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Abstract
This paper analyses models of a spatial logic with path operators based on the class of neighbourhood
spaces, also called pretopological or closure spaces, a generalisation of topological spaces. For this
purpose, we distinguish two dimensions: the type of spaces on which models are built, and the type
of allowed paths. For the spaces, we investigate general neighbourhood spaces and the subclass
of quasi-discrete spaces, which closely resemble graphs. For the paths, we analyse the cases of
quasi-discrete paths, which consist of an enumeration of points, and topological paths, based on
the unit interval. We show that the logic admits finite models over quasi-discrete spaces, both with
quasi-discrete and topological paths. Finally, we prove that for general neighbourhood spaces, the
logic does not have the finite model property, either for quasi-discrete or topological paths.
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1 Introduction

The safe and correct operation of systems in a wide range of application domains is increasingly
dependent on spatial reasoning to evaluate the structure of space and how space might evolve
over time. Examples include target counting in wireless sensor networks [19, 2], cyber-
physical systems [22], transport systems [9], structural analysis [17], and medical imaging [6].
Neighbourood spaces, also known as closure or pretopological spaces [23, 14], have emerged as
a popular formalism in these scenarios due to their ability to natively represent topological
spaces but also simple graphs and simple directed graphs. In this paper, we focus on SLCS,
a modal logic introduced by Ciancia et al. [11] for the specification and verification of spatial
properties over neighbourhood spaces. This logic features a closure modality N (near) and
path modalities R (reachable from) and P (propagates to). While model checking algorithms
and software support have been developed, the model theory of this logic is still not well
understood. In particular, it is not known what kind of spaces can be expressed by various
classes of formulas. Answering this question is complicated by how the near modality interacts
with the path modalities which is substantially different from the modality interactions in
discrete modal logic.

We make the following research contributions:
1. we show that SLCS does not admit finite models on general neighbourhood spaces;
2. we prove that there are formulas that are only satisfiable on infinite models even when re-

stricting to either quasi-discrete paths (similar to paths on graphs) or standard topological
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paths;
3. we define a finite model construction using filtration arguments for models with quasi-

discrete underlying spaces and quasi-discrete or topological paths.

Related Work

The analysis of SLCS is increasingly gaining traction both in Theoretical Computer Science
and Topology.

In recent work [18], we presented bisimulations for SLCS formulas using path operators
that show the equivalence of formulas between bisimilar models. Ciancia et al. [12] used co-
algebraic methods to present bisimulations over quasi-discrete models that are well-matched
(i.e., they characterise the class of quasi-discrete models), but did not extend this result to
arbitrary spaces. Importantly, the authors restricted the set of SLCS formulas to omit path
operators. Castelnovo and Miculan [7] defined a categorical semantics for various fragments
of SLCS using hyperdoctrines with paths and investigated how to extend the logic to other
spaces with closure operators, such as probabilistic automata.

Rieser [20] used the unit interval to define and analyse a homotopy theory for closure
spaces, that is, how paths can be transformed into one another. Bubenik and Milićević [5]
further investigated how different generalisations of the unit interval yield different path
objects. None of these definitions is immediately applicable to SLCS paths, which are much
more concrete.

2 Neighbourhood Spaces

In this section we recall the notions of neighbourhood spaces and some related results from
general topology we will use in this paper. Our main reference is [23]. For additional general
results on these topics and for the proofs of the results reported here, we refer the reader to
this source.

▶ Definition 1 (Filter). Given a set X, a filter F on X is a subset of P(X), such that F is
closed under intersections, whenever Y ∈ F and Y ⊆ Z, then also Z ∈ F , and finally ∅ ̸∈ F .

▶ Definition 2 (Neighbourhood Space). Let X be a set, and let η : X → P(P(X)) be a function
from X to the set of filters on it, where every η(x) is such that x ∈

⋂
N∈η(x) N . We call η a

neighbourhood system on X, and X = (X, η) a neighbourhood space. For every set A ⊆ X,
we have the (unique) interior and closure operators defined as follows.

