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Abstract. Cyber attackers often engage in repeated adaptive attacks,
while many existing defensive models are static and lack mechanisms
for long-term strategy validation. We introduce a rational verification
framework for Repeated Stackelberg Security Games that evaluates
the ongoing optimality of defender strategies under rational attacker
behaviour. Our framework incorporates discounted payoffs to emphasise
early-stage threats and dynamically adjusts strategies in response to
evolving conditions. Experimental results show that our approach improves
the utility of the defender and supports an effective resource allocation.
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1 Introduction

Cybersecurity defences today often rely on fixed policies or periodically updated
strategies that fail to anticipate how attackers adapt over time. In practice,
adversaries frequently reuse or evolve their attack techniques in response to
visible changes in the defender’s stance [9]. For example, when a zero-day exploit
is patched, threat actors often pivot quickly to new attack vectors or repackage
payloads to bypass mitigations. These security challenges are linked to safety [2].
For example, a maliciously compromised system component can lead to unsafe
physical behaviour, so formal security guarantees are crucial to overall safety.

Stackelberg Security Games (SSGs) [20] have been widely used to model
such scenarios, where the defender commits to a strategy and the attacker
responds optimally. However, SSGs generally do not provide a formal mechanism
to assess whether a strategy remains effective as attacker behaviour changes over
time [18]. These evolving scenarios can be formalised using repeated games [12].
Rational verification then offers an effective approach in this context; it extends
classical model checking to reasoning about equilibrium strategies in multiagent
systems [22]. This technique can be applied to improve threat modelling in
adaptive adversary scenarios.

In this paper we introduce Repeated Stackelberg Security Games (RSSGs) and
rational verification for RSSGs as a formal framework for modelling and verifying
defensive strategies over multiple rounds under Stackelberg equilibrium. Our
work contributes to research on game-theoretic models for cybersecurity [1,5,13].
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Fig. 1. Overview of the rational verification framework for RSSGs.

In each round, we check whether the defender’s strategy remains optimal against
a rational attacker. We extend the StEVe tool (v1.0) [15], originally based
on the PRISM-games [11] extension, to a new version (v2.0) for round by
round Stackelberg equilibrium [19] verification. StEVe is central to our rational
verification framework for RSSGs. Figure 1 illustrates its workflow: how inputs
such as the security scenario, threat model, and RSSG parameters are processed
through a core RSSG model that captures repeated interactions and produces
quantitative performance guarantees, formal verification of security properties,
and analysis results comparing static and adaptive defender strategies, highlighting
the value of adaptiveness through improvements in cost, risk, and response time.

2 Background

2.1 Stackelberg Security Games and Repeated Games

Defenders commit to strategies anticipating informed attacker responses [16].
Informally, a Stackelberg game models a strategic interaction where a defender
(the ‘leader’) first commits to a defensive strategy. An attacker (the ‘follower’) then
observes this strategy and chooses their own best possible response to maximise
their utility. An extensive form game [12] is a tuple G = (N,A,H,Z, χ, π, γ, u),
where N = {1, . . . , n} is the set of players, A the set of actions, H and Z the
nonterminal and terminal nodes (with H ∩ Z = ∅), χ : H → 2A the available
actions at each nonterminal node, π : H → N the player function, γ : H ×A→
H ∪ Z the successor function, and u = (u1, . . . , un) the utility functions, where
each ui : Z → R≥0 maps terminal nodes to non-negative real-valued payoffs. This
extensive form captures the sequential nature of Stackelberg games.



Rational Verification in Repeated Security Games 3

A Stackelberg Security Game (SSG) is a tuple (G, AP, L) where: G is a
two-player extensive form game, with N = {1, 2} representing the defender
(leader) and attacker (follower) respectively, AP is a set of atomic propositions
representing system properties, L : H ∪Z → 2AP is a labelling function assigning
propositions to nodes.

Let Σ1 and Σ2 denote the sets of all strategies available to the defender and
attacker, respectively, where a strategy σi ∈ Σi is a function that selects an
action for player i at each nonterminal node. We allow these strategies to be
either deterministic or mixed (probabilistic). That is, a strategy σi may select
a specific action or a probability distribution over the set of available actions
Ai. Formally, this is defined as σi : Hi → ∆(Ai), where ∆(Ai) denotes the set of
discrete probability distributions over Ai. This generalisation enables strategies
to be expressed as stochastic mappings, as formalised in Section 3.2.

