but, for example, only present
properties when the user rolls a mouse over the (representation of) a machine.
This will be future work.

12. Related work

There is a significant body of work on analysis of policies and conflicts in
the context of network management, for example [11], but we are unaware of
any approach involving real-time analysis of process calculi models.

Runtime models for managing the complexity of evolving software behaviour
while it is executing is a recent area of interest, particularly in the domain of self-
adaptation (e.g. recent Dagstuhl seminar [12]). While our domain is different,
our work has a similar goal in that it is reasoning about context-dependencies
at runtime. We note a related online, event-driven formal modelling approach
taken in [13] to checking configurations of a home-care application. In this case,
the configuration data was streamed from log files of user activity; empirical use
of the reasoning system also revealed state-based reasoning was sufficient and
there was no need for temporal operators.

13. Conclusions

We have extended the Homework network management system with runtime
verification comprising real-time generation and analysis of bigraphical models
of network topology, network events and access policies. This work represents
one of the first applications of bigraphical modelling to a real world problem,
and a novel use of process algebraic modelling in a runtime verification context.

Both standard network events, such as a machine entering a signal range or
having a DHCP lease revoked, and forbid and allow access policy enforcement or
dropping, are represented by bigraph reaction rules. We have presented the full
details of the representation so as to expose the precise details of how policies
work and their interplay with network events.

Many rules involve the concept of “tagging” entities, to limit the scope of
applicability of the rules. While this adds some complexity to the representation,
it is an inevitable consequence of reasoning about complex computation with
declarative rules.

The real-time generation of bigraph models is event-driven: we apply the
reaction rules of a bigraphical reactive system, according to events captured in
the Homework stream database. In essence, we generate a real-time simulation

36

trace, where states are bigraph representations of the live system: at each step,
the bigraph state is checked for invariants and violations are reported to the
user.

Verification is done via a bespoke software component, based on reasoning
about predicates by bigraph matching, encoded in a SAT solver. The verification
system is fully implemented on the router and our experiments indicate that
model generation and analysis can be carried out in real-time. We have outlined
how to model-check temporal properties, but so far there is little evidence from
user trials that temporal operators are required.

Future work will be in three areas: feedback, efficiency, and quantitive be-
haviour. The first includes developing and evaluating different forms and type
of feedback about the outcomes of the verification process to both the user and
the system. For example, we will extend the system so that the Bigraph anal-
ysis component communicates directly with the Stream database component.
Whenever an invariant is not satisfied, the violation is recorded in a table in
the database; users and diagnostic applications can subscribe to the table and
obtain real-time updates of the system status. We will also explore (graphical)
abstractions of bigraphical representations that may be more accessible and/or
meaningful to users, and conduct user trials with them. We will consider extend-
ing the matching engine in the Bigraph encoder component to support regular
expressions on controls. This can greatly reduce the number of matching in-
stances, especially when reaction rules involve ranges of addresses. Finally, we
will extend the modelling to stochastic bigraphs [14], to represent the rate of
traffic and bandwidth capabilities, thus extending the range of policies we can
consider.

Acknowledgments

This work is supported by the Homework Research Project, funded by the
Engineering and Physical Sciences Research Council, under grant EP /F064225/1.

[1] J. Sventek, A. Koliousis, O. Sharma, N. Dulay, D. Pediaditakis, M. Sloman,
T. Rodden, T. Lodge, B. Bedwell, K. Glover, An Information Plane Archi-
tecture Supporting Home Network Management, Proceedings of the 12th

IFIP/IEEE International Symposium on Integrated Network Management
(2011) 1-8.

[2] R. Mortier, B. Bedwell, K. Glover, T. Lodge, T. Rodden, C. Rotsos, A. W.
Moore, A. Koliousis, J. Sventek, Supporting novel home network manage-
ment interfaces with openflow and nox, SIGCOMM Comput. Commun.
Rev. 41 (4) (2011) 464-465. doi:10.1145/2043164.2018523.

[3] R. Milner, The space and motion of communicating agents, Cambridge
University Press, 2009.

[4] M. Sevegnani, Bigraphs with sharing and applications in wireless networks,
PhD thesis, University of Glasgow (2012).

37

[5]

[10]

[11]

[12]

L. Birkedal, T. C. Damgaard, A. J. Glenstrup, R. Milner, Matching of bi-
graphs, Electronic Notes in Theoretical Computer Science 175 (4) (2007) 3
— 19, Proceedings of the Workshop on Graph Transformation for Concur-
rency and Verification (GT-VC 2006). doi:10.1016/j.entcs.2007.04.013.

G. Conforti, D. Macedonio, V. Sassone, Spatial logics for bigraphs, in:
L. Caires, G. Italiano, L. Monteiro, C. Palamidessi, M. Yung (Eds.), Au-
tomata, Languages and Programming, Vol. 3580 of LNCS, Springer, 2005,
pp. 766-778.

N. Eén, N. Sorensson, An extensible SAT-solver, in: SAT 2003, LNCS vol.
2919, 2003, pp. 502-518.

M. Sevegnani, BigraphER.
URL http://www.dcs.gla.ac.uk/~michele/bigrapher.html

K. Twidle, N. Dulay, E. Lupu, M. Sloman, Ponder2: A policy system for
autonomous pervasive environments, The Fifth International Conference
on Autonomic and Autonomous Systemsdoi:10.1109/ICAS.2009.42.

L. Cardelli, A. D. Gordon, Mobile ambients, Electr. Notes Theor. Comput.
Sci. 10 (1997) 198-201.

A. Bandara, J. Lobo, Calo, E. S. Lupu, A. Russo, M. Sloman, Toward a
Formal Characterization of Policy Specification Analysis, in: Annual Con-
ference of ITA (ACITA), University of Maryland, USA, 2007.

U. ABmann, N. Bencomo, B. H. C. Cheng, R. B. France, Models@Qrun.time
(Dagstuhl Seminar 11481), Dagstuhl Reports 1 (11) (2012) 91-123.
URL http://drops.dagstuhl.de/opus/volltexte/2012/3379

M. Calder, P. Gray, C. Unsworth, Is my configuration any good: checking
usability in a sensor-based activity monitor, Innovations in Systems and
Software Engineering (2013) in press,doi:10.1007/s11334-013-0203-1.

J. Krivine, R. Milner, A. Troina, Stochastic bigraphs, Electr. Notes Theor.
Comput. Sci. 218 (2008) 73-96.

38

