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Fine-grained RNN with Transfer Learning for
Energy Consumption Estimation on EVs

Yining Hua∗, Michele Sevegnani, Dewei Yi, Andrew Birnie, and Steve McAslan

Abstract—Electric vehicles (EVs) are increasingly becoming
an environmentally-friendly option in current transportation
systems thanks to reduced fossil fuel consumption and carbon
emission. However, the more widespread adoption of EVs has
been hampered by two factors: the lack of charging infras-
tructure and the limited cruising range. Energy consumption
estimation is crucial to address these challenges as it provides
the foundations to enhance charging-station deployment, improve
eco-driving behaviour, and extend the EV cruising range. We
propose an EV energy consumption estimation method capable
of achieving accurate estimation despite insufficient EV data
and ragged driving trajectories. It consists of three distinct
features: knowledge transfer from Internal Combustion En-
gine/Hybrid Electric Vehicles (ICE/HEV) to EVs, segmentation-
aided trajectory granularity, time-series estimation based on bi-
directional recurrent neural network. Experimental evaluation
shows our method outperforms other machine learning bench-
mark methods in estimating energy consumption on a real-world
vehicle energy dataset.

Index Terms—electric vehicle, energy consumption estimation,
trajectory segmentation, transfer learning, recurrent neural net-
work.

I. INTRODUCTION

The rapid depletion of conventional energy resources,
massive increase of air pollution, and accelerating cli-

mate change are some of the main drivers for the ongoing
transition to renewable, cleaner energy sources to replace
traditional fossil fuels. Several studies [1], [2] have identified
the transport sector as one of the primary contributors to
both total energy consumption and carbon emissions, and,
therefore, policymakers, industry, and researchers worldwide
are motivated to develop new and more efficient transportation
systems relying on green energy. A promising development in
this direction has been the promotion of a gradual replacement
of internal combustion engines vehicles (ICEs) and hybrid
electric vehicles (HEVs) with electric vehicles (EVs) [3].

Although EVs have been heavily supported by government
agencies in terms of both funding and policy, the popularisa-
tion of EVs is still challenged by the perceived limitations
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of the all-electric range (AER) [4]. To extend AER, con-
certed research efforts are required in areas such as charging
infrastructure deployments [5], eco-routing-planning before
trips, and eco-driving-coaching during trips [6]. These research
challenges have been identified to have energy consumption
estimation as a common foundation study [7], [8]. Bozorgi et
al. [9] showed that the accurate estimation of energy consump-
tion can help locate charging stations and provide essential
information under specific weather and traffic condition for
the route-planning and driving-coach processes in each drive
cycle.

In the past decade, various methods have been attempted
to estimate the energy consumption for HEVs and EVs.
As summarised in [10], the conventional energy estimation
methods can be categorised into two paths. The first path
estimates the energy consumption based on external factors,
such as weather conditions, road grade, etc [11]. Instead
of the environmental factors, the estimation methods in the
second category are focusing on the internal factors, such as
kinetic/EV power systems [12]. Based on the state-of-the-art
research, the key factors of EV energy consumption estimation
includes both internal and external factors. Thus, in more
recent work such as [13], research proposed real-time energy
estimation methods based on hybrid factors e.g., vehicle speed,
tractive effort and road elevation.

However, there are still two open issues in the literature.
First, compared with ICE/HEV data, the energy consumption
data for pure EV is still limited [11], and without large-scale
training data, it is difficult to train efficient deep learning
models. Second, in practical scenarios, the length of driving
trajectories may vary [14] and therefore it becomes difficult
to define adaptive models capable of providing accurate es-
timation results based on ragged trajectory input. To solve
these two problems, we propose a segmentation-aided transfer
learning method to estimate the energy consumption of EVs.
It consists of the following three features. First, to tackle
the insufficient data problem in EV application, our method
uses ICE and HEV data to train the model, and adapt the
learnt knowledge to EV data by deep transfer learning method.
Second, to achieve an adaptive model efficient at various
trajectory lengths, our method segments driving trajectories
into a fine-grained level depending on both GPS and dy-
namic information of EVs, where the segmentation process
is operated in a purely unsupervised manner by Gaussian
mixture models (GMMs). Third, to extract spatio-temporal
information, a deep bi-directional recurrent neural network
(BiRNN) is applied to the segmented fine-grained driving
trajectories.
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The key contributions of this paper are summarised as
follows.