Let ui : Σ1 ×Σ2 → R≥0 be the utility function for player i, where u1(σ1, σ2)
is the defender’s payoff and u2(σ1, σ2) is the attacker’s payoff. This function
represents the expected utility for player i, derived from the fundamental payoffs
at the terminal nodes of the game. Any given strategy profile (σ1, σ2) induces a
probability distribution over the terminal nodes, and ui(σ1, σ2) is the resulting
expected value. The set of best responses available to the attacker against a
defender strategy σ1 is defined as:

BR(σ1) = {σ2 ∈ Σ2 | u2(σ1, σ2) ≥ u2(σ1, σ
′
2) for all σ′

2 ∈ Σ2} .

A Stackelberg equilibrium [20] is a strategy profile (σ∗
1 , σ

∗
2) such that:

σ∗
1 = arg max

σ1∈Σ1

u1(σ1,BR(σ1)), and σ∗
2 ∈ BR(σ∗

1).

Here, the defender commits to a strategy σ∗
1 that maximises their utility assuming

the attacker responds optimally, and the attacker chooses a best response σ∗
2 to

that committed strategy. SSGs are one-shot models, with the game ending after a
single attacker response, which makes it difficult to model persistent and adaptive
threats, where attackers return with potentially new strategies after observing
defence actions. In such scenarios, a defence that was once optimal, i.e., a strategy
that maximised the expected utility of the defender under Stackelberg equilibrium
assumptions, may no longer remain effective as the attacker’s behaviour evolves.
This limitation motivates the need for models that support repeated interactions.

A repeated game [12] is one in which a base game is played multiple times
by the same players. The base game can either be played for a finite number of
rounds T ≥ 1 producing a finitely repeated game, or played indefinitely producing
an infinitely repeated game. In such settings, each round yields a reward rji to
player i, which corresponds to the payoff received in round j. A discounted utility
assigns decreasing weight to future rewards using the formula

∑T
j=1 β

jrji , where
0 ≤ βj ≤ 1 is a discount factor. Since βj > βj+1 for all j when βj < 1, future
rewards are weighted less heavily than immediate ones. In repeated games, the
utility for player i accumulates across rounds based on the payoff received in
each round. This allows a player’s payoff to reflect the entire history of the game.
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2.2 Rational Verification

Rational verification [22] is a formal analysis technique that asks whether a
given property ϕ formalised in Probabilistic Alternating-time Temporal Logic
(rPATL) [4] holds under the assumption that all agents in the system behave
rationally. Each agent selects a strategy that maximises their own utility, taking
into account the strategies of others. In our framework, we use a modified form of
the temporal logic rPATL introduced in our previous work [15]. Formally, given
a game G and an rPATL property ϕ, rational verification checks whether ϕ holds
when players follow some or all equilibrium strategies in G, such as Stackelberg
equilibria. We verify the ongoing optimality of a defender’s strategy under the
Stackelberg assumption and expressed it in rPATL as the formula:

⟨⟨C⟩⟩Rr
SE=?[Fϕ ]

def
= sup

σ1∈Σ1

sup
σ2∈BR(σ1)

Eσ1,σ2 [Fϕ ]

Here, ⟨⟨C⟩⟩ refers to the coalition of the two players, in our case, the defender and
the attacker; Rr

SE=? is the reward operator under the Stackelberg equilibrium; F is
the temporal operator specifying a reachability goal; ϕ denotes a desirable system
property, for example the system not being compromised. Therefore, the formula
evaluates the expected cumulative reward for the defender to eventually reach a
state where ϕ holds, assuming rational attacker behaviour. A state in the RSSG
model summarises the history up to the current round such as which mitigations
have been applied, which attacker steps have succeeded, and whether the system
is vulnerable or compromised. In addition, σ1 is the defender’s strategy and σ2
the attacker’s best response. Defenders must evaluate whether their strategies
remain effective when facing adaptive and strategic attackers.

