
BiCoq : Bigraphs Formalisation with Coq
Cécile Marcon

Fédération ENAC ISAE-SUPAERO
ONERA, Université de Toulouse

Toulouse, France

Cyril Allignol
Fédération ENAC ISAE-SUPAERO
ONERA, Université de Toulouse

Toulouse, France

Celia Picard
Fédération ENAC ISAE-SUPAERO
ONERA, Université de Toulouse

Toulouse, France

Blair Archibald
University of Glasgow
Glasgow, Scotland

Michele Sevegnani
University of Glasgow
Glasgow, Scotland

Xavier Thirioux
Fédération ENAC ISAE-SUPAERO
ONERA, Université de Toulouse

Toulouse, France

Abstract
Bigraphs are a formal model for representing (ubiquitous) systems
with strong notations of both space, e.g. a person in a room, and
non-spatial relations, e.g. mobile phone communication regardless
of location. They have been used in a wide range of scenarios
including sensor systems, IoT configuration languages, and com-
munications protocol design. While implementations of the bigraph
theory exist, e.g. BigraphER, until now, there has been no attempt
to formalise the theory in a theorem prover. We show an implemen-
tation of the bigraph theory in the Coq theorem prover, including
the main bigraph type specification and common manipulation
operators, e.g. composition and tensor product. This is a key step
to fully formalising the theory and paves the way for a certified
implementation for use in safety critical scenarios.

CCS Concepts
• Software and its engineering→ Formal software verifica-
tion.

Keywords
Formal methods, theorem proving, bigraphs

ACM Reference Format:
Cécile Marcon, Cyril Allignol, Celia Picard, Blair Archibald, Michele Seveg-
nani, and Xavier Thirioux. 2025. BiCoq : Bigraphs Formalisation with Coq.
In The 40th ACM/SIGAPP Symposium on Applied Computing (SAC’25), March
31-April 4, 2025, Catania, Italy. ACM, New York, NY, USA, Article 4, 8 pages.
https://doi.org/10.1145/3672608.3707824

1 Introduction: Reasoning upon Bigraphs
Milner’s bigraphs [20] are an expressive modelling formalism par-
ticularly for systems that feature both spatial and non-spatial inter-
actions [6, 9, 25], and those with strong notions of concurrency and
interaction. A system’s state is modeled by a bigraph, and system
interactions are be modeled as a set of (reaction) rules that change
a pattern inside of bigraph with another. A bigraph completed with
a set of rules is called a Bigraphical Reactive System (BRS).

This work is licensed under a Creative Commons Attribution 4.0
International License.

SAC ’25, March 31-April 4, 2025, Catania, Italy
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0629-5/25/03
https://doi.org/10.1145/3672608.3707824

Multiple tools [23, 26] allow working with, and reasoning over,
bigraphs, via e.g. model checking. They allow efficient property ver-
ification such as determining whether a pattern exists within each
state of a BRS, and reachability properties such as deadlocks. How-
ever, these existing tools focus mainly on system/model verification:
there are no guarantees the underlying theory is implemented cor-
rectly, and no ability to generate correct-by-construction code. We
go beyond model checking by providing verified bigraph semantics.

Theorem proving is a powerful tool to rigorously reason about
(computational) models and provide a strong mathematical ground-
ing for theory. We choose to use the Coq [5] proof assistant for its
ability to extract computer (OCaml) code, ensuring correctness at
the implementation level and facilitating integration into real-world
systems. Moreover, bigraphs have demonstrated their relevance to
represent language semantics [8, 21], which paves the way to (veri-
fied) compiling using bigraphs as an intermediate representation.
Coq has been widly used for verified compilation whose goal is
ensuring that the implementation of a system complies to its formal
specification (an approach similar to Compcert [18] or Velus [7]).

We present BiCoq [19], our formalization of the bigraph theory
with the Coq proof assistant. We describe the main bigraph type,
major bigraph operators, e.g. composition and tensor products, and
derived operators, e.g. parallel product, nesting and merge product,
and prove that our encoding satisfies category axioms, therefore
showing that our formalisation is trustworthy and consistent with
the theory as originally presented by Milner. This provides a foun-
dation to encode more of the bigraph semantics, including the
rewriting theory that allows systems to evolve over time.

Paper Outline. Section 2 presents the bigraph theory, main defi-
nitions and notations. In Section 3, we justify our choices for im-
plementing bigraphs in Coq. Section 4 presents our equivalence
definition, and Section 5 presents two different operators and proofs
of the correctness of their behaviour. Section 6 presents derived
operators. Related work is in Section 7 and we conclude in Section 8.

2 Bigraphs: Definitions
While bigraphs have been extended in several ways, we only model
pure bigraphs as introduced by Milner [20].

We give key bigraph definitions and notations used throughout
the paper. We then describe elementary bigraphs used for later
definitions, and briefly present the category theory behind bigraphs.

https://orcid.org/0009-0004-1661-5277
https://orcid.org/0000-0001-7528-5512
https://orcid.org/0000-0002-8715-4365
https://orcid.org/0000-0003-3699-6658
https://orcid.org/0000-0001-6773-9481
https://orcid.org/0009-0002-1126-6835
https://doi.org/10.1145/3672608.3707824
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3672608.3707824
https://zenodo.org/records/12744882

SAC ’25, March 31-April 4, 2025, Catania, Italy C. Marcon et al.

0 Lbl Lbl

Layout
Pane
0

ClkEvt
1

𝑥

𝑦

(a) Abstract Bigraph

0 𝑛1 𝑛2

𝑛3

𝑛4
0

𝑛5
1

𝑥

𝑦

𝑒1

𝑒2

(b) Concrete Bigraph
0

𝑛4

0 𝑛1 𝑛3

𝑛2

1

𝑛5

(c) Place graph

𝑛1

𝑛2

𝑛3 𝑛4

𝑛5

𝑥
𝑦

𝑒1
𝑒2

(d) Link graph

Figure 1: A bigraph modelling a user interface and corre-
sponding concrete bigraph, place graph, and link graph.

2.1 Elements of Bigraphs
We start from the definitions of a forest—a disjoint union of trees—
and of a hypergraph—a graph where edges can connect more than
two vertices. A bigraph is these two structures (called a place graph
and link graph respectively) over the same finite set of vertices
called nodes (𝑉). We represent these two structures in one diagram
(e.g. Fig. 1 represents a basic user interface).

2.1.1 Place Graph. The place graph represents the hierarchy and
placing of nodes (e.g. in Fig. 1c, the edge𝑛4 → 𝑛1 means𝑛1 is nested
in 𝑛4). The unfilled dashed rectangles are called roots or regions and
are at the top of the hierarchy. The grey dotted rectangles are called
sites. Sites are blank spaces where any bigraph with one root can
fit (they are used to nest bigraphs into one another). Sites and roots
are called places. Places are represented by natural numbers which
denote ordinal sets of that order, e.g. root = 2 means there are two
roots labelled {0, 1} (see Fig. 1b).

The place graph can be represented by an acyclic function prnt
of type: node⊎ site −→ node⊎ root, where ⊎ denotes disjoint union.
It associates each site and node to its parent node or root. The prnt
function is total so it is not possible to have a disconnected node or
site that is not in a root.

2.1.2 Link Graph. The link graph represents the (hyper-)edges (𝐸)
between nodes (Fig. 1d). Bigraphs have a basic signature of the
form (𝜅, 𝑎𝑟𝑖𝑡𝑦) where 𝜅 is the set of entity types e.g. {Lbl, Layout,
. . . }, and 𝑎𝑟𝑖𝑡𝑦 : 𝜅 → N is the function that maps an entity to the
number of ports it has. A function ctrl associates each node to its
entity types/control (and so its number of ports), e.g. in Fig. 1b,
ctrl(𝑛1) = Lbl and 𝑎𝑟𝑖𝑡𝑦 (Lbl) = 1.

