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Abstract—The Belief-Desire-Intention (BDI) architecture is a
popular framework for rational agents, yet most verification
approaches are limited to analysing the behaviours of an agent in
a subset of all possible environments. However, in practice, BDI
agents operate in dynamic environments where the exact occur-
rence of external changes is difficult to predict. For safety/security
we need to assess whether the agent behaves as required in
all circumstances. To address this, we define environments,
accounting for both sensor information about physical changes
and new tasks to be completed, as a non-deterministic finite-
state automata. We give an environment-enabled extension to
the Conceptual Agent Notation (CAN) language including an
executable semantics via an encoding to Milner’s bigraphs and
the BigraphER tool. We illustrate the framework through a
simple Unmanned Aerial Vehicle (UAV) example that is verified
using mainstream tools including PRISM model checker. Results
show our approach can automatically identify agent design flaws
to aid agent programmers in design, debugging, and analysis.

Index Terms—BDI Agents, Formal Methods, Environments

I. INTRODUCTION

Belief-Desire-Intention (BDI) is one of the most pop-
ular agent development frameworks and forms the basis
of many agent-oriented programming languages including
AgentSpeak [1], CAN [2], and 3APL [3]. In BDI frameworks,
(B)eliefs represent what the agent knows, (D)esires what the
agent wants to bring about, and (I)ntentions the desires the
agent is currently acting upon. With a collection of mature
software and platforms including JACK [4], and Jason [5].
BDI agents are recognised for their efficiency and scalability
domains such as in business [6] and healthcare [7].

BDI agents rarely stand alone but instead exist in an
environment—information that the agent has been designed to
understand—and operate by means of a reasoning cycle (see in
Fig. 1) with three consecutive steps: (1) perceive, (2) deliberate
and (3) act. The first step is to perceive the environment
to update the agent’s beliefs, the second to deliberate to
determine, for example, what plan to select under current
beliefs (specified by language semantics), and the third to act
on the external environment by executing actions of selected
plans. This approach facilitates the design of practical agents
that can effectively interact with their situated environments.
However, designing agents to ensure correct behaviours in all
possible environments is very difficult. As agent systems (e.g.
robotic systems [8]) are increasingly popular and employed
in many real-life (e.g. domestic and industrial) settings, it is
crucial to analyse their behaviours, comprehensively, under all
circumstances.

To illustrate the issues, we consider scenarios from Un-
manned Aerial Vehicles (UAVs). In searching operations,

Figure 1: Agent interactions with an environment consisting of
external physical changes due to e.g. natural phenomena. Numbers
give the order of operation. All information is fed into the belief base.

UAVs patrol a designated area to identify objects of interest,
e.g. missing persons, returning to base when detection is
successful. During the mission, UAVs are expected to interact
with the physical world. For example, UAVs should activate
parking mode if the weather becomes harsh. The changes of
these physical attributes (e.g. the weather and objects available
to be detected) can happen at any time during UAV’s mission
and all combinations of these changes may produce complex
behaviours. Therefore, we need mechanisms (e.g. verification
techniques), involving an automated exhaustive analysis, in
order to assess whether agents will always behave correctly
under any environmental conditions.

Traditionally the analysis of agent behaviours is carried out
by computational simulations. For example, the BDI platform
Jason supports simulated environments that provide certain
services to the agent (the ability to access perceptions and
take actions). While computational simulations are quick to
run, they are generally non-exhaustive in terms of agent
behaviours in a given environment. As such, actual agent
behaviours in deployment may not be the simulated ones and
rare changes can be difficult to be tested despite of many runs
of simulations. To analyse all possible runs of agent behaviours
in one environment, works (e.g. [9]) apply formal verification
to build a mathematical model of the agent system. However,
if the agents are to be used in safety-critical areas, or where
agent mistakes might involve financial penalties, this approach
guarantees very little about agent behaviours in actual envi-
ronments (which are difficult to accurately predict at design
stage). Therefore, to provide stronger guarantees, we assess
all possible agent behaviours in all possible environments. A
graphical comparison between these approaches and ours are
illustrated in Fig. 2.



Figure 2: Approaches analysing agent behaviours. Simulation (a):
one run of agent behaviour in one environment; existing verification
(b): all possible agent behaviours in one environment; and our ap-
proach (c): all possible agent behaviours in all possible environments.