2.3 Threat Modelling

Threat modelling [17] is a structured process for identifying, enumerating,
and prioritising potential threats. In practice [7,9,21], we can use vulnerability
information to formalise threat models such as attack trees or attack defence
trees. We use Attack Defence Trees (ADTs) [8] – a well-known graphical model
used to represent security threats and countermeasures. ADTs are a restricted
form of attack defence modelling in which all attacker and defender actions
appear at a single level beneath the root. This restriction is suitable for our
modelling purposes, as it focuses on immediate countermeasures rather than
complex defence in depth structures, and it simplifies the translation to game
states. The syntax consists of four ADTerm patterns: cd(b′, b) cd(b′, f(b1, . . . , bk))
cd(f ′(b′1, . . . , b

′
k′), b) cd(f ′(b′1, . . . , b

′
k′), f(b1, . . . , bk)) where b′j ∈ Bd represent

individual defender actions, bi ∈ Ba denote attacker actions, and f ′ ∈ {∨d,∧d}
and f ∈ {∨a,∧a} are Boolean operators used to model disjunctive or conjunctive
strategies for defenders and attackers respectively. This formal syntax allows
us to precisely capture the strategic relationship between defender mitigations
and attacker objectives. We use this structure to model the CVE-2024-4947
vulnerability as a concrete example in our framework.
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Example 1. CVE-2024-4947 [14] is a type confusion vulnerability in Chrome’s V8
JavaScript engine, allowing remote code execution via crafted web pages. Hacker
groups have exploited this flaw by deploying deceptive sites to trick users into
visiting malicious content. In the ADT, the defender may apply mitigation actions
such as updating Chrome to version 125.0.6422.60 (PatchChrome), blocking
known malicious domains (BlockMaliciousSites), or enabling enhanced script
monitoring (EnableEnhancedMonitoring); we denote these actions by b′1, b′2,
and b′3, respectively. The attacker must complete a multi-step process: first, luring
the victim to a malicious site (AttemptPhishing, b1); second, exploiting the
V8 vulnerability upon visit (AttemptExploitV8, b2); and finally, executing a
malicious payload to achieve code execution (ExecutePayload, b3).

This scenario is expressed as the ADTerm cd(∨d(b′1, b
′
2, b

′
3),∧a(b1, b2, b3)),

where the attacker must complete all three steps – phishing, exploiting, and
payload execution – to compromise the system, while the defender can prevent
the attack by applying any one of the mitigation actions. Although ∧a typically
denotes conjunction without sequence, in this case the steps are inherently
sequential due to technical dependencies.

In our RSSG model, these actions are mapped directly from the ADT: defender
actions PatchChrome, BlockMaliciousSites, and EnableEnhancedMonitoring
correspond to b′1, b

′
2, b

′
3, with an additional DoNothing option. The attacker

actions comprise AttemptPhishing, AttemptExploitV8, and ExecutePayload,
which map to b1, b2, b3, along with Wait as a passive choice. This alignment ensures
consistency between the threat model and the repeated game (see Table 1).

The ADT model is translated into the RSSG. The defender and attacker
actions identified in the ADT such as PatchChrome and AttemptExploitV8
directly define the action sets A1 and A2 used in the game. The logical structure
of the ADT, which dictates the necessary steps for a successful compromise,
informs the state space such as Vulnerable_Unpatched, Attacker_Exploiting,
Compromised, and the transition probabilities between them. Finally, the security
outcomes are quantified as reward (or cost) structures. For example, a successful
attack corresponds to a significant negative effect for the defender (incident_cost
in Table 2), while defender actions have their own associated costs (defence_cost).

3 Repeated SSGs and Rational Verification

3.1 Modelling and Equilibrium in RSSGs

An RSSG extends the one-shot SSG (G, AP, L) by allowing the game G (the stage
game) to be played over a finite sequence of T rounds. Although the original
extensive form game is defined over nodes H ∪ Z, the repeated game requires a
richer notion of state. We therefore define a derived state space S, where each
state st ∈ S captures contextual information at round t, such as past actions
and system conditions. Unlike nodes in H ∪ Z, which represent single decision
points or outcomes, states in S summarise the evolving game history and support
reasoning about strategy adaptation.
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Table 1. States and Actions

Category Details / Variables

States Key states capture security posture and attacker
progress: Initial, Vulnerable_Unpatched, Attacker_Phishing,
Attacker_Exploiting, Compromised, Patched, SiteBlocked,
EnhancedMonitoringActive, Game_Over (terminal).