• To the authors’ best knowledge, this is the first attempt
to transfer the knowledge learnt by a deep BiRNN from
ICE/HEV data (i.e., source domain) to EV data (i.e.,
target domain).

• A fine-grained trajectory segmentation method is pro-
posed to achieve an adaptive estimation model for various
lengths and shapes of driving trajectories.

• To evaluate the performance of our proposed method,
comprehensive experiments are conducted on a recently
collected real-world vehicle energy dataset. The exper-
imental results demonstrate the superiority of our pro-
posed method alongside 21 other competing benchmark
methods.

II. METHODOLOGY

To achieve accurate estimation performance, our proposed
method has three technical novelties, 1) trajectory segmen-
tation, 2) Bi-directional RNN and 3) transfer learning. The
framework design is as illustrated in Fig. 1.

Before the training stage, time-series feature values ex-
tracted from the raw route data are clustered by Gaussian
mixture model (GMM), where the number of clusters is deter-
mined by Bayesian information criterion (BIC) test. After the
clustering, the data from various-length routes are segmented
into fine-grained trajectories, and ready to be used for model
training. At the training stage, an advanced recurrent neural
network, Bi-directional long short-term memory (BiLSTM)
is used as neural network architecture. By providing both
forward and backward temporal dependencies, BiLSTM can
fully exploit the time-series information of the data. Moreover,
to overcome the insufficiency problem of EV data, the model
is first pre-trained by ICE and HEV data, and then transfer
learning is utilised to transfer the learnt knowledge from ICE
and HEV data to the EV domain. After the model is well
trained, with the new-coming route data, our estimation model
is able to output the predicted energy consumption with low
error.

The detailed design of trajectory segmentation, BiLSTM
and transfer learning is introduced in the following sub-
sections, respectively.

A. Trajectory Segmentation

In the energy consumption estimation scenario, the lengths
of different trajectories vary a lot. When the trajectories are
sampled every 100 milliseconds as in our experimental dataset,
the longest trajectory consists of 4915 sampling points, while
the shortest trajectory has only 151 sampling points. If these
raw trajectories are directly used in estimate model, the wide
variety of data may affect the efficiency of spatio-temporal
feature extraction, which leads to adaptability reduction of
the estimation model. Thus, to obtain an adaptive model for
various trips input, trajectory segmentation is used in both the
training and the estimation processes. With effective trajectory
segmentation, the estimation model can better capture the

robust, domain-invariant spatio-temporal information extracted
from the trajectory data.

Regarding each trip trajectory, the optimal number of seg-
ments depends on its characteristics in both spatial (e.g., road
curve, speed limit, etc.) and temporal (e.g., vehicle dynamic
information, etc.) aspects. Thus, the segmentation process of
different trip trajectories needs to be discriminated. In our
proposed method, the optimal number of segments for each
trajectory is determined by Bayesian Information Criterion
(BIC) [15], which will be further illustrated in Section III-B1.

Since segmenting the trajectories manually is a labour-
intensive work, GMM [16] is used to segment trajectories in a
automatic way. Let T = {s1,s2,. . . ,sk} be an example of trip
trajectory, where T is a D-dimensional matrix and k represents
the number of segments for this trajectory determined by BIC.
Since there are four features taken into account in our proposed
method, here D = 4. The four dimensions of trajectory T
respectively represent feature latitude X , longitude Y , velocity
V , and Celsius temperature C. In this way, the segmentation
of trajectory can simultaneously take the information from
spatial, kinematic, and environmental aspects into account.