Iη(A) = {x ∈ A | A ∈ η(x)} Cη(A) = {x ∈ X | ∀N ∈ η(x) : A ∩N ̸= ∅}

An element x ∈ X has a minimal neighbourhood if there exists N ∈ η(x) such that N ⊆ N ′

for any neighbourhood N ′ ∈ η(x). We use Nmin(x) to refer to the minimal neighbourhood
of x. If each element x ∈ X has a minimal neighbourhood, then we call X quasi-discrete.
Finally, if for every element x ∈ X and any neighbourhood N ∈ η(x), there is a neighbourhood
M ∈ η(x), such that for every y ∈ M , we have also that N ∈ η(y), then X is topological.

Neighbourhood spaces as we introduced them are exactly the pretopological spaces as
defined by Choquet [8] and the closure spaces introduced by Čech [23], as shown by Kent
and Min [16].1 Furthermore, a topological neighbourhood space is just a topological space as

1 To be exact, Kent and Min’s definition of neighbourhood spaces is more general than ours, as they do
not require the neighbourhood systems to be filters. In fact, they show that a neighbourhood space
where each neighbourhood system is a filter constitutes a pretopological space.
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usual.

▶ Definition 3 (Connectedness ([23] 20.B.1)). Let X = (X, η) be a neighbourhood space. Two
subsets U and V of X are semi-separated, if C(U) ∩ V = U ∩ C(V ) = ∅. A subset U of X
is connected, if it is not the union of two non-empty, semi-separated sets. The space X is
connected, if X is connected.

We also introduce a special kind of connected neighbourhood space, endowed with a
linear order.

▶ Definition 4 (Index Space). If (I, η) is a connected neighbourhood space and ≤ ⊆ I × I a
linear order on I with the bottom element 0 ∈ I, then we call I = (I, η,≤, 0) an index space.

In the following sections, we will often use the concept of continuous functions. Generally,
we will use the notation f [A] for the image of a set A ⊆ X under a function f : X → Y .

▶ Definition 5 (Continuous Function ([23] 16 A.4)). Let Xi = (Xi, ηi) for i ∈ {1, 2} be
two neighbourhood spaces. A function f : X1 → X2 is continuous at x1, if for every N2 ∈
η2(f(x1)), there is an N1 ∈ η1(x1) such that f [N1] ⊆ N2. Equivalently, for every Y ⊆ X1, if
x1 ∈ C1(Y ), then f(x1) ∈ C2(f [Y ]). If f is continuous at every x1 ∈ X1, we simply say that
f is continuous. We will also write f : X1 → X2.

Observe that this coincides with the well-known definition of continuous functions on
topological spaces.

▶ Definition 6 (Path). For an index space I and a neighbourhood space X , a continuous
function p : I → X is an I-path on X . If p(0) = x, we will also write p : x⇝∞ to denote a
path starting in x.

Two typical index spaces are IR = ([0, 1], ηR,≤, 0), the unit interval with the standard
topology based on open intervals, and IN = (N, ηN,≤, 0), where ηN is given by the quasi-
discrete neighbourhood system induced by the successor relation. That is, the minimal
neighbourhood of each point n is given by {n, n+ 1}. We call IR-paths topological paths and
IN-paths quasi-discrete paths.

▶ Definition 7 (Separation and Distinguishability). Let X = (X, η) be a neighbourhood
space and x, y ∈ X be two distinct points of X . If η(x) ̸= η(y), we say that x and y are
distinguishable in X . If there is both an N ∈ η(x) such that y ̸∈ N and an M ∈ η(y) such
that x ̸∈ M , then we call x and y T1-separated. Equivalently, in terms of closures, two distinct
points x and y are distinguishable, if x ̸∈ C({y}) or y ̸∈ C({x}). They are T1-separated, if
({x} ∩ C({y})) ∪ (C({x}) ∩ {y}) = ∅.

The space X is a symmetric space (or R0-space), if every two distinguishable points are
T1-separated.

The following lemma implies that quasi-discrete paths that visit a non-quasi discrete
point on a symmetric space cannot get back into “quasi-discrete territory”.

▶ Lemma 8. Let Q = (Q, ηQ) be a quasi-discrete space and X = (X, η) be a non-quasi-
discrete, but symmetric space. Furthermore let x ∈ X be a point that does not have a minimal
neighbourhood. Any continuous function f : Q → X that visits x at some point q can only
visit points that are indistinguishable from x at any q′ ∈ Nmin(q). In terms of closures, this
is equivalent to the following condition: if q ∈ C({q′}), then f(q′) is indistinguishable from x.
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x y z

(a) Quasi-discrete space X

p(i) =


x i < 1

2

y i = 1
2

z i > 1
2

(b) A valid topological path over X

Figure 1 Example of a topological path on a quasi-discrete space.