Defender Actions (A1) Available actions for the defender: DoNothing, PatchChrome,
BlockMaliciousSites, EnableEnhancedMonitoring.

Attacker Actions (A2) Available actions for the rational attacker (follower): Wait,
AttemptPhishing, AttemptExploitV8, ExecutePayload.

The RSSG framework is stateful unlike repeated one-shot SSGs. The optimal
strategy at round t depends on the current state st, reflecting past interactions.
This enables adaptive defence against evolving attacks, where static strategies are
insufficient. This example is a simplified two rounds (T = 2) of our CVE-2024-4947
case study, using the parameters defined in Table 1 and Table 2. The defender
chooses between DoNothing (cost 0) or BlockMaliciousSites (cost −3), and
an attacker who must first AttemptPhishing and then AttemptExploitV8 to
succeed. A successful compromise costs the defender −200, and the probabilities of
phishing and exploit success are 0.4 and 0.75, respectively. In a single round game,
the attacker can only phish, so the risk of compromise is zero. The defender’s
optimal one-shot strategy is therefore DoNothing to avoid the certain cost of −3
from blocking sites. The static and dynamic strategies are presented below.

– Static Strategy: The defender plays DoNothing in both rounds. The attacker’s
only path to victory is a successful phish in Round 1 followed by a successful
exploit in Round 2. The probability of this sequence is 0.4× 0.75 = 0.3. The
expected utility is:

Ustatic = 0.3× (−200) = −60

– Dynamic Strategy: The defender plays DoNothing in Round 1. In Round
2, their action depends on the state. If the phish succeeded in Round 1 (a
40% probability), the defender plays BlockMaliciousSites at a cost of -3
to prevent the possible exploit. If the phish failed (a 60% probability), they
again do nothing. The expected utility is:

Udynamic = (0.6× 0)︸ ︷︷ ︸
Phish fails

+ (0.4×−3)︸ ︷︷ ︸
Phish succeeds, so Block

= −1.2

Round by Round Stackelberg Equilibrium. During each round t ∈ {1, . . . , T}
of an RSSG, the defender (leader) chooses an action at1, based on the current
state st which encapsulates the history. The attacker (follower) observes at1 and
chooses a best response action at2 to maximise their own utility. We focus on
verifying properties under the assumption that the attacker plays a best response
in every round, given the defender’s action and the current state. To reason
about utility in a repeated setting, we extend the notion from one-shot games.
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Table 2. Transition Probabilities and Payoffs

Element Value / Description

Transition Probabilities
– Patch Success Probability: 0.98 per round (if PatchChrome chosen).
– Phishing Success Probability: 0.4

(if Vulnerable_Unpatched and attacker chooses AttemptPhishing).
– Exploit Success Probability: 0.75

(if phishing successful and attacker chooses AttemptExploitV8).
– Site Blocking Effectiveness (prevents phishing): 0.9

(if BlockMaliciousSites chosen).
– Compromise occurs if ExecutePayload follows successful exploitation.
– Game_Over reached after T = 10 rounds or upon compromise.

Defender Rewards/Costs Defined via reward structures:
– “incident_cost”: −200 (upon reaching Compromised).
– “defence_cost” (per round):

PatchChrome = −5,
BlockMaliciousSites = −3,
EnableEnhancedMonitoring = −2.

– “total_cost”: Sum of “incident_cost” and accumulated “defence_cost”.
– “steps”: Accumulates 1 per round.

Attacker Utility Defined via “attacker_utility” structure:
– Success: +100 (upon reaching Compromised).
– Failed Attempt: −1 (for failed Phishing or Exploit).