We provide a verification framework based on Bi-
graphs [10]—a graph-based universal modelling formalism—
that models both BDI agents and environments. We build
on previous work [11] on a bigraph encoding of CAN se-
mantics [2] (that includes the behaviour of classical BDI
agents and advanced features such as declarative goals), and
provides executable semantics for BDI agents operating in a
(dynamic) environment. Verification is achieved through main-
stream software tools including BigraphER and PRISM [12],
and demonstrated by verifying several properties of UAVs.

As the external environment with respect to an agent may
change while the agent is reasoning, the key of our approach
is to provide a formalisation of external dynamics that sum-
marises the main environment changes (due to e.g. natural
phenomena) over each of the reasoning cycle. In other words,
how the external environment has been updated in reality over
each cycle is subject to the nature of the environment and
what matters is that the agent can access the final effects of
what has changed over this cycle. By focusing on reasoning
cycles, we remain agnostic to the actual time required for
each cycle, which can be difficult to anticipate at design stage
due to the delay or variation in real process deployed on the
hardware. This approach offers a feasible way to specify the
dynamics of external environments while enabling practical
verification by avoiding both state explosion and difficult
time synchronization problem between agent reasoning and
environment simulation when using real-time.

We make the following research contributions:

• We formalise the dynamics of external environments due
to e.g. natural phenomena and other agents as a finite
non-deterministic finite-state automata.

• We provide a verification framework for environment-
enabled CAN agents via bigraphs that guarantees ex-
pected agent behaviours under all possible environments.

• We showcase our formal verification approach and illus-
trate how it can improve the design of the BDI agents.

The paper is organised as follows. In Section II we review
BDI agents and Bigraphs. In Section III we define the frame-
work for agents in dynamic environments. In Section V we
demonstrate our approach using a UAV example. We discuss
related work in Section VI and conclude in Section VII.

II. BACKGROUND

A. BDI Agents

The CAN language formalises classical BDI agents con-
sisting of a belief base B and a plan library Π. The belief
base B is a set of formulas encoding the current beliefs from
a language L and has belief operators for entailment (i.e.
B |= φ), and belief atom addition (resp. deletion) B ∪ {b}
(resp. B \ {b})1. A plan library Π is a collection of plans of
the form e : φ← P with e the triggering event, φ the context
condition, and P the plan-body. Events can be either external
or internal (i.e. sub-goals that the agent tries to accomplish).
We also use E to denote the set of events (i.e. the triggering
event) in the plan library. The language used in the plan-body
is defined by P = nil | act | e | P1;P2 | P1▷P2 | P1 ∥ P2 | e :
(|φ1 : P1, · · · , φn : Pn|) | goal(φs,P , φf ) with nil an empty
program, act a primitive action, and e an internal event. In
addition, we use P1;P2 for sequence, P1 ▷ P2 to first try P1

and use P2 in case of failure, and P1 ∥ P2 for interleaved
concurrency. A set of relevant plans (those that respond to the
same event) is denoted by e : (|ψ1 : P1, · · · , ψn : Pn|). A
goal program goal(φs,P , φf ) states that the declarative goal
φs should be achieved by repeatedly executing P , failing if
φf holds and exiting successfully if φs holds (see [13] for full
details). The action act is in the form of act : φ ← ϕ−;ϕ+

where φ is a precondition, and ϕ− and ϕ+ are the sets of belief
atoms to be deleted and added after the action is executed.

CAN semantics is specified by two types of transitions.
The first, denoted →, specifies intention-level evolution on
configurations ⟨B, P ⟩ where B is the belief base, and P the
plan-body currently being executed. The second type, denoted
⇒, specifies agent-level evolution over ⟨Ee,B,Γ⟩, detailing
how to execute a complete agent where Ee is the set of
pending external events to address (a.k.a. desires), B the belief
base, and Γ a set of partially executed plan-bodies (intentions).