Each trajectory segment si (i ∈ [1, k]) can be treated as
a Gaussian component (a.k.a. cluster), which can be math-
ematically represented by a parametric distribution. For our
GMM-based trajectory segmentation, the parametric distribu-
tion is denoted as gi(si|µi,Σi), which represents a four-variate
Gaussian density function as defined in Equation (1),

gi(si|µi,Σi) =
1√
2πΣ

e−
1
2

(si−µi)
T Σ−1

i (si−µi) (1)

where µi and Σi respectively represents the mean vector and
co-variance matrix of the four features (i.e., latitude, longitude,
velocity, and out-vehicle temperature). The entire trajectory
of T can be modelled as a mixture of weighted Gaussian
distributions (Equation (2)).

P (T |Θ) =

k∑
i=1

f(θi) =

k∑
i=1

wigi(si|µi,Σi) (2)

Here wi represents its mixture weight, which satisfies the
constraint

∑k
i=1 wi = 1. For each trajectory segment si, we

have parameter-set θi = {wi, µi,Σi}.
To maximise the likelihood P of GMM, the optimal

parameter-set Θ = {θ1, θ2....θk} is obtained according to Al-
gorithm 1, in which Θ is firstly initialised by k-means++ clus-
tering method [17] (line 1), and then optimised by expectation-
maximisation (EM) method [18] (line 4-9).

In this way, the GMM can be finally established by param-
eterising Θ, which consist of the mean vectors µ, co-variance
matrices Σ, and mixture weights w of all component densities
i ∈ [1, k].

B. Bi-directional Recurrent Neural Network

After the trajectory segmentation, the input of the neural
network is well-prepared and ready to be used for the purpose
of training. Since the sensor data of our EV application are
of a sequential nature, recurrent neural networks (RNNs) are
utilised to train the estimation model since they have the ability
to capture temporal dependency.
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Fig. 1. The trip trajectory is input as the raw data, in which the values of four features (i.e longitude, latitude, temperature, and real-time speed) are collected
with time stamped. After the data pre-processing, the training data is well prepared, consisting of the feature values and the corresponding measured energy
consumption values. To deal with the trajectories with extremely uneven lengths, trajectory segmentation based on GMM is operated to splice the original
trajectory into the optimal numbers of sub-trajectories depending on BIC test. After then, BiLSTM networks are initially trained by sufficient ICE data, and
then the fully-connected layers are re-initialised to adjust the pre-trained model to fit in the EV data. Once the model is well trained, with the trajectory input,
the energy consumption of EV can be estimated.

Algorithm 1 Trajectory Segmentation Algorithm
Require: Given the number of segments k, k ∈ {1, 2, ...N}, initial
mixture parameters Θ(0), and convergence threshold ε;

1: k-means++ initialisation: Θ(t) = Θ(0)

2: for k = 1 : N do
3: for t = 1 : +∞ do
4: E-step: Compute the posteriori probability
5: γ̂ik = p(zi = k|bi,Θ(t)) =

wig(xi|µk,
∑

k)∑M
j=1 wjg(xi|µj ,

∑
j)

6: M-step: Maximisation of the likelihood
7: ŵk = 1

n

∑n
i=1 γ̂ik, µ̂k =

∑n
i=1 γ̂ikxi∑n
i=1 γ̂ik

8:
∑̂
k =

∑n
i=1 γ̂ik(xi−µ̂k)T (xi−µ̂k)∑n

i=1 γ̂ik

9: Θ(t) = {ŵk, µ̂k,
∑̂
k}

10: if L(B|Θ(t))− L(B|Θ(t−1)) ≤ ε then
11: Set mixture parameters Θ = Θ(t)

12: break EM process
13: Calculate BIC(k) of GMM(k)
14: if BIC(k) < BIC(k∗) then
15: Set optimal component number k∗ = k

16: Ensure obtained the optimal parameters for k∗ and Θ

In RNN, through its cyclic connection feature, the output
of each recurrent neuron yt at time t are not only affected by
input xt, but also influenced by the previous hidden state ht−1,
where ht = σ(Whht−1 +Wxxt + b). However, gradient van-
ishing is a frequently encountered issue in conventional RNN
architectures, especially when the input has long sequences.
It is because conventional RNN algorithms only focus on
short-term memory, and long-term memory is easily forgotten.
Thus, to avoid these issues, our proposed method trains the
model with a special type of RNN, long short-term memory