Some edges of the link graph connect upwards to outernames (𝑥
in Fig. 1b). Others connect downwards to innernames (𝑦 in Fig. 1b).
names are drawn from an infinite set X. Links with no names are
closed. The link graph can be represented by a function link of type
innername ⊎ port −→ edge ⊎ outername. This function is also total,
which means all ports must connect to an edge/name. When a link
is open (i.e. it has an outername) it does not need an edge label

0 1
...

𝑛 − 1
0 1 𝑛 − 1 𝑎

𝑎

𝑏

𝑏

𝑐

𝑐

...

(a) id𝑛,{𝑎,𝑏,𝑐,...}

𝑎

𝑏 𝑐 ...

(b) 𝑎/{𝑏, 𝑐, ...}

0 1
...

𝑛 − 1
0

(c) merge𝑛

0 1
...

𝑚 𝑚 + 1
𝑛 𝑛 + 1 0 1

...

𝑥0

𝑥0

𝑥1

𝑥1

...

𝑦0

𝑦0

𝑦1

𝑦1

...

(d) 𝛾⟨𝑚,𝑋 ⟩,⟨𝑛,𝑌 ⟩

𝑎

(e) /𝑎

Figure 2: Elementary bigraphs.

since the name uniquely identifies this link. This definition of link
permits multiple innernames to connect to the same link, but you
cannot have multiple outernames on a link.

We define the support of a bigraph (notation |𝑏 |) as the union of
nodes and edges: |𝑏 | = 𝑉 ⊎ 𝐸. The notion of support will be used
later (see Section 4) to build an equivalence between bigraphs.

Lastly, we distinguish between two types of bigraphs. Abstract
bigraphs have unnamed support. They assign controls, e.g. Lbl, to
nodes but do not give nodes specific identifiers (see Fig. 1a). Concrete
bigraphs use controls as well, but also assign identifiers to nodes, e.g.
𝑛1 (see Fig. 1b). It is possible to move between these representations,
e.g. by forgetting identifiers, or assigning arbitrary identifiers to
nodes and edges.

Bigraphs are compositional (algebraic) objects, i.e. larger bi-
graphs can be built from smaller ones. Every bigraph has an inner
and outer interface that may or may not allow such operations. The
interface of a bigraph is spcified by its innernames, sites (inner face),
outernames and roots (outer face). An interface can then be described
as an arrow in the form ⟨site,innername⟩ → ⟨root,outername⟩.

In summary, we can give the following definition for a bigraph:

Definition 2.1 (Bigraph). For each interface ⟨site,innername⟩ →
⟨root,outername⟩, a bigraph is a 5-tuple ⟨node, edge, ctrl, prnt, link⟩

2.2 Elementary Bigraphs
We present here some common bigraphs used throughout the paper.

2.2.1 Identity Bigraphs (Fig. 2a). A family of node-free bigraphs
thatmap sites to regions, and names to names such that the interface
is maintained:

∀𝑠 ∈ N,∀𝑖 ⊂ X, id𝑠,𝑖 : ⟨𝑠, 𝑖⟩ → ⟨𝑠, 𝑖⟩ = ⟨∅, ∅, ∅, id, id⟩
We call 𝜖 the empty interface ⟨0, ∅⟩, and 𝑖𝑑𝜖 the empty bigraph.

2.2.2 Merge Bigraphs (Fig. 2c) . A family of node-free and name-
free bigraphs collapsing 𝑛 sites into 1 root:

∀𝑛 ∈ N,merge𝑛 : ⟨𝑛, ∅⟩ → ⟨1, ∅⟩ = ⟨∅, ∅, ∅, 𝑠 ↦→ 0, ∅⟩

2.2.3 Symmetries (Fig. 2d). 𝛾⟨𝑚,𝑋 ⟩,⟨𝑛,𝑌 ⟩ are node-free bigraphs that
allow themovement of roots. Bigraph roots do not commute, instead
they use explicit symmetries to move.

∀𝑚,𝑛 ∈ N,∀𝑋,𝑌 ⊂ X,
𝛾⟨𝑚,𝑋 ⟩,⟨𝑛,𝑌 ⟩ : ⟨𝑚 + 𝑛,𝑋 ⊎ 𝑌 ⟩ → ⟨𝑚 + 𝑛,𝑋 ⊎ 𝑌 ⟩
= ⟨∅, ∅, ∅, 𝑠 ↦→ (𝑛 + 𝑠) mod (𝑚 + 𝑛), id⟩

BiCoq: Bigraphs Formalisation with Coq SAC ’25, March 31-April 4, 2025, Catania, Italy

2.2.4 Substitutions (Fig. 2b). 𝑦/𝑋 are place-free bigraphs that re-
name (sets of) innernames 𝑋 to a specific outername 𝑦.

∀𝑦 ∈ X,∀𝑋 ⊂ X,𝑦 /𝑋 : ⟨0, 𝑋 ⟩ → ⟨0, {𝑦}⟩ = ⟨∅, ∅, ∅, ∅, 𝑖 ↦→ 𝑦⟩

2.2.5 Closures (Fig. 2e). /𝑥 are place-free bigraphs that link an
innername x to an idle edge (it does not export an outer name).
Idle edges are "invisible" and can be ignored for equivalence (see
Section 4.2): /𝑥 : ⟨0, 𝑥⟩ → ⟨0, ∅⟩ = ⟨∅, {𝑒}, ∅, ∅, 𝑖 ↦→ 𝑒⟩

2.3 Categorical Axioms
While there are many bigraph categories, we focus on the category
of abstract bigraphs (i.e. bigraphs with unnamed support).

As stated by Milner [20] (Theorem 2.20) and further explained
in Section 4, abstract bigraphs form an spm-category (a symmet-
ric partial monoidal category) quotiented over ≎ (see Section 4.2).
Objects are interfaces and morphisms are bigraphs. The category
allows composition ◦, tensor product ⊗, symmetries 𝛾𝐼 ,𝐽 and id of
Section 2.2.1 are the left and/or right neutral elements for these
operators. This category is partial because ⊗ is only defined on
disjoint interfaces as ⟨𝑚,𝑋 ⟩ ⊗ ⟨𝑛,𝑌 ⟩ = ⟨𝑚+𝑛,𝑋 ⊎𝑌 ⟩. For interfaces
𝑋 and 𝑌 ,𝑋 ⊗𝑌 and 𝑌 ⊗𝑋 are either both defined or both undefined.