Fig. 3 gives rules for evolving any single intention. For
example, the rule act handles the execution of an action, when
the pre-condition ψ is met, resulting in a belief state update.
Rule event replaces an event with the set of relevant plans,
while rule select chooses an applicable plan from a set of
relevant plans while retaining un-selected plans as backups.
With these backup plans, the rules for failure recovery ▷;, ▷⊤,
and ▷⊥ enable new plans to be selected if the current plan
fails (e.g. due to environment changes). Rules ; and ;⊤ allow
executing plan-bodies in sequence, while rules ∥1, ∥2, and
∥⊤ specify how to execute (interleaved) concurrent programs.
Rules Gs and Gf deal with declarative goals when either the
success condition φs or the failure condition φf become true.
Rule Ginit initialises persistence by setting the program in the
declarative goal to be P ▷ P , i.e. if P fails try P again, and
rule G; takes care of performing a single step on an already
initialised program. Finally, the derivation rule G▷ re-starts
the original program if the current program has finished or
got blocked (when neither φs nor φf becomes true).

1Any logic is allowed providing entailment is supported. A propositional
logic is used in our example.



act : ψ ← ⟨ϕ−, ϕ+⟩ B ⊨ ψ

⟨B, act⟩ → ⟨(B \ ϕ− ∪ ϕ+), nil⟩
act

∆ = {φ : P | (e′ = φ← P ) ∈ Π ∧ e′ = e}
⟨B, e⟩ → ⟨B, e : (| ∆ |)⟩

event
φ : P ∈ ∆ B |= φ

⟨B, e : (| ∆ |)⟩ → ⟨B, P ▷ e : (| ∆ \ {φ : P} |)⟩
select

⟨B, P1⟩ → ⟨B′, P ′
1⟩

⟨B, P1 ▷ P2⟩ → ⟨B′, P ′
1 ▷ P2)⟩

▷; ⟨B, (nil▷ P2)⟩ → ⟨B′, nil⟩
▷⊤

P1 ̸= nil ⟨B, P1⟩↛ ⟨B, P2⟩ → ⟨B′, P ′
2⟩

⟨B, P1 ▷ P2⟩ → ⟨B′, P ′
2⟩

▷⊥
⟨B, P ⟩ → ⟨B′, P ′⟩

⟨B, (nil;P )⟩ → ⟨B′, P ′⟩
;⊤

⟨B, P1⟩ → ⟨B′, P ′
1⟩

⟨B, (P1;P2)⟩ → ⟨B′, (P ′
1;P2)⟩

;
⟨B, P1⟩ → ⟨B′, P ′

1⟩
⟨B, (P1∥P2)⟩ → ⟨B′, (P ′

1∥P2)⟩
∥1

⟨B, P2⟩ → ⟨B′, P ′
2⟩

⟨B, (P1∥P2)⟩ → ⟨B′, (P1∥P ′
2)⟩
∥2 ⟨B, (nil∥nil)⟩ → ⟨B, nil⟩

∥⊤

B |= φs

⟨B, goal(φs,P, φf )⟩ → ⟨B, nil⟩
Gs

B |= φf

⟨B, goal(φs,P, φf )⟩ → ⟨B, ?false⟩
Gf

P ̸= P1 ▷ P2 B ⊭ φs B ⊭ φf

⟨B, goal(φs,P, φf )⟩ → ⟨B, goal(φs,P ▷ P, φf )⟩
Ginit

B ⊭ φs B ⊭ φf ⟨B, P1⟩ → ⟨B′, P ′
1⟩

⟨B, goal(φs, P1 ▷ P2, φf )⟩ → ⟨B′, goal(φs, P ′
1 ▷ P2, φf )⟩

G;
B ⊭ φs B ⊭ φf ⟨B, P1⟩↛

⟨B, goal(φs, P1 ▷ P2, φf )⟩ → ⟨B, goal(φs, P2 ▷ P2, φf )⟩
G▷

Figure 3: Intention-level CAN semantics.

e ∈ Ee

⟨Ee,B,Γ⟩ ⇒ ⟨Ee \ {e},B,Γ ∪ {e}⟩
Aevent

P ∈ Γ ⟨B, P ⟩ → ⟨B′, P ′⟩
⟨Ee,B,Γ⟩ ⇒ ⟨Ee,B′, (Γ \ {P}) ∪ {P ′}⟩

Astep
P ∈ Γ ⟨B, P ⟩↛

⟨Ee,B,Γ⟩ ⇒ ⟨Ee,B,Γ \ {P}⟩
Aupdate

Figure 4: Agent-level CAN semantics.

The agent-level semantics are given in Fig. 4. The rule
Aevent handles external events, that originate from the en-
vironment, by adopting them as intentions. Rule Astep selects
an intention from the intention base, and evolves a single step
w.r.t. the intention-level transition, while Aupdate discards any
intentions that cannot make progress (either because they have
already succeeded, or failed).