(LSTM) [19].
In LSTM, hidden neurons in traditional RNNs are replaced

by memory cells. For each LSTM memory cell at time t, there
are three inputs (ct−1, ht−1, xt) and three outputs (ct, ht, ot).
In our scenario, xt refers to the values of EV features (i.e. GPS
position, speed, and out-vehicle temperature) at time t, while
ht−1 represents the prediction at time t−1, with has the same
definition as in traditional RNNs. Besides hidden states and
current input (output) values, each LSTM cell has a distinct
element in both input and output, cell state c, which carries
the cumulative information of the sequence data from each
step, and jointly controlled by the three gates, i.e. an input
gate i, a forget gate f , and an output gate o. The values of
these three gates are in range 0 to 1. With these three gate
functions, LSTM can well alleviate the gradient vanishing or
exploding problems by regulating the flow of information into
and out of the cell [20].

In our application scenario, after the real-time GPS coor-
dinate, speeds, and out-vehicle temperatures at time index
t are input as xt, the forget gate value ft is calculated by
Equation (3)

ft = σ(Wf � [ht−1, xt] + bf ) (3)

where σ is the logistic function, ht−1 is the previous state
of the hidden layers at time index (t − 1). Wf and bf are
the weight matrix and the bias of forget gate neurons, respec-
tively. Similarly, the value of input gate is then computed by
Equation (4)

it = σ(Wi � [ht−1, xt] + bi) (4)

where Wi and bi are the weight matrix and the bias of input
gate neurons, respectively. With the value of forget gate ft
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and input gate it, the estimated cell state c̃t can be calculated
by Equation (5), which is a vector of new candidate values
created by a tanh layer and bc is the bias of memory cell.

c̃t = tanh(Wc � [ht−1 + bc] (5)

The final cell state ct can then be derived from previous cell
state ct−1, current forget gate value ft, input gate value it,
and estimated cell state c̃t, as shown in Equation (6).

ct = ft � ct−1 + it � c̃t (6)

After obtaining the final cell state, the value of output gate is
calculated as shown in Equation (7)

ot = σ(Wo � [ht−1 + bo]) (7)

where Wo and bo are the weight matrix and the bias of output
gate neurons, respectively. Finally, the hidden state ht (i.e.,
the predicted energy consumption of EV at current time index
t) can be derived by output gate value ot and memery cell
state ct.

ht = ot � tanh(ct) (8)

Moreover, when the collected data is throughout a long
period of time and the driving trajectories have overlaps,
the driving pattern of similar routes may be close to each
other. In this case, the forward and backward driving tem-
poral dependencies may equally contribute to the prediction
performance. Therefore, we adopt BiLSTM, which is an
advanced LSTM architecture, to incorporate both directions
of driving information. Similar to the LSTM network, each
direction of BiLSTM network also contains three gates and
one memory cell. The forward and the backward LSTM
layer are propagated in parallel, and the temporal features
of the time-series data are memorised from both directions.
To avoid missing useful information when extracting temporal
features, the output hidden states of BiLSTM H = (hf , hb)
are computed by concatenating the output hidden states of both
forward hf and backward LSTM hb, as shown in Equation (9)

hf = of � tanh(cf )

hb = ob � tanh(cb)
(9)

C. Transfer Learning

To obtain a well-trained model, massive data should be
learnt iteratively by the neural network. Its internal functioning
mechanism is that a large number of weights are randomly
initialised first, and then the weights are iteratively updated
according to the labelled data. Deep neural network means
the architecture has more than one hidden layers. The deeper
a network is, the larger number of weights contained, which
requires more iterations to let the weight-values converge.
Thus, obtaining a well-trained model from scratch requires
massive labelled data, and the training process is extremely
time-consuming. If the data provided are insufficient, deep
neural network may experience an overfitting problem, which
will seriously affect the accuracy of the estimation model.