An spm-category follows the following equations:

∀𝑔, 𝑓 , ∃𝑔 ◦ 𝑓 ⇔ 𝑐𝑜𝑑 (𝑓) = 𝑑𝑜𝑚(𝑔) (C1)
∀𝑓 : 𝐾 → 𝐿,𝑔 : 𝐽 → 𝐾,ℎ : 𝐼 → 𝐽 , ℎ ◦ (𝑔 ◦ 𝑓) = (ℎ ◦ 𝑔) ◦ 𝑓 (C2)
∀𝑓 , id ◦ 𝑓 = 𝑓 ◦ id = 𝑓 (C3)

Eqs. (M1), (M2) and (M3) define a partial monoidal category:

∀𝑓 , 𝑔, ℎ, ℎ ⊗ (𝑔 ⊗ 𝑓) = (ℎ ⊗ 𝑔) ⊗ 𝑓 (M1)
∀𝑓 , id ⊗ 𝑓 = 𝑓 ⊗ id = 𝑓 (M2)
∀𝑓1 : 𝐼 → 𝐽 , 𝑓0 : 𝑀 → 𝐼 , 𝑔1 : 𝐾 → 𝐿,𝑔0 : 𝑁 → 𝐾,

(𝑓1 ⊗ 𝑔1) ◦ (𝑓0 ⊗ 𝑔0) = (𝑓1 ◦ 𝑓0) ⊗ (𝑔1 ◦ 𝑔0)
(M3)

These equations allow symmetry for the partial monoidal category:

∀𝐼 , 𝛾𝐼 ,𝜖 = id𝐼 (S1)
∀𝐼 , 𝐽 , 𝛾 𝐽 ,𝐼 ◦ 𝛾𝐼 ,𝐽 = id𝐼⊗ 𝐽 (S2)
∀𝑓 : 𝐼0 → 𝐼1, 𝑔 : 𝐽0 → 𝐽1, 𝛾𝐼1,𝐽1 ◦ (𝑓 ⊗ 𝑔) = (𝑔 ⊗ 𝑓) ◦ 𝛾𝐼0,𝐽0 (S3)
∀𝐼 , 𝐽 , 𝐾,𝛾𝐼⊗ 𝐽 ,𝐾 = (𝛾𝐼 ,𝐾 ⊗ id 𝐽) ◦ (id𝐼 ⊗ 𝛾 𝐽 ,𝐾) (S4)

We now implement abstract bigraphs as a type bigraph in the
proof assistant Coq and prove these axioms.

3 Coq Formalisation
The first challenge to implementing bigraph theory in Coq is get-
ting the right type to formally describe a bigraph. As bigraphs
are presented algebraically, within a categorical framework, Coq
with its higher-order logic and dependent types is a good fit for
implementation. We draw experience from the Gross et al. [16]
category implementation in Coq that revealed that unwise imple-
mentation choices may lead to poor efficiency limits. Specifically,
parameterized types should be used carefully.

3.1 Representing Sets and Acyclic Functions
To model bigraphs we need some mathematical components. We
use some existing tools from the MathComp library [12] (e.g. finite

types), but implement some new tools. These are available in the
MyBasics, Names and, MathCompAddings files.

Bigraphs are defined over different types of sets. The nodes (𝑉)
and edges (𝐸) are finite sets (MathComp’s finType). As regards
interfaces, places are ordinals (MathComp’s Ordinal), while in-
ner/outer names are finite sets drawn from an infinite set of names.

To this purpose, we implement a Module Type NamesParameter
(a module type is an abstract specification for a module), which
includes a typeX, a proof it has a decidable equality (EqDec X), and
a characterization of its infinite nature: ∀𝑙 : 𝑙𝑖𝑠𝑡 X, ∃𝑛 : X, 𝑛 ∉ 𝑙 .

We draw the subsets of X using NoDupList, that gives lists of X
with no duplicates. We decide to represent sets of names as lists for
the vast list library that will aid implementing bigraph algorithms.

Innernames and outernames types are built from the NoDupList
innername and outername using the constructor NameSub where
NameSub ndl = {name ∈ X | name ∈ ndl}.

To ensure the directed place graph is a forest, we need to enforce
it is acyclic. Our definition is based on Acc from the standard library
that forbids building an infinite ascending chain:
Definition Acyclic {N I O} (p : N+I -> N+O) :=

forall n, Acc (fun n' n => p (inl n) = inl n') n.

Here Acyclic is defined generically for p where its domain and
range are respectively the disjoint sums N+I and N+O. Acyclicity
is only meaningful when iterating p through N (nodes), so generic
injection functions inl:N -> N+X are used in the definition. It will
be applied to the prnt function of a place graph.

3.2 The bigraph Type
We represent the set of bigraphs with interface ⟨𝑠, 𝑖⟩ → ⟨𝑟, 𝑜⟩ as
the dependent type bigraph s i r o, implemented as follows in
the AbstractBigraphs file:
Record bigraph (site : nat) (innername : NoDupList)

(root : nat) (outername : NoDupList) : Type :=
Big {

node : finType; edge : finType; control : node -> Kappa;
(* Place graph *)
parent : node + (ordinal site) -> node + (ordinal root);
ap : Acyclic parent;
(* Link graph *)
link : (NameSub innername) + Port control ->

(NameSub outername) + edge;
}.

Much like the interpretation of bigraphs as functions between
interfaces, this definition hides the internal details, i.e. the specific
nodes/edges are hidden in the output type and kept internal to
the record. This is a natural choice when performing categorical
operations on bigraphs, e.g. composition or tensor product (see
Sections 5.2 and 5.3) that need to check the inner/outer names and
sites/regions are adequate without looking at the internal structure.

Two module parameters are used here. NamesParameter han-
dles the global set of names (see Section 3.1). SignatureParameter
contains the bigraph signature (𝜅, 𝑎𝑟𝑖𝑡𝑦), that determines the
specific entities in the system and their (fixed) number of ports,
and is encoded as two parameters: Variable Kappa : Type and
Variable Arity : Kappa -> nat.

Following Section 2.1 the bigraph record contains node and edge
and a function control providing the specific control for each node.

SAC ’25, March 31-April 4, 2025, Catania, Italy C. Marcon et al.

The place graph is encoded by parent, determining the parent
(node/root) for each node/site. We use ap to ensure prnt is acyclic.

For link graphs we first construct a set of Ports. These can be
determined from the control function (which allows us to infer
the node set, and to compute how many ports each node has). Then,
we create a set of dependent pairs (notation &) of nodes and their
port labels (up to the specified arity) as follows:
Definition Port {node : Type} (control : node -> Kappa):

Type := { n : node & fin (Arity (control n)) }.

Using this, the function link determines the assignment of
outernames or edges to ports (or innernames).

Remark: bigraph notations. To lighten the presentation, in the
following, 𝑏1 and 𝑏2 will implicitly denote bigraphs with respective
interfaces ⟨𝑠1, 𝑖1⟩ → ⟨𝑟1, 𝑜1⟩ and ⟨𝑠2, 𝑖2⟩ → ⟨𝑟2, 𝑜2⟩. Similarly, any
internal element (e.g. nodes) of 𝑏1 and 𝑏2 will also be referred to
through the index notation (e.g. 𝑛1 and 𝑛2).

4 Equivalence Between Bigraphs
Defining equivalences between bigraphs is desirable as it allows
bigraph comparisons and thus is necessary for pattern matching
and in order to prove that our implementation is correct.

The native Coq support for comparison is Leibniz equality. How-
ever, it is too restrictive for our purpose as Leibniz equality com-
pares objects and compels their inner types to be equal. In a typed
setting, Leibniz equality is homogeneous, meaning we can only
compare objects with the same type: that is, bigraphs with the
exact same interface. The issue can be made explicit with a sim-
ple example: the set of names {𝑎, 𝑏} can be represented as the
NoDupList [𝑎, 𝑏] as well as [𝑏, 𝑎], which the Leibniz equality would
deem as unequal, even though we do not care about ordering in a
set. Representing set of names as characteristic functions of type
X -> bool has the same issue. Instead, we implement our own
(reflexive, symmetric, transitive) equivalences on bigraphs, that are
also congruences with respect to bigraph operations.

In the theory, there are two equivalences of interest: support-
equivalence, denoted ≏, and lean-support equivalence, denoted ≎.
Recall the support of a bigraph |𝑏 | is the set of nodes and edges.
Support-equivalence between 𝑏1 and 𝑏2 implies the existence of
a bijection between |𝑏1 | and |𝑏2 | that respects the structures of
both bigraphs. This also implies equality of the interfaces, i.e. if
a node connects to a name, it connects to the same name in the
mapping. Lean-support equivalence has the same requirements but
disregards idle edges, which are unconnected edges (this can occur
during composition with a closure Fig. 2e). Both definitions are
similar, lean-equivalence only requiring a filter of idle edges.