B. Bigraphs

Bigraphs are a graph-based universal modelling formalism,
introduced by Milner [10] for describing systems with both
spatial confinement and non-local linking. They have been
used for modelling ubiquitous systems including [14], [15], as
a unifying theory of process calculi e.g. [16]. The evolution of
bigraphs is described through over a rewriting system specified
via reaction rule l ▶ r that replace a bigraph matching l
with a bigraph matching r. Given an initial bigraph and set
of reaction rules we can derive a non-deterministic transition
system capturing the behaviour of the system.

We have used bigraphs to encode the existing CAN language
semantics to symbolically analyse BDI agent behaviour [11].
The encoding defines an equivalent bigraph for any CAN
agent, and defines reaction rules that faithfully model the
operational semantics. To execute bigraphical reactive systems,
we employ BigraphER [17], an open-source language and
toolkit for bigraphs. BigraphER allows exporting transitions
systems, e.g. DTMCs, for analysis in PRISM. To aid writing
logical formulas over transition systems, states are labelled
using bigraph patterns that assign a state predicate labels if it
contains (a match of) given bigraph patterns.

III. FRAMEWORK

In this section, we first formalise our notion of an environ-
ment and then extend the existing CAN semantics to enable
the agent to perceive and alter the environment.

A. Environments

Most existing BDI frameworks either omit the environment
(e.g. CAN) or provide it with an informal treatment (e.g.

AgentSpeak). In order to analyse an agent behaviour in an
environment we first formalise environments. Following the
work [18], we consider environments accounting for both
sensor information (a set of beliefs literals) and external events
(a set of tasks to complete). Recall the formula in a belief base
of a BDI agent is from the language L and the set of events
the agent can respond to is E. We can have the alphabet for an
environment as E = L∪E. An environment state, representing
the environment at a point in time, is hence defined as follows:

Definition 1. An environment state is Θ ∈ Q such that Q = 2E

and for any formula b from language L, if b ∈ Θ, then ¬b /∈ Θ.

Environment states are sets of belief formulae and newly
requested events which holds in the environment at some point.
We assume an underlying mechanism that converts from real-
world environments to e.g. symbolic literals through pattern
detection from sensor input. The condition ensures that no
environment states has information indicating that both b and
¬b are true, i.e. the law of the excluded middle.

Example 1. A UAV that perceives an environment state Θ =
{¬harsh weather} believes (based on sensor information) that
the weather is not harsh.

To support, for example, cases when the an agent changes
the environment but the effects of acting are undone by e.g.
humans before the agent starts perceiving in the next cycle,
we separate environment changes imposed by the agent from
environment changes e.g. due to external factors. Environment
dynamics contributed by the agent will be formalised through
the extensions of CAN semantics in Section III-B. Meanwhile,
we given the following external dynamics with respect to an
agent for an environment over each agent reasoning cycle.

Definition 2. The external dynamics for an agent in an
environment is a tuple ⟨Q,Θ0, ϵ⟩ where Q = 2E is a set of
environment states, and Θ0 ∈ Q an initial (or start) state, and
δ : Q→ 2Q a finite nondeterministic function transitioning a
state Θ ∈ Q to a finite set of successor states {Θ1, . . . , Θn}.



Essentially, external dynamics of an environment is for-
malised as a non-deterministic finite-state automata and it, by
definition, is relative to the agent under consideration, as any
other agent is a part of the external environment.2

Example 2. Following Example 1, we assume the current
environment state Θ = {¬harsh weather}. Then a possible
finite set of successor states can be Θ1 = {¬harsh weather},
Θ2 = {¬harsh weather, e deliver}, Θ3 = {harsh weather}
Θ4 = {harsh weather, e deliver} where e deliver is a new
(external) event. These four states describes all combinations
of physical attribute harsh weather and the event e deliver3.

In the following section, we extend CAN semantics to
interact with the external changes in an environment.

B. Perceiving and Acting

Currently CAN does not support explicit environments.
To allow environments, we argument both intention level
configuration ⟨B, P ⟩ (resp. agent-level configuration) in CAN
with an environment state Θ, namely [⟨B, P ⟩, Θ] (resp.
[⟨Ee,B,Γ⟩, Θ]) where B is the belief base, P the current
intention, Ee the external event set, and Γ the set of intentions.