As mentioned in the introduction section, the data insuf-
ficiency issue is one of the key challenges in EV research.
To avoid the overfitting problem and save training time, we
use transfer learning (TL) at our training stage, which enables

the neural networks trained by the ICE/HEV data first, and
then transfer the learnt knowledge to the EV domain. To be
specific, the idea of TL is to transfer knowledge from one
domain (source domain Ds) to another related domain (target
domain Dt) [21].

In our energy estimation scenario, the source domain is the
energy consumption estimation of ICE/HEV, and the target
domain is the estimation of EV. The transferred knowledge is
the in-direct features extracted from the given input (GPS posi-
tion, speed and out-vehicle temperature). After pre-training the
neural networks through the source domain data, the common
inner layers on the input side can be directly used in the final
model for the target EV domain, and the custom final layers
on the output side need to be further trained by a relatively
small amount of data from target EV domain. In this way, even
though the EV data are not sufficient to train an estimation
model from scratch, the weights in the pre-trained deep neural
network model can converge after enough iterations without
an overfitting problem.

III. EXPERIMENTAL EVALUATION

In this section, the experimental evaluation of our proposed
method is elaborated from four aspects, i.e. 1) data pre-
processing and dataset construction, 2) implementation details
and evaluation metrics 3) performance evaluation compared
with benchmarks, and 4) ablation study to show how each
technical feature can improve the estimation accuracy.

A. Dataset

1) Data Pre-processing: In this paper, VED dataset [14]
is used for experimental evaluation purpose. The data provide
the real-time information such as GPS position, out-vehicle
temperature, speed, which is collected from EV, ICE, HEV.
However, the energy consumption rate of vehicles, i.e. mile-
per-gallon (MPG) and power (Power = Voltage × Current) are
not directly provided in the raw data. Thus, to train the energy
estimation model, the MPG and power information need to be
calculated in advance from existing data.

For EV and plug-in HEVs, instantaneous electric energy
consumption rate can be obtained by multiplying the instanta-
neous voltage and current values of their batteries. For ICE
and HEVs, the rate of fuel consumption (FC) is obtained
as in [14]. To be specific, when FC rate cannot be directly
estimated according to the information from original equip-
ment manufacturer, it can be estimated based on mass air
flow (MAF) by introducing a correction factor correction.
Under various driving conditions, engines require different
air/fuel ratio (AFR). To maintain a balanced AFR value, fuel
trims, including short-term and long-term ones, are used for
adjusting the fuel metering based on the oxygen sensor. As
shown in Equation (10), the correction factor correction is
defined based on the instantaneous long-term fuel trim value
FTL (%), short-term fuel trim value FTS (%), and AFR value
AFR (%).

correction =
(1 + FTS/100 + FTL/100)

AFR
(10)
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(a) Speed on map (b) Electric energy consumption rate on map

Fig. 2. The data collected by EV: (a) the collected driving trajectories along with corresponding speed are plotted on street map, where the darker colour
of blue indicates positions with lower speed; (b) the collected driving trajectories along with corresponding instantaneous energy consumption are plotted on
street map, where the darker colour of green indicates positions with lower energy consumption.

With given MAF and correction factor, the estimated FC can
be computed by multiplying MAF and correction factor (Fuel
Consumption rate = MAF × correction). While if MAF is
also not available, a set of engine signals are required to
estimate MAF first, including absolute engine load |EL| (%),
air density ρair (kg/m3), engine cylinder displacement Deng

(L), and engine revolution per minute RPMeng (rev/min).
Equation (11) shows how MAF can be estimated.

MAF =
|EL|
100

× ρair ×Deng ×
RPMeng

120
(11)

2) Dataset Construction: After the data pre-processing, the
VED dataset is divided into two domains, 1) source domain
with ICE & HEV data, and 2) target domain with EV data. In
the source domain, there are the data of 4504 trips collected
from 264 ICE vehicles, 93 HEVs, and 24 plug-in hybrid
electric vehicles (PHEVs), in which 2700 trips are used for
training and 1804 ones are for testing. In the target domain,
there are 495 driving trips collected from EV, in which 343 are
used for training and 152 for testing. The collected trajectories
are provided in Fig. 2 along with their corresponding speed
and instantaneous energy consumption.