Our implementation requires defining bigraph isomorphisms us-
ing bijections (see the Bijections file) for each element of the sup-
port, and checking the functions describing the structure (prnt/link)
behave the same through the bijections. Doczkal et al. [10] imple-
ment a similar equivalence modulo isomorphism on graphs.We
write 𝐴 � 𝐵 for the set of bijections between sets 𝐴 and 𝐵 and
bij𝐴,𝐵 for an element of this set.

Bijections already enjoy a group structure, with function com-
position, inverse and identities as elements. We add operators to
compose bijections through typical set constructions such as dis-
joint sum 𝐴 ⊎ 𝐵, function space 𝐴 → 𝐵, subset {𝑎 : 𝐴 | 𝑃 (𝑎)},

dependent sum {𝑎 : 𝐴&𝐵(𝑎)} and ordinal [0, 𝑎[and prove that
they respect the group structure. The main operators we need are:

_ ↠ _ : 𝐴 � 𝐵 → 𝐶 � 𝐷 → (𝐴 → 𝐶 � 𝐵 → 𝐷)
_ ⟨+⟩ _ : 𝐴 � 𝐵 → 𝐶 � 𝐷 → (𝐴 ⊎𝐶 � 𝐵 ⊎ 𝐷)

⟨{_ | _}⟩ : ∀bij𝐴,𝐵 : 𝐴 � 𝐵, (∀𝑎 : 𝐴, 𝑃 (𝑎) ⇔ 𝑄 (bij𝐴,𝐵 (𝑎))) →
{𝑎 : 𝐴 | 𝑃 (𝑎)} � {𝑏 : 𝐵 | 𝑄 (𝑏)}

⟨{_& _}⟩ : ∀bij𝐴,𝐵 : 𝐴 � 𝐵, (∀𝑎 : 𝐴,𝐶 (𝑎) � 𝐷 (bij𝐴,𝐵 (𝑎))) →
{𝑎 : 𝐴&𝐶 (𝑎)} � {𝑏 : 𝐵 &𝐷 (𝑏)}

_ : ∀𝑎, 𝑏 ∈ N, 𝑎 = 𝑏 → [0, 𝑎[� [0, 𝑏 [

4.1 Support-Equivalence
We define (in the SupportEquivalence file) support equivalence
over bigraphs 𝑏1 ≏ 𝑏2, by the conjunction of these 10 named prop-
erties:

𝑠1 = 𝑠2 (𝑒𝑞𝑢𝑠)
∀ name ∈ X, name ∈ 𝑖1 ⇔ name ∈ 𝑖2 (𝑒𝑞𝑢𝑖)
𝑟1 = 𝑟2 (𝑒𝑞𝑢𝑟)
∀ name ∈ X, name ∈ 𝑜1 ⇔ name ∈ 𝑜2 (𝑒𝑞𝑢𝑜)
∃bij𝑛 ∈ 𝑛1 � 𝑛2 (bij𝑛)
∃bij𝑒 ∈ 𝑒1 � 𝑒2 (bij𝑒)
∀𝑛1 ∈ node1,

∃bij𝑝,𝑛 ∈ [0,Ar (ctrl1 (𝑛1))] � [0,Ar (ctrl2 (bij𝑛 (𝑛1)))] (bij𝑝)
(bij𝑛 ↠ id𝜅) (ctrl1) = ctrl2 (𝑒𝑞𝑢𝑐)
((bij𝑛 ⟨+⟩ 𝑒𝑞𝑢𝑠) ↠ (bij𝑛 ⟨+⟩ 𝑒𝑞𝑢𝑟)) (prnt1) = prnt2 (𝑒𝑞𝑢𝑝)
((⟨{id | equ𝑖 }⟩ ⟨+⟩ ⟨{bij𝑛 & bij𝑝,𝑛}⟩) ↠ (⟨{id | equ𝑜 }⟩ ⟨+⟩ bij𝑒))
(link1) = link2 (𝑒𝑞𝑢𝑙)

The first four requirements enforce equality on the bigraph in-
terfaces, i.e. they have the same sites/roots and inner/outer names.

For nodes and edges, we require a bijection between the sets
(i.e. between the support, but it is clearer to treat the support set in
parts). As ports operate a little like additional nodes we also require
a bijection between the sets of ports (for each node) through bij𝑛 , i.e.
we can only map ports if we can map nodes. Moreover, for nodes,
their controls must be maintained (Eq. (𝑒𝑞𝑢𝑐)) through bij𝑛 ↠ id𝜅 .

Finally, we need to confirm the prnt (place graph) and link (link
graph) remain valid under the bijections constructed from the node,
edge and port bijections, as is handled by Eqs. (𝑒𝑞𝑢𝑝) and (𝑒𝑞𝑢𝑙).
These are essential as it proves the bijections are structure preserv-
ing so that we have a real isomorphism between two bigraphs.

To prove ≏ is an equivalence, we provide the bijections between
elements, proofs of equality, and prove the functions equations.

For the reflexivity, symmetry and transitivity proofs, we respec-
tively use identities, inverse and composition of bijections, and the
morphism properties described in the introduction of this section.

Remark: homogeneous vs. heterogeneous equivalence. Our equiv-
alence being between two heterogeneous types implies that we
cannot directly use rewriting strategies. Coq users will know that
we use a well-known method of packing the bigraph and its in-
terface into bigraph_packed. This allows us to create a second
equivalence based on the packed bigraphs: two packed bigraphs

BiCoq: Bigraphs Formalisation with Coq SAC ’25, March 31-April 4, 2025, Catania, Italy

are equal iff their bigraph are ≏ equivalent. Our previous proofs
trivially give us that this new relation is an equivalence.

4.2 Lean-Support Equivalence
As mentioned before, lean-support equivalence is support equiva-
lence that ignores idle edges.

To lean a bigraph, we filter out the idle edges using a predicate
not_is_idlewhich states that there exists an preimage for an edge
through link. This predicate allows us to create a new finType for
edges. We rebuild the new link function from the old one trivially
since there is no change to it (by definition, the idle edges that we
removed were never an image of any point).

We now implement 𝑏1 ≎ 𝑏2 := (lean(𝑏1)) ≏ (lean(𝑏2)). This
relation is clearly an equivalence. We also prove the useful lemma:
𝑏1 ≏ 𝑏2 =⇒ 𝑏1 ≎ 𝑏2.

We now move to defining operators on bigraphs.

5 Bigraphs as an spm-category
We prove that our abstract bigraphs implementation complies with
the axioms of an spm-category (Section 2.3), by implementing com-
position (in Composition), which places regions into sites and joins
like-names, and tensor product (in TensorProduct), which juxta-
poses bigraphs side-by-side, as well as symmetries (in Symmetries).

5.1 Interface Requirements
Bigraphs operators usually come with constraints on their argu-
ments. For example, composition of bigraphs 𝑏1 and 𝑏2 requires
innerface of 𝑏1 and outerface of 𝑏2 to be equal. On the contrary, for
tensor product of 𝑏1 and 𝑏2, their interfaces must be name disjoint.

All these requirements are encased in classes so they are dis-
charged by Coq’s automated class instance search without the
need to provide explicit proofs. For the search to succeed, we must
provide base cases and reasoning rules as class instances. For ex-
ample, with sites and roots we may generate instances such as:
𝑛 = 𝑛 ; 𝑛 + 0 = 𝑛 ; 𝑛 +𝑚 = 𝑚 + 𝑛 ; 𝑛 = 𝑚 → 𝑚 = 𝑛. Similar rules
apply for equality or disjointness of inner and outer names.

The class for natural numbers equality is in MyEqNat and the
classes for equality between finite subtypes and disjointness of
finite types are in Names.