When perceiving, the belief base B of an agent is updated
to reflect4 the current environment state Θ where B = Θ.
While sensed information may remain in the environment,
the perceived new events should be deleted to avoid them
being adopted twice, i.e. these are explicitly removed from
the environment. The following rule Aperceive is given.

[⟨Ee,B,Γ⟩, Θ]⇒ [⟨Ee, Θ,Γ⟩, Θ \ {e | e ∈ Θ]
Aperceive

After perceiving, the agent assimilates perceived new events
to the external event set at some later reasoning cycle and
subsequently removed from the belief base (rule Aassimilate).

e ∈ B
[⟨Ee,B,Γ⟩, Θ]⇒ [⟨Ee ∪ {e},B \ {e},Γ⟩, Θ]

Aassimilate

Alongside external dynamics, the agent can alter the envi-
ronment through acting. Although there is already an intention-
level rule in CAN for acting, it only changes the belief base
(rule act in Fig. 3) which assumes that the agent immediately
believes the action has had an effect on the environment.
However as, for example, the actions on an agent might be
undone another agent, an agent should wait for the effects
to take place in the environment and update its beliefs only
after sensing from the environment in the next reasoning cycle
(through rule Aperceive). As such, we replace the old act rule
with the following rule actnew to apply effects of actions
always in the environment, not the belief base.

act : ψ ← ⟨ϕ−, ϕ+⟩ B ⊨ ψ
[⟨B, act⟩, Θ]→ [⟨B, nil⟩, (Θ \ ϕ−) ∪ ϕ+]

actnew

2This definition is a special case when the agent is fixed and can be extended
in future to allow multi-agents in a shared environment.

3Unlike belief formulae built from a language, the negation of an event in
an environment is denoted as the absence of such an event.

4Partial observability is not currently supported.

Finally, the update of an environment due to the external
dynamics is applied in the beginning of each reasoning cycle
according to Definition 2 and is detailed in Section IV

IV. AGENT REASONING CYCLE

We encode the process of reasoning cycle (shown in Fig. 1)
including external dynamics of an environment, via bigraphs,
to obtain an executable semantics (available online5) for ver-
ification. It has a three step process described as follows:

Step 1 (environment update): Apply the non-deterministic
function δ in Definition 2 to update the current environment
state Θ to a finite set of states δ(Θ) = {Θ1, . . . , Θn};

Step 2 (perceive): Using rule Aperceive, an agent perceives
everything in the current (just updated) environment.

Step 3 (progress): Progress the agent using rule Aassimilate
or rules in Fig. 4. When Anewstep is applied, it selects an intention
non-deterministically from the intention base, and evolves a
single step w.r.t. intention-level transition (seen in Fig. 3).

Whereas step 1 is specified by the environment transition
function, the rest is formalised as a disjunction of CAN
semantic rules. The reasoning cycle is repeated until all
external events and intentions are fully addressed and no more
new tasks is requested. As we seek to examine the agent
behaviours, we stop analysis when the agent stops operating.

To analyse an agent in all possible environments, model
checking is applied to the transition system generated from
our executable semantics. As we use bigraphs, the transition
system has bigraphs as states and rewrite rules as transitions.
To reason over the transition system, we labels states with
bigraph patterns [15] (bigraph matches), and specify dynamic
properties using linear or branching time temporal logics
such as Computation Tree logic (CTL) [19]. As we generate
a transition system, the property specification language is
constrained by the model checker. Here we use the non-
probabilistic and non-reward logics provided by PRISM6.

V. UAVS EXAMPLE

To illustrate our framework, we consider a small example
taken from UAV surveillance mission systems [11].