In the extensive form model, the utility function ui : Z → R≥0 assigns payoffs
to terminal nodes. We define Ui(st, a

t
1, a

t
2) as the expected cumulative utility

for player i starting from state st, given the actions at1 and at2 taken in round t,
and assuming equilibrium strategies are followed thereafter. This generalises the
terminal node utility to account for accumulated outcomes across multiple rounds.
We also define a reward function Ri : S ×A1 ×A2 → R≥0, where Ri(st, a

t
1, a

t
2)

gives the immediate reward received by player i in round t, based on the current
state st, the defender’s action at1, and the attacker’s action at2. These per round
rewards form the basis for computing expected cumulative utility. To model
temporal preferences, we adopt the notion of discounted utility. Given a discount
factor β ∈ [0, 1], the total discounted utility for player i over horizon T is:

RT
i =

T∑
t=1

βt−1Ri(st, a
t
1, a

t
2)

This prioritises earlier rewards when β < 1, which reflects practical urgency
in security contexts. Formally, a strategy profile σ = (σ1, σ2), where σi =
(σ1

i , . . . , σ
T
i ) dictates the actions ati chosen by player i in round t, constitutes a

round by round Stackelberg equilibrium if for every round t ∈ {1, . . . , T}:
1. The attacker’s action at2 maximises their expected utility, given the defender’s

action at1 and the current state st:

at2 ∈ arg max
a∈A2(st)

E[U2(st, a
t
1, a)]

where A2(st) are the attacker’s available actions in state st, and U2 represents
the attacker’s expected utility function which might consider immediate
reward R2(st, a

t
1, a) or future discounted rewards.
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2. The defender’s action at1 is chosen as part of a strategy σ1 that maximises
their total expected discounted utility over the horizon T , assuming the
attacker plays a best response strategy σ∗

2 ∈ BR(σ1), where BR(σ1) denotes
the set of best responses to σ1. Formally:

σ1 ∈ argmax
σ′
1

Eσ′
1,σ

∗
2

[
RT

1

]
where RT

1 =

T∑
t=1

βt−1R1(st, a
t
1, a

t
2)

Here, R1(st, a
t
1, a

t
2) is the immediate reward for the defender in round t;

(st, a
t
1, a

t
2) belongs to the sequence of states and actions resulting from the

strategy profile (σ′
1, σ

∗
2), where σ′

1 is a candidate defender strategy and
σ∗
2 ∈ BR(σ′

1); and β ∈ [0, 1] is the discount factor.

This definition implies that the defender commits to a sequence of actions
determining actions based on state that is optimal over the horizon T , under the
constraint that the attacker will rationally counter the defender’s action within
each round.

The Role of Discounting (β). The discount factor β ∈ [0, 1] is critical as it
models the defender’s temporal preferences. One option is exponential decay for
β < 1 which prioritises near-term outcomes; future rewards are valued less by
βt−1, reflecting urgency, uncertainty, or the time value of security investments.
The expression βt−1 means that a reward received in round t is multiplied by βt−1,
so rewards later in time are given less weight. This is common in cybersecurity
where immediate threat mitigation is often paramount. Another option is no
discounting for β = 1, when all rounds are valued equally. In this case the total
payoff for each player i is the sum of rewards RT

i =
∑T

t=1Ri(st, a
t
1, a

t
2). It is

suitable for objectives focused on average performance over the fixed horizon T .
Computational Verification and Stability. Verifying if a given strategy profile

constitutes a round by round Stackelberg equilibrium, or synthesising the optimal
defender strategy, typically involves methods like backward induction or value
iteration [12] adapted for finite repeated Stackelberg games. These methods
compute the expected cumulative discounted rewards and identify the optimal
actions at each decision point.

3.2 Strategy Synthesis

Our framework supports reasoning about and synthesising defender strategies
within the RSSG context. The goal is to find a defender strategy σ1 that maximises
the total expected discounted utility RT

1 under the round by round assumption.
The optimal static strategy corresponds to finding a single strategy µ1 : S →

∆(A1), where µ1 maps each state s ∈ S to a probability distribution over defender
actions. Here, S is the set of states in the repeated game, and ∆(A1) denotes
the set of probability distributions over the defender’s action set A1. The same
strategy µ1 is applied in every round t = 1, . . . , T , and the defender’s expected
utility RT

1 is evaluated assuming that, in each round, the attacker selects a best
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Table 3. Notation summary for strategy types in RSSGs.

Symbol Description

Σ1, Σ2 Strategy sets for the defender (1) and attacker (2)
σ1 ∈ Σ1 Defender’s strategy across all T rounds
σt
1 Defender’s action (or decision rule) in round t

µ1 : S → ∆(A1) Static Strategy: maps states to action distributions, reused each round
σ∗
2 ∈ BR(σ1) Best response strategy of the attacker to σ1

response to the action chosen according to µ1(st). While the strategy itself is
fixed, its performance reflects the full sequence of interactions.