Proof. Let f : Q → X be a continuous function with f(q) = x and for some q′ ∈ Nmin(q),
we have f(q′) = y where x and y are distinguishable. Hence, there is an N ∈ η(x) such that
y ̸∈ N . However, for any M ∈ ηQ(q), we have that Nmin(q) ⊆ M , which of course means
also q′ ∈ M . But f(q′) ̸∈ N , so f [M ] ̸⊆ N . So f is not continuous at q, which contradicts
the assumption on f . ◀

We will often refer to the fact that quasi-discrete spaces closely resemble graphs: we can
consider the points in the minimal neighbourhood of a point x to be connected to x by an
edge. The following example provides a better understanding of the difference in behaviour
of topological and quasi-discrete paths over quasi-discrete neighbourhood spaces.

▶ Example 9. Consider the quasi-discrete neighbourhood space X in Fig. 1a. Any path p

defined over IN is such that for any i ∈ IN, if p(i) = x or p(i) = z, then p(j) = p(i) for any
j ≥ i. However, path p defined in Fig. 1b is a valid path when considering topological paths.

3 Spatial Logic for Neighbourhood Spaces

In this section, we briefly recall SLCS on general neighbourhood spaces. To that end, we
first present spatial models based on neighbourhood spaces and then present the syntax and
semantics of SLCS.

▶ Definition 10 (Neighbourhood Model). Let X = (X, η) be a neighbourhood space, I an
index space, AP a countable set of propositional atoms, and let ν : X → P(AP) be a valuation.
Then M = (X , I, ν) is a neighbourhood model over I-paths. We will also write M = (X, η, ν)
to denote neighbourhood models, if the index space is clear from the context.

We lift all suitable definitions from Sect. 2 to neighbourhood models in the obvious ways.
For example, we will speak of continuous functions between the underlying spaces of two
models as continuous functions between the models.

We will often use the special case of models with quasi-discrete spaces over quasi-discrete
paths, since such models are graph-like models with standard paths on graphs.

▶ Definition 11 (Purely Quasi-Discrete Models). Let X be a quasi-discrete neighbourhood space.
A model M = (X , IN, ν) over quasi-discrete paths is a purely quasi-discrete neighbourhood
model.

▶ Definition 12 (Syntax of SLCS).

φ,ψ : : = p | ¬φ | φ ∧ ψ | N φ | φRψ | φP ψ

N is read as near, R is read as reachable from, and P is read as propagates to.
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The intuition behind the modalities is as follows. A point satisfies N φ, if it is contained in
the closure of the set of points satisfying φ. Hence, even if it does not satisfy φ itself, it is
close to a point that does. A point x satisfies φRψ if there is a point y satisfying ψ such
that x is reachable from y via a path where every point on this path between x and y satisfies
φ. Propagation is in a sense the converse modality, i.e., if there is a point y satisfying ψ such
that there is a path starting in x and reaching y at some index, and all points in between
satisfy φ, then x satisfies φP ψ. This intuition is formalised in the following semantics.

▶ Definition 13 (Path Semantics of SLCS). Let M = ((X, η), I, ν) be a neighbourhood model
and x ∈ X. The path semantics of SLCS with respect to M are defined inductively as follows.

M, x |= p iff p ∈ ν(x)
M, x |= ¬φ iff not M, x |= φ

M, x |= φ ∧ ψ iff M, x |= φ and M, x |= ψ

M, x |= N φ iff x ∈ C({y | M, y |= φ})
M, x |= φRψ iff there is p : y ⇝∞ and n such that p(n) = x and M, y |= ψ

and for all 0 < i < n : M, p(i) |= φ

M, x |= φP ψ iff there is p : x⇝∞ and n such that M, p(n) |= ψ

and ∀i : 0 < i < n =⇒ M, p(i) |= φ

In addition to the defined Boolean operators, we also allow for the other common derivable
connectives. Specifically, φ ∨ ψ = ¬(¬φ ∧ ¬ψ), ⊤ = φ ∨ ¬φ, ⊥ = ¬⊤, φ → ψ = ¬φ ∨ ψ, and
φ ↔ ψ = (φ → ψ) ∧ (ψ → φ). For a class of models M, we say that φ is valid in M if, and
only if, M, x |= φ for every M = ((X, η), I, ν) ∈ M and x ∈ X.