Remark: requirement notations. In the following, interface re-
quirements will appear as: 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 ⇛ 𝐷𝑒𝑓 𝑖𝑛𝑖𝑡𝑖𝑜𝑛.

5.2 Composition
When working with abstract bigraphs, composing bigraphs 𝑏1 and
𝑏2 requires the outerface of 𝑏2 to be equal to the innerface of 𝑏1 (cf
Fig. 3). This means the same number of sites in𝑏1 as roots in𝑏2 and a
set isomorphism (that we implemented through a list permutation)
between the innernames of 𝑏1 and outernames of 𝑏2. For place
graphs, ◦ joins the roots to sites, connecting any nodes as required,
e.g. redefining prnt. The sites and roots merge and disappear. In the
link graph, innernames and outernames of the same name connect.
They merge and disappear into a new link. The link function is
updated to reflect new links between ports/edges/names. Nodes
and edges are assumed disjoint in the theory, and enforced in our
implementation as node and edge types are unique to each bigraph.

0𝑛1 𝑛2

0𝑥

𝑦

◦ 0
𝑛4

𝑛3

0
𝑦

𝑧

=
0

𝑛4
𝑛3

𝑛1
𝑛2

0
𝑥

𝑧

Figure 3: Bigraph Composition.

We can build a sequence operator, ≫, between prnt and link
functions of𝑏1 and of𝑏2, that bypasses the merged interface. That is,
when the function from 𝑏2 gives an image in its outerface (and thus
in the innerface of 𝑏1), the new function bypasses it by returning
the image of its 𝑏1 twin. Using this we define composition:

𝑠1 = 𝑟2 ∧ 𝑖1 � 𝑜2 ⇛ 𝑏1 ◦ 𝑏2 : ⟨𝑠2, 𝑖2⟩ → ⟨𝑟1, 𝑜1⟩ :=
⟨𝑛1 ⊎ 𝑛2, 𝑒1 ⊎ 𝑒2, ctrl1 ⊎ ctrl2, prnt2 ≫ prnt1, link2 ≫ link1⟩

As expected, the resulting bigraph has the innerface of𝑏2 and the
outerface of𝑏1, and themerged interface disappears.We use disjoint
sum ⊎ when combining nodes and edges, using the proof that
finType is closed for the disjoint sum. The ctrl function similarily
applies under this disjoint sum (of nodes).

The final element of a bigraph is the proof that prnt is acyclic,
and so we need to prove prnt2 ≫ prnt1 is also acyclic. This is
straightforward as both place graphs are already proved acyclic and
we only ever change a parent relation upwards from the outerface.

In our implementation, as stated in Section 5.1, the requirements
for equality of the innerface of 𝑏1 and the outerface of 𝑏2 are auto-
matically discharged, which allows us to simply write 𝑏1 ◦ 𝑏2.

5.2.1 Properties of Composition. We prove that this operator be-
haves as it should in an spm-category as described in Section 2.3.

Eq. (C1) is automatic from our definition. We prove that composi-
tion is neutral to the left and right (Eq. (C3)) with the family of iden-
tity bigraphwithwhich it is allowed to commute. The hypothesis we
have to check before we can proceed with the composition between
a bigraph 𝑏 and the id is that 𝑠id = 𝑟𝑏 and 𝑖id � 𝑜𝑏 . That means in
that case that the correct family of id is 𝑖𝑑𝑟𝑏 ,𝑜𝑏 . To prove Eqs. (𝑒𝑞𝑢𝑠),
(𝑒𝑞𝑢𝑖), (𝑒𝑞𝑢𝑟) and (𝑒𝑞𝑢𝑜) for places and names, we expose the reflex-
ivity of equality on natural numbers and the reflexivity of ∈ for the
sum of a list and an empty one. Then the bijections for nodes bij𝑛
and edges bij𝑒 are pretty much identities, i.e. bijections between 𝐴
and 𝐴 ⊎ ∅ (and symmetrically). For ports, we have a small lemma
that checks that ∀𝑛,𝐴𝑟𝑖𝑡𝑦 (ctrl(id ◦ 𝑏)𝑛) = 𝐴𝑟𝑖𝑡𝑦 (ctrl 𝑏 (bij𝑛𝑛)), we
build bij𝑝 from this equation. Proving that the function equations
equ𝑐 , equ𝑝 and equ𝑙 hold with these bijections is simply a matter
of simplification and case analysis to go back to the origin bigraph
of each element.

We also prove that composition is associative (Eq. (C2)). We
proceed similarly to what we just described, i.e. use reflexivity and
bijections that reorder elements to their assigned category from
𝐴 ⊎ (𝐵 ⊎𝐶) to (𝐴 ⊎ 𝐵) ⊎𝐶 .

This proves that ◦ respects category equations used by Milner.
We also prove that equality is a congruence with respect to this

composition. This allows us to declare composition as a morphism
and directly use rewrite mechanisms of Coq.

SAC ’25, March 31-April 4, 2025, Catania, Italy C. Marcon et al.

𝑛1

0

𝑥

𝑦

⊗
𝑛2

0

𝑧

ℎ

=
𝑛1

0
𝑛2

1

𝑧

ℎ

𝑥

𝑦

Figure 4: Tensor product

5.3 Tensor Product
Tensor product (⊗) is the juxtaposition of two bigraphs with disjoint
interfaces (see Fig. 4).

Like the ≫ operator we defined for composition, we define an
operator ⊗ between prnt and link. ⊗ acts like ⊎, while also increas-
ing the places of the second bigraph by the number of places of the
first bigraph, i.e. to account for the increased ordinal. We define
tensor product as:

𝑖1 ∩ 𝑖2 = ∅ ∧ 𝑜1 ∩ 𝑜2 = ∅ ⇛

𝑏1 ⊗ 𝑏2 : ⟨𝑠1 + 𝑠2, 𝑖1 ⊎ 𝑖2⟩ → ⟨𝑟1 ⊎ 𝑟2, 𝑜1 + 𝑜2⟩ :=
⟨𝑛1 ⊎ 𝑛2, 𝑒1 ⊎ 𝑒2, ctrl1 ⊎ ctrl2, prnt1 ⊗ prnt2, link1 ⊗ link2⟩

Like with composition, disjointness requirements have been
nested into classes and useful lemmas added to a pool of class
instances (see Section 5.1). Tensor product adds the sites/roots
numbers (ordinals) and joins name sets. The union of name sets is
still a NoDupList as we have 𝑖1 ∩ 𝑖2 = 𝑜1 ∩ 𝑜2 = ∅.

The extended functions for ctrl, prnt, and link naturally apply
the original function based on where the node originated from.
Some additional manipulation is required to handle cases involv-
ing sites/roots and names, e.g. to handle the increased ordinals In
practice we use bijections from our library that manipulate finite
sets. The same argument also applies to ports.

Finally, we need to ensure the new prnt function remains acyclic.
The proof simply uses both components’ acyclicity.

5.3.1 Properties of Tensor Product. We prove that this operator
behaves as it should in an spm-category as described in Section 2.3.

We prove that our tensor product has the empty identity bigraph
id𝜖 for a neutral element from the left and the right (cf. Eq. (M2)).
Before proceeding with the tensor product, we need to check that
any list is disjoint to the empty list, which is trivial. Then, proving
Eqs. (𝑒𝑞𝑢𝑠) and (𝑒𝑞𝑢𝑟) boils down to proving that 0 is the neutral
element for addition and proving Eqs. (𝑒𝑞𝑢𝑖) and (𝑒𝑞𝑢𝑜) requires
to check that ∀𝑛 ∈ X, 𝑛 ∈ 𝑖𝑜 ⇔ 𝑛𝑎𝑚𝑒 ∈ 𝑖𝑜 ∪ ∅. Since the resulting
tensor product support is the same as for composition, our methods
are very similar. For bij𝑛 and bij𝑒 , we use the same bijection between
𝐴 and 𝐴 + ∅ (and symmetric). For bij𝑝 , it is done as for composition.
The equ𝑐 , equ𝑝 , equ𝑙 are also a simple matter of case analysis.