The optimal dynamic strategy corresponds to finding an optimal sequence of
actions σ1 = (σ1

1 , . . . , σ
T
1 ), where the action σt

1 applied in round t is determined
by optimising the remaining discounted utility from round t onwards, depending
on the round t and the current state st. Table 3 summarises the notation used
for defender and attacker strategies in the repeated game.

3.3 Formalising and Verifying Security Properties with rPATL

Rational verification allows us to check if desired temporal properties hold under
the assumption that players adhere to an equilibrium concept. We use rPATL
syntax [4], assuming the defender maximises expected discounted utility over T
rounds, while the attacker plays a best response in each round.

In our framework, rPATL formulae include state formulae (ϕ), path formulae
(ψ), and reward path formulae (ρ), but their semantics are interpreted under
the round by round Stackelberg equilibrium assumption. Temporal operators
relevant to our analysis include both reward and probability expressed in rPATL.

The operator ⟨⟨D⟩⟩Rr
SE=?[ρ] denotes the expected cumulative reward that

coalition D can guarantee under Stackelberg equilibrium, for a given reward
structure r and reward path formula ρ. In our setting, the coalition is always
D = {1}, representing the defender (player 1). The formula ρ typically takes
the form Fϕ, meaning that the reward is accumulated along a path until a state
satisfying ϕ is reached.

The operator ⟨⟨D⟩⟩P∼p[ψ] expresses whether the defender can ensure that
the probability of satisfying path formula ψ meets a bound ∼ p, where ∼∈
{<,≤,≥, >}. For example, P≥0.9 asks whether the probability is at least 90%.
Valid path formulae ψ include temporal operators such as Xϕ (next state), or
ϕ1 U

≤T ϕ2 (bounded until within T steps). The query P=?[ψ] computes the
optimal probability the defender can guarantee.

In our rational verification framework, these queries are interpreted under
Stackelberg equilibrium. That is, the defender selects a strategy to maximise their
outcome, while the attacker responds rationally in each round. This equilibrium
constraint is automatically enforced by our extension to the PRISM-games tool
(StEVe), which evaluates the rPATL queries accordingly.
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Table 4. Formalisation of security metrics using rPATL within a rational verification
framework for RSSGs. This table maps metrics to security properties and their
corresponding rPATL representation under round by round Stackelberg equilibrium.

Metric Security Property Formalisation

Cost Reduction Question: What is the minimum expected total cost for the
defender over T rounds, assuming optimal defence against a
rational attacker?
Formula: ⟨⟨D⟩⟩R“total_cost”

SE=? [F “game_over”]

Value of Adaptiveness Description: Quantifies the benefit (e.g., cost reduction) of
an optimal adaptive defence strategy compared to the optimal
static strategy over T rounds. Requires comparing the results
of RSE=? calculations under adaptive versus static assumptions.

Mitigation Time Question: What is the minimum expected time required to
mitigate a specific critical vulnerability, assuming optimal
defence against a rational attacker?
Formula: ⟨⟨D⟩⟩R“steps”

SE=? [F “vulnerability_mitigated”]
Note: Assumes a reward/cost structure named “steps”
incrementing by 1 per time step.

Incident Reduction Question: What is the minimum probability of critical system
compromise within T rounds, assuming optimal defence
against a rational attacker?
Formula: ⟨⟨D⟩⟩Pmin=?[F

<=T “compromised”]

A key strength of rational verification is its ability to translate high level
security objectives into formally verifiable properties. We align our templates
with the PRISM syntax. Table 4 illustrates the mapping between the metrics and
the corresponding security properties that are formalised in our approach. The
semantics assigned to these rPATL formulae within our StEVe tool are computed
under the assumption that players follow the round by round Stackelberg
equilibrium defined in Section 3.1.

These rPATL formulae are specified and model checked using our extended
PRISM-games environment, implemented in the StEVe tool. The tool performs
the computation when evaluating these properties, providing formal guarantees
and rational verification.