B. Implementation and Evaluation Metrics

1) Implementation details: To evaluate the estimation per-
formance, the benchmark methods and our proposed method
are implementated in MATLAB 2019a. All non-deep learning
methods, including linear regression (LR), tree regression,
ensemble learning, support vector machines (SVM), Gaussian
process regression (GPR), and their variants, are implemented
and evaluated as benchmarks on a CPU (Core i7 at 2.50 GHz
with 16 GB of RAM). The deep learning methods, LSTM,
BiLSTM, and our proposed method are implemented on a
GPU (GeForce RTX2080ti). The baseline BiLSTM model
has 15 layers, including one sequence input layer to reshape
varying input sizes, 3 BiLSTM layers, 6 dropout layers, 4 fully
connected layers, and one regression layer as output. Each
BiLSTM layer has 100 hidden units, followed by a dropout
layer with dropout rate set to 0.2. Each fully connected layer
has 50 hidden units, followed by a dropout layer with dropout
rate set to 0.5.

Moreover, to implement our proposed method, trajectory
segmentation and transfer learning are integrated on the ba-
sis of baseline BiLSTM. For trajectory segmentation, since
the length of driving trips are variable, the optimal number
of segments for different trajectories may vary as well. To
determine the optimal number of segments for every given
trajectory, BIC is introduced as an effective measure to assess
the quality of segmentation. According to Bayesian theory, the
most appropriate model has the smallest BIC value. The BIC
value is defined in Equation (12).

BIC = −2 logL(θ̂) + P log(N) (12)

where L(θ̂) is the log-likelihood associated with parameter
estimates of Gassian mixture models. N is the number of
samples and P is the number of parameters.

For each given driving trajectory, the BIC values of different
cluster numbers k can be calculated, and the minimum BIC
value refers to the optimal number of segments for this
trajectory. To find the range of BIC test, the longest driving
trajectory in the dataset has been tested from k = 1 to k = 80.
In order words, we have calculated the BIC values when
the trajectory is treated as a whole, or split into 2, 3, . . . , 80
segments. The result refers to the optimal number of segments
for the longest trajectory is 16. Thus, with the consideration of
uncertainty, we set the BIC test range from 1 to 20. Then, for
all the trips in the dataset, their BIC values with k ∈ [1, 20]
are calculated. The BIC test and segmentation results of some
examples trips are provided in Fig. 3. The first column presents
the trajectories in a street map, and the second column presents
the values of BIC with k ∈ [1, 20].

After the optimal cluster number k is determined, EM
is iterated to optimise the likelihood of GMM. When the
difference between the likelihoods of two successive iterations
is within 10−8, the model is treated as converged. At this
stage, the raw trajectories are segmented into fine-grained ones
and ready to be input into the BiLSTM model. The examples
of segmentation results are illustrated in the third column of
Fig. 3. At the transfer learning stage, after the BiLSTM model
has been pre-trained by the source domain data, the last fully
connected layer and the regression layer are re-initialised, and
then trained by the EV data from the target domain.
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Fig. 3. For the example trajectories, the first column is their visualisation on the street map. The second column shows their corresponding BIC values when
the trajectory is segmented into the range from 1 to 20 clusters. The third column illiterates the optimal segmentation results of the example trajectories.

2) Evaluation metrics: In this paper, four metrics are se-
lected to evaluate the estimation accuracy of our proposed
method, which are mean squared error (MSE), root mean
squared error (RMSE), mean absolute error (MAE), and
symmetric mean absolute percentage error (sMAPE). Their
definitions are given as follows.

MSE =
1

n

n∑
i=1

(Em − Ei)2 (13)

RMSE =

√√√√ 1

n

n∑
i=1

(Em − Ei)2 (14)

MAE =
1

n

n∑
i=1

|Em − Ei| (15)

sMAPE =
1

n

n∑
i=1

2|Em − Ei|
|Em|+ |Ei|

× 100% (16)

where n is the number of tested data, Em and Ei are the
measured and estimated energy consumption rate, respectively.