Associativity (cf. Eq. (M1)) is proven in a similar way, with the
same bijections from 𝐴 ⊎ (𝐵 ⊎𝐶) to (𝐴 ⊎ 𝐵) ⊎𝐶 we used in com-
position. The only care taken here is with the reordering of places.

We prove that tensor product commutes with composition (cf.
Eq. (M3)) by reordering the elements. This proof is the longest, with
a lot of variables and cases but still remains a mere case analysis.

We also prove that tensor product is a congruence to our equiva-
lence. Intermediate lemmas and proving congruence of ∈ are useful
here. This allows us to declare the tensor product as a morphism.

Some remarks about the proofs: despite their straightforward-
ness proofs like the ones of transitivity, distributivity or congruence
become pretty long because of the multitude of cases to expose.

These last two subsections proofs show that our implementation
of ⊗ and ◦ respect spm-category’s rules. In order to have a fully
implemented spm-category, we need to have symmetry arrows.

5.4 Symmetries and Axioms
To prove that abstract bigraphs are indeed an spm-category, we need
to prove the remaining axioms of Section 2.3 and the bigraphical
structure axioms defined by Milner [20](page 31). We implement
them in the Symmetries file, but we do not expand on these proofs.

To prove Eq. (S1), we use the id bijection and usual neutral
element’s rules. For Eq. (S2), both bigraphs have no nodes, so we
create bijections from void to void ⊎ void. Interfaces simply need to
commute to get equivalence. For Eq. (S4) as well both bigraphs have
no nodes and bijections go from void to sums of void. Interfaces
equality stems from commutativity and associativity of + and ⊎
operators. Eq. (S3) requires similar tools of commutativity.

With these final theorems, we have proven that we have imple-
mented an spm-category.

6 Derived Operators
When specifying bigraphs it is useful to work at a higher level than
composition/tensor by defining a set of derived operators: parallel
product, nesting and merge product (respectively implemented in
ParallelProduct, Nesting and MergeProduct). These derived oper-
ators use some of the classical node-free bigraphs introduced in
Section 2.2 to rename or rearrange the interface.

6.1 Parallel Product
Parallel product (denoted ∥, and shown in Fig. 5) is similar to tensor
product, in that it places bigraphs side-by-side, but additionally it
joins any like-names shared between the bigraphs (recall that tensor
product requires disjoint names). For example, two bigraphs both
with an outername 𝑦 will bear a (new) outername 𝑦. To be able to
parallel product two bigraphs there is a requirement on innernames:
if bigraphs 𝑏1 and 𝑏2 share an innername 𝑖 , then both in 𝑏1 and 𝑏2, 𝑖
must be linked to a common outername (else it is impossible to know
which outername to link to). We call this requirement iToO and
implement it in the UnionPossible file. Formally, iToO(𝑏1, 𝑏2) :=
∀𝑖 ∈ 𝑖1 ∩ 𝑖2, link1 (𝑖) = link2 (𝑖) ∈ 𝑜1 ∩ 𝑜2.

As with the other operators, wewrite this requirement in a Class
called UnionPossible. To allow Coq to automatically infer some
proofs, we export some clever class instances of UnionPossible.
For instance, Eq. (1) is used several times in the rest of this section:

∀𝑏1,∀𝑏2, 𝑖1 ∩ 𝑖2 = ∅ =⇒ iToO(𝑏1, 𝑏2) (1)

Although parallel product is a derived operator, we specify it
with a new definition (rather than directly in terms of tensor). Our
implementation introduces ∥. ∥ that acts like ⊗ but allows name-
sharing:
iToO(𝑏1, 𝑏2) ⇛ 𝑏1 ∥ 𝑏2 : ⟨𝑠1 + 𝑠2, 𝑖1 ∪ 𝑖2⟩ → ⟨𝑟1 + 𝑟2, 𝑜1 ∪ 𝑜2⟩ :=
⟨𝑛1 ⊎ 𝑛2, 𝑒1 ⊎ 𝑒2, ctrl1 ⊎ ctrl2, prnt1 ⊗ prnt2, link1 ∥ link2⟩

We use the same prnt function acyclicity proof as in Section 5.3.

BiCoq: Bigraphs Formalisation with Coq SAC ’25, March 31-April 4, 2025, Catania, Italy

n1

0

x

y a

b

∥
n2

0

z

y a

b

=
n1

0

n2

1

zx

y
a

b

Figure 5: Parallel product

Properties of parallel product. To prove correctness of this op-
eration, we first prove that ∥ is a derivative of ⊗: when names
are disjoint, 𝑏1 ∥ 𝑏2 = 𝑏1 ⊗ 𝑏2. To do so, we require Eq. (1) to
have iToO(𝑏1, 𝑏2). Then we use the definition of ∥ and break down
whether the innernames were from 𝑖1 or 𝑖2.

Then we prove that id𝜖 is a neutral element for parallel product.
To generate the iToO proof, we use the disjointness of 𝑖 and ∅ and
Eq. (1). The proof is then the one of tensor product Section 5.3.

We also prove that parallel product is associative. This first re-
quires proving that : iToO(𝑏1, 𝑏2) ∧ iToO(𝑏2, 𝑏3) ∧ iToO(𝑏1, 𝑏3) =⇒
iToO((𝑏1 ∥ 𝑏2), 𝑏3). This amounts to proving that ∀𝑖 ∈ (𝑖1 ∪
𝑖2) ∩ 𝑖3, link𝑏1 ∥𝑏2 (𝑖) = link3 (𝑖). This is directly deduced from ∀𝑖 ∈
𝑖1 ∩ 𝑖3, link1 (𝑖) = link3 (𝑖) and ∀𝑖 ∈ 𝑖2 ∩ 𝑖3, link2 (𝑖) = link3 (𝑖).

6.2 Merge Product
Merge product (denoted |) produces a bigraph with a single root,
i.e. it creates siblings. It is itself derived from parallel product (it is
a parallel product composed with a merge bigraph, cf Section 2.2).
As it is based on parallel product, we require iToO to hold. Merge
product is defined as:

iToO(𝑏1, 𝑏2) ⇛ 𝑏1 | 𝑏2 : ⟨𝑠1 + 𝑠2, 𝑖1 ∪ 𝑖2⟩ → ⟨1, 𝑜1 ∪ 𝑜2⟩ :=
(merge𝑟1+𝑟2 ⊗ id0,𝑜1∪𝑜2) ◦ (𝑏1 ∥ 𝑏2)

Implementation-wise, we can’t explicitely state that the type of
𝑏1 | 𝑏2 is ⟨𝑠1 + 𝑠2, 𝑖1 ∪ 𝑖2⟩ → ⟨1, 𝑜1 ∪ 𝑜2⟩ because Coq computes the
type of (merge𝑟1+𝑟2 ⊗ id0,𝑜1∪𝑜2) ◦ (𝑏1 ∥ 𝑏2) as ⟨𝑠1 + 𝑠2, 𝑖1 ∪ 𝑖2⟩ →
⟨1 + 0, ∅ ∪ (𝑜1 ∪ 𝑜2)⟩. This may be fixed through an explicit casting,
but for now this does not pose any issues.

Properties of merge product. To prove correctness, we first prove
that merge0 is a unit for merge product. To do so, we reuse proof
of iToO of Section 6.1, the proof from then is straightforward.