A. Design

A UAV patrols a pre-defined area to identify objects of in-
terest and can park itself upon harsh weather to avoid damage.
The agent design and environment specifications are given
in Fig. 5. The first plan (line 2) addresses event e patrol init
and is always applicable (true context). The play-body con-
sists of a declarative goal goal(detection, e patrol task, false)
designed to continually pursue event e patrol task until an
object of interest is detected (i.e. detection) and with no failure
condition specified. After the completion of this goal, an action
return is executed to return to base, whose effects (unshown
here) result in that returned holds. The event e patrol task
is handled by plan on line 3 which contains a further declar-
ative goal goal(harsh weather ∨ battery low, e patrol, false)

5https://bitbucket.org/uog-bigraph/bdi env model seke22/src/master/
6As this is supported natively by BigraphER.

https://bitbucket.org/uog-bigraph/bdi_env_model_seke22/src/master/


1 Plan library

2 e patrol init : true← goal(detection, e patrol task, false); return

3 e patrol task : true← goal(harsh weather, e patrol, false); e pause

4 e patrol : true← patrol

5 e pause : harsh weather ∧ ¬parked← activate parking;wait

6 e pause : harsh weather ∧ parked← wait

7 initial environment state

8 Θ0 = {¬a,¬b,¬c,¬d, e patrol init}
9 environment transition function

δ(Θ) =


{Θ, (Θ \ {¬a}) ∪ {a}, (Θ \ {¬b}) ∪ {b}, (Θ \ {¬a,¬b}) ∪ {a, b}}

if ¬a ∧ ¬b ∈ Θ (1)

{Θ, (Θ \ {¬a}) ∪ {a}}, if ¬a ∧ b ∈ Θ (2)

{Θ, (Θ \ {¬b}) ∪ {b}}, if a ∧ ¬b ∈ Θ (3)

{Θ}, if a ∧ b ∈ Θ (4)

{(Θ \ {b, c}) ∪ {¬b,¬c}}, if b ∧ c ∈ Θ (5)

where a = detection, b = harsh weather, c = waited (the effect of action wait)

and d = returned (the effect of action return).

Figure 5: Patrolling Task Design for BDI Agents.

1 Plan library

2 e patrol init : true← goal(¬harsh weather ∧ detection, e patrol task, false);

goal(¬harsh weather ∧ returned, e return task, false)

3 e patrol task : true← goal(harsh weather, e patrol, false); e pause

4 e return task : true← goal(harsh weather, e return, false); e pause

5 e patrol : true← patrol

6 e return : true← return

7 e pause : harsh weather ∧ ¬parked← activate parking;wait

8 e pause : harsh weather ∧ parked← wait

Figure 6: Discovered Corrections of Fig. 5.

instructing an agent to patrol (event e patrol) continuously,
unless the weather is harsh when it should pause (i.e. event
e pause). Whereas plans in lines 5 to 6 handle the event
e pause by waiting until weather becomes better, plan in line 4
does actual patrolling. For succinctness, descriptions of actions
(i.e. their precondition and effects) such as return and wait are
not shown, but can be found in our online model.

To specify environments, we assume favourable conditions
(as often in practice) in the initial state (line 8). The environ-
ment transition (line 9) describes the set of successor states
given the current states. The object available for detection
and harsh weather can happen at any time if they have not
from case (1-3), no update is available if detection and harsh
weather are present in case (4), and for practicality, the harsh
weather will get better after some waiting in case (5).

B. Analysis

We check that a UAV never returns to base under harsh
weather. To formalise this property, we represent state for-
mulae by bigraph patterns: φ1

def
= B(“harsh weather”) and

φ2
def
= B(“returned”). Using CTL, we have a property

¬E[F(φ1 ∧ ¬φ2 ∧ (XXφ2))] that queries if there does not
exist any path of agent behaviours in any environment that
when the weather is harsh and UAV has not returned to base,

the UAV is believed to be returned in two states7 afterwards.
However, this safety property does not hold for design

in Fig. 5. To aid in addressing this problem, the violated states
can be automatically located (by PRISM model checker). For
debugging, the graphical output of each state in the transition
system provided by BigraphER provides a diagrammatic rep-
resentation of each state enabling us to locate the bugs that
occur in the following two situations. In the first situation,
when the weather becomes harsh, the agent can execute plans
on line 5 or 6 to activate parking to avoid any potential
damage. However, before the completion of parking (e.g. the
execution of the action wait), the truth of detection which hap-
pens to hold can makes goal(detection, e patrol task, false)
succeed, leading the agent to proceed returning prematurely
without fully handling the negative environment. The case
second occurs when the weather becomes harsh shortly af-
ter the UAV completes a detection, causing the UAV to
return under harsh weather. To fix agent design flaws, we
need to add ¬harsh weather to the success condition of
goal(detection, e patrol task, false) (blue in Fig. 6) for first
case. For second case, it turned out that we also require a
declarative goal structure for the return task (red in Fig. 6).
The property now holds for new agent design in Fig. 6.