C. Performance Analysis
In this section, comparative experiments are conducted to

evaluate the performance of various regression methods. Re-
gression methods are used to build up the relationship between

features (i.e. latitude, longitude, velocity, and out-vehicle
temperature) and instantaneous energy consumption so that
instantaneous energy consumption can be worked out by using
above the mentioned features. The performance of regression
methods is evaluated by MSE, RMSE, MAE, and sMAP
concurrently, which are defined in Section III-B2. Various
regression methods are compared, including linear regression
(LR) based methods, tree regression based methods, support
vector machine based methods, ensemble learning methods,
Gaussian process regression based methods, recurrent neural
network based methods, and our proposed method. For LR-
based methods [22], linear regression (LR), interactions linear
regression (ILR), robust linear regression (RLR), and step-
wise linear regression (SLR) are implemented and compared.
For tree regression based methods [23], fine tree, medium
tree, and coarse tree are implemented and compared. For
SVM-based methods [24], linear SVM, Quadratic SVM, cubic
SVM, fine Gaussian SVM, medium Gaussian SVM, and coarse
Gaussian SVM are implemented and compared. For ensemble
learning methods [25], boosted trees and bagged trees are
implemented and compared. For GPR-based methods [26],
squared exponential GPR, Matern 5/2 GPR, exponential GPR,
and rational quadratic GPR are implemented and compared.
For RNN-based methods [27], [28], LSTM and BiLSTM
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TABLE I
COMPARSION OF DIFFERENT METHODS

Method
MSE RMSE MAE

sMAPE
(×107) (×103) (×103)

Linear Regression
LR 11.036 10.505 7.7287 0.5519
ILR 11.034 10.504 7.7362 0.5522
RLR 11.034 10.504 7.7219 0.5524
SLR 11.033 10.504 7.7368 0.5521

Tree Regression
Fine Tree 19.355 13.912 9.8293 0.5674
Medium Tree 16.179 12.720 9.0366 0.5626
Coarse Tree 13.213 11.495 8.2142 0.5550

Support Vector Machines
Linear 11.043 10.509 7.7213 0.5418
Quadratic 11.012 10.494 7.6642 0.5305
Cubic 11.010 10.493 7.6768 0.5358
Fine Gaussian 12.915 11.364 8.2690 0.5676
Medium Gaussian 11.045 10.510 7.6723 0.5365
Coarse Gaussian 11.000 10.488 7.6690 0.5299

Ensemble Learning
Boosted Trees 10.890 10.436 7.6594 0.5280
Bagged Trees 10.838 10.410 7.5274 0.5398

Gaussian Process Regression
Squared Exponential 10.989 10.483 7.6996 0.5309
Matern 5/2 10.928 10.454 7.6658 0.5255
Exponential 10.881 10.431 7.6474 0.5278
Rational Quadratic 10.922 10.451 7.6711 0.5225

Recurrent Neural Network
LSTM 5.879 7.668 5.492 0.4647
BiLSTM 4.892 6.994 5.010 0.4545

Fine-grained Recurrent Neural Network
Our Method 4.228 6.503 4.557 0.3651

are implemented and compared. As shown in Table I, the
estimation performance of our proposed method is evaluated
with the comparison against 21 benchmarks from 6 machine
learning categories, i.e. linear regression, tree regression, en-
semble learning, support vector machines, Gaussian process
regression, and recurrent neural network.

According to the quantitative results from the experiment,
ensemble learning and Gaussian process regression performs
the best among the traditional machine learning methods
without using neural networks. Moreover, benefiting from
capturing sequential information, recurrent neural networks,
especially BiLSTM, can outperform the traditional methods.
On basis of BiLSTM, our method can achieve a further
improvement by trajectory segmentation and transfer learning,
which can achieve 4.228 for MSE, 6.503 for RMSE, 4.557 for
MAE, and 0.3651 for sMAPE. The following ablation study
section provides an insight into how each technical component
improves the estimation performance.