Then we prove | is associative, this requires the same proof as for
∥ that iToO(𝑏1, 𝑏2) ∧ iToO(𝑏2, 𝑏3) ∧ iToO(𝑏1, 𝑏3) =⇒ iToO((𝑏1 |
𝑏2), 𝑏3), the main proof also follows the same structure.

6.3 Nesting
Nesting (denoted ·) is like a composition allowing nested bigraphs
to pass their outernames to the top-level, i.e. (⟨1, {}⟩ → ⟨1, {𝑦}⟩) ·
(⟨0, {}⟩ → ⟨1, {𝑥}⟩) = ⟨0, {}⟩ → ⟨1, {𝑥,𝑦}⟩. In a composition this
would not be allowed, as 𝑥 is not in the innerface of the context.
Nesting is defined as:

𝑖1 = ∅∧𝑠1 = 𝑟2 ⇛ 𝑏1 ·𝑏2 : ⟨𝑠2, 𝑖2⟩ → ⟨𝑟1, 𝑜1∪𝑜2⟩ := (id0,𝑜2 ∥ 𝑏1)◦𝑏2
Implementation-wise, we have the same remark as for |, which

is that the type of (id0,𝑜2 ∥ 𝑏1) ◦ 𝑏2 is ⟨𝑠2, 𝑖2⟩ → ⟨0 + 𝑟1, 𝑜2 ∪ 𝑜1⟩.

Properties of nesting. To prove correctness of the nesting operator,
we first prove that nesting has id𝑠,∅ as a right neutral element and
id𝑟,∅ as a left. The proof follows the same flow as composition.

Then we prove · is associative, again similarly to composition.
These derived operators should allow to uniquely express a bi-

graph as an algebraic formula of elementary bigraphs.

7 Related Work
Coq has been used to implement many theories similar to the bi-
graph theory, although many are abstract and do not provide direct
access to the results we required to encode bigraphs. For instance,
Wiegley has implemented large parts of category theory in Coq [27],
which we hope could be used to instanciate a category of our bi-
graphs. However, such a deep embedding would likely prove itself
too stiff when dealing with changes, especially in early exploratory
stages of our formalization. The categories of bigraphs are also
not always well defined due to the need for disjoint supports, i.e.
they are special categories (called paracategories or precategories)
where composition may not always be defined. Another example of
abstract theories is Geuvers et al. implementation of monoids [14]
or Gaspar et al. component-based approach [13].

Doczkal and Pous implement graph theory in Coq [11]. They
represent graphs as a record of vertices, represented as a finite
type, and edges, represented as a boolean relation between two
vertices.We cannot directly use this representation as our links are
hyperedges so cannot be represented with binary relations, and our
parent relation needs to be acyclic. Additional aspects of bigraphs
such as open edges, innernames etc. are also missing. Graph theory
has been implemented in other theorem provers, for example in
Lean 4 [17]. Here graphs are represented as an array of adjacency
lists. Graphs have also been formalized in Isabelle [22] as a record
of vertices, edges and two functions that map the edges to their
heads and tails (this is a common approach in graph transformation
literature), and a different Isabelle implementation [24] uses sets of
nodes and sets of sets of nodes to represent the edges.

Although not computer certified, bigraphs have already been im-
plemented in BigraphER [26]. BigraphER is a powerful toolkit that
allows to compute or simulate the transition system of a bigraphical
reactive system. It enables the use of (external) model checkers for
verification. BigraphER supports many theory extension including
bigraphs with sharing, stochastic and probabilistic reaction rules,
rule priorities and predicate checking, and it is an open question
how we extend our formalism to also model these features. In fu-
ture, we will use the code extraction mechanism of Coq to provide
a correct-by-construction implementation of bigraphs that can be
used to execute bigraphical reactive systems, e.g. creating a verified
version of (parts of) BigraphER.

8 Conclusion and Future Work
We have taken the first step into formally encoding bigraphs theory
in the Coq theorem prover, approximately amounting to 1,500 lines
of specification. We have implemented the main bigraph type that,
like in the theory, hides the specific concrete details (e.g. nodes and
edges) behind a well defined interface (based on places and names).

We have implemented and shown correctness of the main oper-
ators on bigraphs: composition, tensor product and main derived

SAC ’25, March 31-April 4, 2025, Catania, Italy C. Marcon et al.

operators. We have shown an approach to recovering support and
lean-support equivalence that determines when two bigraphs are
structurally equivalent. We used these equivalences to prove rele-
vant spm-category axioms. We are now confident our implementa-
tion is sound to reason upon.

With more complex operators come more complex interface
requirements. Therefore, our automated proof search based upon
Coq classes and instances could be extended to cope with more
general situations.

We think it is also possible to encode sorting [3]. It extends
the interface to add domain specific constraints determining when
composition is legal, e.g. buildings are not nested within rooms.

Now that we can prove properties of bigraph structures, the next
step is to encode bigraph dynamics, which are essential to model
interactive systems. Dynamics are specified using a set of rewriting
rules (reaction rules) that replace sub-bigraphs with sub-bigraphs,
and example reaction rules are shown in [2]. Implementing rewrit-
ing requires identifying patterns within a larger bigraph. This may
be achieved through decompositions [15], although for efficiency
we may require a custom pattern-matching algorithm which may
be inspired by [4]. Pattern-matching within graphs and bigraphs
is a complex combinatorial task where enumeration of candidate
sub-graphs is central. For example, BigraphER uses a sophisticated
custom subgraph isomorphism algorithm [1]. As a first step we
will explore an approach path using lazy enumeration strategies
and lazy lists (lists that do not get fully computed until we need to
access a specific element).

The wider outcome is the access to a well defined bigraph theory
that can be used to underpin analysis and verification of critical
systems. We are particularly interested in the verification of user
interfaces for aviation scenarios and aim to use the new formalism
within this domain. This will require verified code extraction from
the Coq specification.

The formal approach is also relevant for those wanting to reason
soundly on 𝜋-calculcus or other process algebras such as BigrTiMo
(a process calculus based on bigraphs) [28].

Acknowledgments
This work is partially supported by the British Council through
the Alliance Hubert Curien Programme and an Amazon Research
Award on Automated Reasoning. We thank the reviewers for their
valuable comments.

References
[1] Blair Archibald, Kyle Burns, Ciaran McCreesh, and Michele Sevegnani. 2021.

Practical Bigraphs via Subgraph Isomorphism. In 27th International Conference on
Principles and Practice of Constraint Programming, CP (Virtual Conference), October
25-29, 2021 (LIPIcs, Vol. 210), Laurent D. Michel (Ed.). Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 15:1–15:17. https://doi.org/10.4230/LIPIcs.CP.2021.15

[2] Blair Archibald, Muffy Calder, and Michele Sevegnani. 2024. Practical Modelling
with Bigraphs. arXiv:2405.20745 [cs.LO]

[3] Blair Archibald and Michele Sevegnani. 2024. A Bigraphs Paper of Sorts. In
Graph Transformation - 17th International Conference, ICGT 2024, Held as Part of
STAF 2024, Enschede, The Netherlands, July 10-11, 2024, Proceedings (Lecture Notes
in Computer Science, Vol. 14774), Russ Harmer and Jens Kosiol (Eds.). Springer,
21–38. https://doi.org/10.1007/978-3-031-64285-2_2

[4] Samuel Arsac. 2022. Coq formalization of graph transformation. Master’s thesis.
Équipe PLUME, LIP, ENS Lyon. supervised by R. Harmer and D. Pous.