▶ Definition 14 (Relative Equivalence). Let Σ be a subformula closed set of SLCS formulas,
M a neighbourhood model, and x, y ∈ M be two points of M. Then x and y are equivalent
relative to Σ iff they satisfy the same formulas in Σ, i.e., x ≏Σ y iff {φ ∈ Σ | M, x |= φ} =
{φ ∈ Σ | M, y |= φ}. This is an equivalence relation, and we will denote the equivalence
classes of x by [x]Σ and [x], if Σ is clear from the context.

The following lemmas present properties of formulas on different classes of models. We
start with the most familiar class: purely quasi-discrete models. On these models, we have a
clear connection between the near modality and the propagate path operator.

▶ Lemma 15. On all purely quasi-discrete neighbourhood models M = (X , IN, ν) we have
that M, x |= N φ iff M, x |= φ ∨ ⊥ P φ.

Proof. If M, x |= φ, the equivalence is clear. Otherwise, assume M, x |= ⊥ P φ. This means
that there is a point y and a path p : x ⇝ ∞ such that p(1) = y and M, y |= φ. Since p
is continuous, this means that there is a neighbourhood N of 0 such that p[N ] ⊆ Nmin(x).
Since every neighbourhood of 0 contains 1, this means y ∈ Nmin(x), and so M, x |= N φ.
The other direction is similar. ◀

If we consider quasi-discrete models over topological paths, this connection is less clear.
The main reason for this is that over topological graphs, ⊥ P φ is equivalent to φ, which
is easy to prove. However, we can still establish a bit less obvious connection between the
modalities.

▶ Lemma 16. On quasi-discrete models over topological paths, (a ∧ N (b ∧ ¬a)) → N (¬a ∧
(bP a)) is valid.
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Figure 2 Model M = ((R, ηR), IR, ν) such that M, 1 |= N a ∧ ¬a ∧ ¬(⊥ P a).

Proof. Let M = (X , IR, ν) with X = (X, η) be a quasi-discrete model and let x ∈ X such
that M, x |= a ∧ N (b ∧ ¬a). That is, x |= a and x ∈ C({y | M, y |= b ∧ ¬a}). Since X is
quasi-discrete, this means that there is a y ∈ Nmin(x) such that M, y |= b ∧ ¬a. Then, the
path p : IR → X with p(i) = y for i < 1 and p(i) = x for i = 1 is a witness for M, y |= bP a.
This function is indeed continuous: Consider N ∈ η(p(i)). If i < 1, we can always choose an
Ni ∈ ηI(i) such that ∀j ∈ Ni we have j < 1, since I has arbitrarily small neighbourhoods,
which means p[Ni] = {y} ⊆ N . If i = 1, we have for any neighbourhood Ni ∈ ηI(i), that is
p[Ni] ⊆ {x, y} ⊆ Nmin(x) ⊆ N . Furthermore, p(0) = y, and for n = 1, we have p(n) = x, and
for all 0 < i < n, M, p(i) |= b. Since y ∈ Nmin(x), we have that M, x |= N (¬a∧ (bP a)). ◀

Furthermore, on any kind of model over topological paths, we get that the reachable and
propagate modalities are equivalent. Intuitively, this is clear, since for topological paths,
there is no inherent direction on the index space, in contrast to the quasi-discrete index
space, where the successor relation is directed.

▶ Lemma 17. On any neighbourhood model over topological paths M = (X , IR, ν) we have
that M, x |= φP ψ iff M, x |= φRψ.

Proof. Let M = ((X, η), IR, ν) be a neighbourhood model over topological paths, and x ∈ X

a point of M such that M, x |= φP ψ. So there is a path p : IR → M and n ∈ [0, 1], such
that p(0) = x, p(n) = y and M, y |= ψ, and ∀k : 0 < k < n, we have M, p(k) |= φ. Since p is
topological, we can assume without loss of generality that n = 1. Now the path p′ defined by
p′(i) = p(1 − i) is a witness for M, x |= φRψ. Indeed, let N ∈ η(p′(i)) be a neighbourhood
of p′(i). By definition of p′, we have p′(i) = p(1 − i). We know that p is continuous at
1 − i, so there is a neighbourhood N ′ ∈ ηi(1 − i) such that p[N ′] ⊆ N . But, we also have
that N i = {j | 1 − j ∈ N ′} is a neighbourhood of i and, since p′(j) = p(1 − j), we have
that p′[N i] ⊆ N as well. So, p′ is continuous. Furthermore, p′(0) = p(1), so M, p′(0) |= ψ,
p′(1) = x, and for all k with 0 < k < 1, we have M, p′(k) |= φ, by definition of p′. The other
direction is similar. ◀