4 Experimental Results and Analysis

4.1 Datasets

We created a dataset that reflects realistic vulnerabilities, particularly those
exploited by Advanced Persistent Threats (APTs) in multi-step attacks, to
assess the effectiveness of our rational verification framework. Cyber attackers
often reuse known exploits across different campaigns, adapting their strategies
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over time, which requires security models capable of reasoning about such
repeated interactions. This list builds upon the work by Kuppa et al. [10] and
has been updated with more recent information.1 Our dataset comprises 126
CVEs associated with these APT activities. Data for each CVE was gathered
programmatically using scripts interacting with publicly available resources,
primarily the NVD API 2.0 for technical details and CVSS scoring, and the
CISA KEV catalogue JSON feed to identify actively exploited vulnerabilities.
Information regarding associated APT groups was gathered from public reporting
and sources like MITRE ATT&CK. The collected data for each CVE includes
attributes for game modelling, such as the attack sequences, mitigation, and
severity.2 We analyse CVE-2024-4947 as a representative case study due to its
recency, critical severity, confirmed exploitation in the wild, and its nature as a
browser based exploit involving multiple potential attacker steps and defender
responses, making it highly relevant for modelling repeated interactions within
our framework.

4.2 Experimental Setup

The experiments were conducted using the StEVe tool (v2.0), which can
compute round by round Stackelberg equilibria in RSSGs and verify rPATL
properties under this equilibrium assumption. We modelled the CVE-2024-4947
scenario, detailed in Example 1, as an RSSG in StEVe, in particular the
dynamic interaction between the defender and attacker over multiple rounds.3
Experiments were run for a horizon of T = 10 rounds with discount factor
β = 0.9, reflecting a preference outcomes consistent with typical cybersecurity
urgency. A 10-round horizon provides a sufficient window to observe a multi-stage
attack and the defender’s adaptive responses, whilst still ensuring the analysis
remains computationally tractable. The high discount factor emphasises the
critical importance of mitigating threats quickly, which is a standard assumption
in security operations. Comparative analyses were also conducted for β = 1.0 (no
discounting) and β = 0.7 to assess sensitivity to preferences.

4.3 Evaluation Objectives and Metrics

We defined a set of objectives to quantitatively measure the effectiveness of the
defender’s strategies. Our primary goal is to demonstrate the concrete advantages
of an adaptive defence, computed via our framework, over a static one. We focus
on metrics that capture defender cost, system risk, and mitigation efficiency.
These metrics are directly mapped to verifiable properties within our model,
allowing for a formal comparison of different strategic approaches.

The expected key results (KR) are as follows: (KR1) Achieve a significant
reduction (target: ≥ 20%) in the defender’s minimum expected total cost using
1 Updates were gathered from sources including the MITRE ATT&CK .
2 The complete dataset is archived and available for download from this repository .
3 The key elements are defined in Table 1, and the involving transitions and payoffs

are summarised in Table 2.

https://attack.mitre.org/groups/
https://kaggle.com/datasets/74e1831d17c0407e0b251a9ccb8fa6f7b24ad2ffe2521a7d1310d1ab8f53c983
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the optimal dynamic Stackelberg equilibrium strategy compared to the best
static strategy. (KR2) Achieve a measurable reduction (target: ≥ 15%) in the
minimum probability of compromise using the dynamic strategy compared to
the static strategy. (KR3) Quantify the minimum expected time to mitigation
(target: ≤ 3 rounds) achievable with the dynamic strategy under Stackelberg
equilibrium. (KR4) Compute the specific minimum expected total cost achievable
by the defender over T = 10 rounds (β = 0.9) under Stackelberg equilibrium.
(KR5) Compute the specific minimum probability of compromise within T = 10
rounds (β = 0.9) under Stackelberg equilibrium. (KR6) Demonstrate the ability
to model preferences by showing the quantitative impact of varying the discount
factor (β) on optimal strategies and costs. These targets, such as achieving
a ≥ 20% reduction in cost, a ≥ 15% reduction in compromise probability, or
mitigation within 3 rounds, serve as illustrative benchmarks to demonstrate the
benefits of adaptive strategies. The 20% cost reduction is motivated by economic
considerations in cybersecurity investment [6], which emphasise proportional
and cost-effective defence spending. The other targets are not based on formal
standards but help contextualise the improvements observed in our case study.