D. Ablation Study

As mentioned above, the estimation improvement of our
proposed method is a cooperative effect of three components,
which are bi-directional feedback, trajectory segmentation and
transfer learning. In this section, the respective contribution of
each component is separately identified. In Table II, the first
row presents the estimation performance of baseline method,
one-directional LSTM. The next three rows then present the
performance after adding the three components on the basis
on baseline, successively. Specifically, when purely relying
on forward learning direction, the estimation performance can
achieve 5.879 for MSE, 7.668 for RMSE, 5.492 for MAE, and
0.4647 for sMAPE. By adding the backward-learning feature
to the traditional forward-only LSTM, BiLSTM is able to
learn from reverse time sequence data, and extract sequential
information from both forward and backward directions. In
this way, the energy estimation error in our EV scenario can
achieve reductions in all the four evaluated metrics.

Next, our proposed trajectory segmentation algorithm is
added before the training stage, so as to improve the learning
performance of neural networks by feeding them with more
subtle inputs. Since the lengths of driving trip trajectories
in the raw data are variable, a trajectory is divided into
segments in a purely unsupervised manner. By considering
the information of individual segments, we can achieve 4.543
for MSE, 6.740 for RMSE, 4.795 for MAE, and 0.3871 for
sMAPE.

Finally, a transfer learning framework is introduced into
our proposed fine-grained energy consumption estimate on
EV. The knowledge learnt from ICE and HEV domains are
transferred to the EV domain, where the pre-trained model
of transfer learning on EV is obtained by training on ICE
and HEV. After applying transfer learning, our full method
can achieve the best performance in terms of MSE, RMSE,
MAE, and sMAPE, which are 4.228, 6.503, 4.557, and 0.3651,
respectively.

IV. CONCLUSION AND FUTURE WORK

We have proposed an estimation model for EV energy con-
sumption based on both vehicle (e.g. speed) and environment
data (GPS position, temperature). To achieve better estimation
performance, three different techniques were employed: trajec-
tory segmentation, BiRNN, and transfer learning. Our model
computes the estimated energy consumption rate starting from
trajectory data with collected features, i.e. real-time speed,
out-vehicle temperature, GPS coordinate. To capture robust
information from the trajectory data, we designed a trajectory
segmentation algorithm based on GMM that is applied before
the training stage. In addition, since the EV data is not
sufficient to train the deep neural networks from scratch,
transfer learning is used in our method to train the model
which has been pre-trained by sufficient ICE and HEV data.
After the pre-trained model is ready, the parameters of full-
connected layers are re-initialised and then trained by EV data.
In this way, the knowledge learnt from ICE and HEV data can
be transferred to the EV scenario. Our experimental results
show the proposed method outperforms other methods on four
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TABLE II
ABLATION STUDY ON VARIOUS COMPONENTS OF FRAMEWORK

Forward Backward Segmentation Transfer Learning MSE (×107) RMSE (×103) MAE (×103) sMAPE

X 5.879 7.668 5.492 0.4647
X X 4.892 6.994 5.010 0.4545
X X X 4.543 6.740 4.795 0.3871
X X X X 4.228 6.503 4.557 0.3651

standard evaluation metrics. In more detail, our method can
achieve 4.228 for MSE, 6.503 for RMSE, 4.557 for MAE,
and 0.3651 for sMAPE. Moreover, we have also carried out
an ablation study to investigate the contributions of various
components in our method and discover that the estimation
performance can be improved progressively by adding bi-
directional learning feature, trajectory segmentation process,
and transfer learning feature.

In this paper, we focused on developing an adaptive model
for the accurate estimation of EV instantaneous energy con-
sumption based on ragged trajectory data. In future work, hy-
perparameter study on our proposed method will be conducted
to explore the optimal LSTM structure and parameters. More-
over, our fine-grained estimation method can be integrated
into the optimisation process for the deployment of charging
stations and also combined with the existing anomaly detection
pipeline to carry out a more accurate on-board battery health
diagnostic for EVs.
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