4 No Finite Model Property for Arbitrary Neighbourhood Spaces

In this section, we prove that SLCS does not have the finite model property if we consider the
class of all neighbourhood models. That is, we show that there exist SLCS formulas that are
satisfiable only over models M = ((X, η), I, ν) where X is not finite. Our first observation is
that there are satisfiable formulas that are not satisfiable on purely quasi-discrete models.

▶ Lemma 18. There exist SLCS satisfiable formulas that are not satisfiable on any finite
model over quasi-discrete paths.

Proof. Consider model M = ((R, ηR), IR, ν) in Fig. 2. It follows that M, 1 |= N a ∧ ¬a ∧
¬(⊥ P a). By Lemma 15, this formula is a contradiction on purely quasi-discrete models.
Finally, since every finite space is quasi-discrete, the lemma holds. ◀
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There are two key differences between the model in Fig. 2 and purely quasi-discrete
models: the type of underlying space, and the type of paths allowed. So, we now restrict
both of these dimensions one after the other. First, we show that SLCS does not admit
finite models over topological paths, if we consider the full set of neighbourhood spaces, by
constructing a counterexample based on the result of Lemma 16.

▶ Lemma 19. There exist SLCS formulas that are satisfiable on models with topological
paths, but not on any finite model with topological paths.

Proof. We construct a topological model M = (X , IR, ν) that contains a point satisfying
a∧N (b∧¬a)∧¬ N (¬a∧ (bP a)). For the topological space, we use the topologists sine curve.
For that purpose, let S = {(r, sin 1

r ) | 0 < r ≤ 1}. The space is then defined by X = (X, η),
where X = {(0, 0)} ∪ S, and η is the neighbourhood system induced by treating this set as a
subset of the Euclidean plane R2. That is, N ∈ η(x) if there is an open ball of some radius r
around x, i.e., some Br = {y | ∥x− y∥ < r}, where ∥ · ∥ is the Euclidean distance, such that
N ⊇ Br ∩X. We set the valuation ν by ν((0, 0)) = {a} and ν(x) = {b} for x ̸= (0, 0).

Now, every neighbourhood of (0, 0) contains a value from S, and thus M, (0, 0) |=
a ∧ N (b ∧ ¬a). Furthermore, it is well known [21] that in this space, (0, 0) is not path-
connected to S, which means that no path starting in any point s ∈ S can reach (0, 0). This
implies, that no point s ∈ S satisfies bP a, since there is no path that ever reaches a point
that satisfies a. So, no point on the model satisfies ¬a∧ (bP a). In particular, this means that
M, (0, 0) |= ¬ N (¬a∧(bP a)). So, we have M, (0, 0) |= a∧N (b∧¬a)∧¬ N (¬a∧(bP a)). But
this formula is not satisfiable on any quasi-discrete model with topological paths, according
to Lemma 16. Since finite models are quasi-discrete, SLCS does not generally admit finite
models over topological paths. ◀

Finally, even when considering only quasi-discrete paths, there are SLCS formulas which
are not satisfiable on finite models.

▶ Lemma 20. There exist SLCS formulas that are satisfiable on models with quasi-discrete
paths, but not on any finite model with quasi-discrete paths.

Proof. Let X be an infinite, uncountable set and let X = (X ′, η) be the double pointed
countable complement topology over X (see [21]). For this definition, let Y be the set of all
subsets of X, such that for every Y ∈ Y, either Y = ∅, or the complement of Y is countable.
X ′ is constructed from X by “doubling” all points, i.e., X ′ = {x′ | x ∈ X} ∪X, where each
x′ is a new, distinct, element to the x it is constructed from. Then, let Y ′ be the doubling of
every set in Y in a similar way, and η be defined by η(x) = {N | ∃Y ∈ Y ′ : Y ⊆ N ∧ x ∈ Y }.
Note that this definition implies that for any y and its doubled point y′, we have η(y) = η(y′).
Define M = (X , IN, ν) by letting x, x′ ∈ X ′ be a designated pair of points in X ′ and ν be
given by ν(y) = {a}, if y ∈ {x, x′} and ν(y) = {b} otherwise.