We find that both designs in Fig. 5 and Fig. 6 can lead
to a loop in the agent behaviours. Such a loop includes two
situations, namely (1) persistent patrolling when no object is
available to be detected and (2) whenever the agent is about to
patrol or return, the weather becomes harsh so that the agent
has to wait for the weather to be normal again. We can denote
the bigraph pattern for the completion of the given intention as
φ3

def
= Intent.1 if and only if it is the only intention in the base

(which is our case), that checks that along all paths eventually
the intention is completed either with success or with failure.

We also check that whenever a new event is requested
from the environment, it will be responded by the agent
eventually. We denote the bigraph pattern for the pres-
ence of new event request in an environment φ4

def
=

Environment.(e patrol init | id) and the successful assimila-
tion of such event in external event set (a.k.a. desires) as
φ5

def
= Desires.(e patrol init | id) where the symbol id (called

a site in bigraphs) stands for the part of model that is abstracted
away. We can have the property A[φ4 =⇒ Fφ5] which
checks that along all paths, if a new event is requested
(i.e. φ4 holds), this implies that eventually it will be added
in the desires. To check that the agent actually committed to
progressing this desire (leaving empty desire set in this case),
we have the property A[φ5 =⇒ Fφ6] where φ6

def
= Desires.1.

Both designs satisfy both of these properties.
Finally, a summary of these property checking is given

in Table I. It also details the transition system that was used
in the evaluation of each property: the number of states and
transitions, build time (which are in the order of minutes),
and rule applications. The rule applications are the number of

7When an action is executed by an agent (one X), it requires another step
to perceive the effects of action (another X). Hence, two Xs are needed.



Design in Fig. 5 Design in Fig. 6

Saftey Property False True
Completion Property False False
Response Property True True
Commitment Property True True

States 167 282
Transitions 242 373
Build time (s) 54.05 128.89
Rule applications 1306 2152

Table I: Properties checked: where safety property is ¬E[F(φ1 ∧
¬φ2 ∧ (XXφ2))], completion property A[Fφ3], response property
A[φ4 =⇒ Fφ5], and commitment property A[φ5 =⇒ Fφ6].

applications of reaction rules, including instantaneous reaction
rules—an advanced feature of BigraphER—that allows agents
to progress an intention without showing all sub-steps. For
example, it includes environment revision, where we see only
final output of a step of executing an action by an agent.

VI. RELATED WORK

When modelling environments for BDI agents, most exist-
ing works, similarly to our work, separates the specification
of environments from the agent designs. For example, the Ja-
CaMo platform [20] (that builds on the top of Jason) includes
an artifact-based (as resources and tools used and manipulated
by agents) framework to allow programming and executing
virtual environments. While agent computational simulations
are essential, they can, by their nature, only analyse one
possible run of agent behaviours in one environment.

Verifying BDI agent behaviours through model checking has
also been well explored. A key work in this area [9] translates
AgentSpeak programs to both the Promela modelling language
and Java, and shows how to apply the Spin [21] model checker
and Java PathFinder tool for verification. As there is no model
of how the environment should be transitioned from state to
state, it only examines all possible agent behaviours in a subset
of environment. On the contrary, we support the analysis of
all possible agent behaviours in all possible environments.

VII. CONCLUSIONS

A computational modelling and verification framework for
BDI-agents can aid design-time specification by allowing us
to reason about the behaviour of rational agents operating in
dynamic environments, e.g. those that feature to changes of
external world situations (harsh weather etc.).

We have provided a formalisation of an environment, includ-
ing the sensor information, incoming external events which the
agent needs to respond to, and the external dynamics (relative
to an agent) in such an environment. The computational mod-
elling of a dynamic environment is enabled by an extension
to the CAN language (that formalises the behaviour of a
classical BDI agent). The extended semantics are executable
(via bigraphs) to allow both the development of agent designs
and the specification of dynamic environments, exposing any
potentially anomalous agent behaviour in any environment.

Through an UAV example, we have shown it is possible to
reason about agent behaviours in all possible environments. In
particular, we found that our approach can aid automatically

identifying subtle agent design flaws rendered under some
dynamic situations. The future work is to investigate uncertain
environments to support numerical analysis, e.g. the probabil-
ity of completing an intention in adversarial conditions.
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