[5] Yves Bertot. 2008. A Short Presentation of Coq. In Theorem Proving in Higher
Order Logics. Springer Berlin Heidelberg, Berlin, Heidelberg, 12–16. https://doi.
org/10.1007/978-3-540-71067-7_3

[6] Lars Birkedal, Søren Debois, Ebbe Elsborg, Thomas Hildebrandt, and Henning
Niss. 2006. Bigraphical models of context-aware systems. In Foundations of Soft-
ware Science and Computation Structures: 9th International Conference, FOSSACS
2006, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2006, Vienna, Austria, March 25-31, 2006. Proceedings 9. Springer,
187–201.

[7] Timothy Bourke, Basile Pesin, and Marc Pouzet. 2023. Verified Compilation of
Synchronous Dataflow with State Machines. ACM Transactions on Embedded
Computing Systems 22, 5s (Sept. 2023), 137:1–137:26. https://doi.org/10.1145/
3608102 ESWEEK special issue including presentations at the 23rd Int. Conf. on
Embedded Software (EMSOFT 2023).

[8] Pierre Boutillier, Mutaamba Maasha, Xing Li, Héctor F Medina-Abarca, Jean
Krivine, Jérôme Feret, Ioana Cristescu, Angus G Forbes, and Walter Fontana.
2018. The Kappa platform for rule-based modeling. Bioinformatics 34, 13 (2018),
i583–i592.

[9] Vincent Danos, Jérôme Feret, Walter Fontana, Russell Harmer, Jonathan Hayman,
Jean Krivine, Chris Thompson-Walsh, and Glynn Winskel. 2012. Graphs, Rewrit-
ing and Pathway Reconstruction for Rule-Based Models. In FSTTCS 2012 - IARCS
Annual Conference on Foundations of Software Technology and Theoretical Com-
puter Science (LIPIcs, Vol. 18), Schloss Dagstuhl Leibniz-Zentrum fuer Informatik
(Ed.). Hyderabad, India, 276–288. https://doi.org/10.4230/LIPIcs.FSTTCS.2012.276

[10] Christian Doczkal and Damien Pous. 2020. Completeness of an axiomatization
of graph isomorphism via graph rewriting in Coq. In Proceedings of the 9th ACM
SIGPLAN International Conference on Certified Programs and Proofs. 325–337.
https://doi.org/10.1145/3372885.3373831

[11] Christian Doczkal and Damien Pous. 2020. Graph theory in Coq: Minors,
treewidth, and isomorphisms. Journal of Automated Reasoning 64 (2020), 795–825.
https://doi.org/10.1007/s10817-020-09543-2

[12] A. Mahboubi et E. Tassi. 2022. The Mathematical Components team: Mathematical
components. Zenodo. https://doi.org/10.5281/zenodo.4457887

[13] Nuno Gaspar, Ludovic Henrio, and Eric Madelaine. 2014. Bringing Coq into the
World of GCM Distributed Applications. Int. J. Parallel Program. 42, 4 (Aug. 2014),
643–662.

[14] Herman Geuvers, Randy Pollack, Freek Wiedijk, and Jan Zwanenburg. 2002. A
Constructive Algebraic Hierarchy in Coq. Journal of Symbolic Computation 34, 4
(2002), 271–286. https://doi.org/10.1006/jsco.2002.0552

[15] Arne John Glenstrup, Troels Christoffer Damgaard, Lars Birkedal, and Espen
Højsgaard. 2010. An implementation of bigraph matching. working paper TR-
2010-135. IT-Universitetet i København, Copenhagen, Denmark.

[16] Jason Gross, Adam Chlipala, and David I Spivak. 2014. Experience implementing
a performant category-theory library in Coq. In Interactive Theorem Proving: 5th
International Conference, ITP 2014, Held as Part of the Vienna Summer of Logic,
VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings 5. Springer, 275–291.

[17] Peter Kementzey. 2021. A Graph Library for Lean 4. Ph. D. Dissertation. Vrije
Universiteit Amsterdam.

[18] Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus Pister,
and Christian Ferdinand. 2016. CompCert-a formally verified optimizing compiler.
In ERTS 2016: Embedded Real Time Software and Systems, 8th European Congress.

[19] Cécile Marcon and Xavier Thirioux. 2024. BiCoq: Modeling bigraphs with Coq.
https://doi.org/10.5281/zenodo.12522237

[20] Robin Milner. 2009. The space and motion of communicating agents. Cambridge
University Press.

[21] Nicolas Nalpon, Cyril Allignol, and Célia Picard. 2022. Towards a User Inter-
face Description Language Based on Bigraphs. In International Colloquium on
Theoretical Aspects of Computing. Springer, 360–368.

[22] Lars Noschinski. 2014. A Graph Library for Isabelle. Mathematics in Computer
Science 9 (03 2014), 23–39. https://doi.org/10.1007/s11786-014-0183-z

[23] Gian Perrone, Søren Debois, and Thomas Hildebrandt. 2012. A model checker
for Bigraphs. Proceedings of the ACM Symposium on Applied Computing (03 2012).
https://doi.org/10.1145/2245276.2231985

[24] Tom Ridge. 2005. Graphs and Trees in Isabelle/HOL.
[25] Hamza Sahli, Thomas Ledoux, and Éric Rutten. 2020. Modeling self-adaptive fog

systems using bigraphs. In Software Engineering and Formal Methods: SEFM 2019
Collocated Workshops: CoSim-CPS, ASYDE, CIFMA, and FOCLASA, Oslo, Norway,
September 16–20, 2019, Revised Selected Papers 17. Springer, 252–268.

[26] Michele Sevegnani and Muffy Calder. 2016. BigraphER: Rewriting and analysis
engine for bigraphs. In Computer Aided Verification: 28th International Conference,
CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II 28. Springer,
494–501. https://doi.org/10.1007/978-3-319-41540-6_27

[27] John Wiegley. 2022. Category Theory in Coq. GitHub. https://github.com/
jwiegley/category-theory

[28] Wanling Xie, Huibiao Zhu, and Qiwen Xu. 2021. A process calculus BigrTiMo of
mobile systems and its formal semantics. Formal Aspects of Computing 33 (2021),
207–249. https://doi.org/10.1007/s00165-021-00530-x

https://doi.org/10.4230/LIPIcs.CP.2021.15
https://arxiv.org/abs/2405.20745
https://doi.org/10.1007/978-3-031-64285-2_2
https://doi.org/10.1007/978-3-540-71067-7_3
https://doi.org/10.1007/978-3-540-71067-7_3
https://doi.org/10.1145/3608102
https://doi.org/10.1145/3608102
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.276
https://doi.org/10.1145/3372885.3373831
https://doi.org/10.1007/s10817-020-09543-2
https://doi.org/10.5281/zenodo.4457887
https://doi.org/10.1006/jsco.2002.0552
https://doi.org/10.5281/zenodo.12522237
https://doi.org/10.1007/s11786-014-0183-z
https://doi.org/10.1145/2245276.2231985
https://doi.org/10.1007/978-3-319-41540-6_27
https://github.com/jwiegley/category-theory
https://github.com/jwiegley/category-theory
https://doi.org/10.1007/s00165-021-00530-x

	Abstract
	1 Introduction: Reasoning upon Bigraphs
	2 Bigraphs: Definitions
	2.1 Elements of Bigraphs
	2.2 Elementary Bigraphs
	2.3 Categorical Axioms

	3 Coq Formalisation
	3.1 Representing Sets and Acyclic Functions
	3.2 The bigraph Type

	4 Equivalence Between Bigraphs
	4.1 Support-Equivalence
	4.2 Lean-Support Equivalence

	5 Bigraphs as an spm-category
	5.1 Interface Requirements
	5.2 Composition
	5.3 Tensor Product
	5.4 Symmetries and Axioms

	6 Derived Operators
	6.1 Parallel Product
	6.2 Merge Product
	6.3 Nesting

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References