4.4 Case Study Results: CVE-2024-4947

Adaptive vs. Static Strategy Performance (KR1, KR2, KR3). We first evaluated
the core benefit of using an adaptive strategy derived from the round by round
Stackelberg equilibrium compared to the best possible static defence strategy.
For the defender’s minimum expected total cost (KR1), the optimal dynamic
strategy achieved a value of −28.5, representing a 36.7% reduction compared
to the best static strategy’s cost of −45.0. This significantly exceeds the target
reduction ≥ 20%. Regarding the minimum probability of compromise (KR2), the
dynamic strategy reduced this probability to 0.075 (i.e., 7.5%), a reduction of
25% compared to the static strategy’s probability of 0.10 (10%). This meets the
target reduction ≥ 15%. Furthermore, the minimum expected time to mitigation
defined as reaching a ‘Patched’ or ‘SiteBlocked’ state preventing compromise for
the current attack vector using the dynamic strategy (KR3) was quantified as
2.8 rounds using the “steps” reward structure. This achieves the target of ≤ 3
rounds. Thus, the adaptive strategy successfully met all three of our primary
comparative objectives. These results demonstrate the performance and agility of
the adaptive approach in terms of cost, risk, and responsiveness for this scenario.

Equilibrium and Impact of Discounting (KR4, KR5, KR6). Our framework
provides formal guarantees on security posture under the Stackelberg equilibrium
assumption. For the baseline parameters (T = 10, β = 0.9), the specific minimum
expected total cost (KR4) was computed as −28.5. The corresponding minimum
probability of compromise (KR5) was 7.5%. We also analysed the impact of
temporal preferences (KR6) by varying the discount factor, changing β significantly
influenced the optimal strategy and outcomes.
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5 Conclusion and Future Work

This paper introduces a framework integrating rational verification with RSSGs
to tackle the challenge of repeated, adaptive attacks in cybersecurity scenarios.
Our experimental evaluation based on a real life case study of the CVE-2024-4947
vulnerability, demonstrates the benefits of this approach. We showed that the
optimal dynamic strategy computed through our StEVe framework outperforms
the best static strategy, leading to lower expected costs, a reduced probability
of compromise, and diminished attacker utility. Our results show that adaptive
strategies grounded in game-theoretic reasoning can offer formal guarantees on
security performance against rational adversaries. This contribution enhances
the security and safety of modern, interconnected systems by helping prevent
malicious exploitation.

The accuracy of our findings depends on the alignment of the RSSG model
with the real-world CVE-2024-4947 scenario. The chosen states, actions, transition
probabilities, and payoff values are based on available public information and
security principles but inevitably involve simplifications and estimations. The
assumption of perfect attacker rationality might not hold in all real-world cases,
as attackers can be limited by resource constraints, make mistakes, or have
different utility functions. The results are derived from a single case study. The
round by round Stackelberg equilibrium concept assumes the attacker observes
and best responds to the defender’s action each round, which may not capture all
modes of interaction such as simultaneous moves. While StEVe enabled analysis
for T = 10, scaling rational verification for RSSGs to significantly larger state
spaces or very long horizons remains computationally challenging.

In future work we will refine the parameters of the underlying RSSG model
to better capture real-world complexities. This includes extending our approach
to handle more general, multi-level ADTs. While the current framework uses a
simplified ADT structure for tractability, more complex ADTs would introduce
significant computational overhead. Developing efficient verification algorithms
or techniques to apply our framework to these larger, more realistic security
scenarios is a key research challenge. Theoretical extensions could also explore
different equilibrium concepts beyond round by round Stackelberg, potentially
offering insights into interactions with different commitment or information
structures, alongside deeper analysis of infinite games. A second promising
direction concerns scalability and practical adoption. Developing more efficient
verification algorithms is necessary for applying the framework to larger, more
appropriate security scenarios. Future work includes integrating survivability and
recoverability analysis [3] to evaluate system resilience against component failures
and service degradation. Finally, empirical studies across diverse vulnerabilities
and security domains are needed to assess the generalisability and effectiveness
of rational verification in repeated security games. The datasets, models, and
artifacts supporting this study are available in an online repository.4

4 https://zenodo.org/records/13338608

https://zenodo.org/records/13338608
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