Now consider any neighbourhood N ∈ η(x). There is always some y ∈ N that is different
from x and x′, since otherwise the complement of N would be uncountable. Hence, every
neighbourhood N contains some element y with M, y |= b, which implies M, x |= N b.
However, since the underlying space of M is symmetric, by Lemma 8, any quasi-discrete
path starting in x may only visit x or x′, which both do not satisfy b. Hence M, x ̸|= ⊥ P b.
So, N b ∧ ¬(⊥ P b) is satisfiable on this model. But no finite model can satisfy this formula,
since it is necessarily purely quasi-discrete. ◀
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5 Finite Model Property for Quasi-Discrete Spaces

In this section, we prove that SLCS admits finite models if we restrict the class of models
to quasi-discrete models. That is, the models correspond to directed graphs. Our approach
is similar to standard approaches in modal logic [4]. In particular, we use filtrations with
respect to a subformula closed set Σ for both types of models. Since topological paths and
quasi-discrete paths behave very differently, we further distinguish the class into models over
quasi-discrete paths and over topological paths.

5.1 Quasi-Discrete Spaces with Quasi-Discrete Paths
In this subsection, we prove that SLCS has the finite model property on purely quasi-discrete
neighbourhood models. That is, the paths are similar to typical paths on graph structures.

The following lemma allow us to transfer information about the satisfaction of the path
operators to other points.

▶ Lemma 21. Let M be a purely quasi-discrete neighbourhood model and x, y ∈ M two
points such that y ∈ Nmin(x). Then the following hold.
1. If M, y |= φ and M, y |= φP ψ, then also M, x |= φP ψ.
2. If M, x |= φRψ and M, x |= φ, then also M, y |= φRψ.

Proof. We only prove the first statement as the second is similar.
From M, y |= φP ψ we know that there is a path p : I → M with p(0) = y and an index

n ∈ I such that M, p(n) |= ψ and for all 0 < i < n, we have M, p(i) |= φ. Now consider the
continuous function px : I → M given by px(0) = x and px(i+ 1) = p(i). Then px is indeed
a path, since M is quasi-discrete and y ∈ Nmin(x). Also, we have M, px(n+ 1) |= ψ and,
since M, y |= φ, for all 0 < i < n+ 1, we have M, px(i) |= φ. Hence M, x |= φP ψ. ◀

We now define filtrations for purely quasi-discrete models. Most parts of this definition
are standard, when we consider N similar to an existential modality. For the two path
operators, we added additional properties that allow us to transfer information about the
existence of paths from the filtration back to the original model.

▶ Definition 22 (Filtration). Let Σ be a subformula closed set of SLCS formulas, and
M = (X, η, ν) a purely quasi-discrete neighbourhood model. We call a purely quasi-discrete
neighbourhood model Mf = (Xf , ηf , νf ) a filtration of M through Σ, if it satisfies the
following conditions:
1. Xf = {[x]Σ | x ∈ X}
2. if y ∈ Nmin(x), then [y] ∈ Nmin([x])
3. if [y] ∈ Nmin([x]), then for each N φ ∈ Σ, we have that if M, y |= φ, then M, x |= N φ

4. if there is a sequence [x0] . . . [xn] with [xi+1] ∈ Nmin([xi]) for all 0 ≤ i < n, then for
every φP ψ ∈ Σ, we have that whenever M, xi |= φ for each 0 < i < n and M, xn |= ψ,
then also M, x0 |= φP ψ

5. if there is a sequence [x0] . . . [xn] with [xi+1] ∈ Nmin([xi]) for all 0 ≤ i < n, then for
every φRψ ∈ Σ, we have that whenever M, xi |= φ for each 0 < i < n and M, x0 |= ψ,
then also M, xn |= φRψ

6. νf ([x]) = {p ∈ AP | M, x |= p}

As usual, satisfiability of formulas in Σ is preserved between a model and its filtration
through Σ. So our filtration is properly defined.
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▶ Lemma 23. Let Mf be a filtration of M through Σ. Then for all φ ∈ Σ, we have
M, x |= φ iff Mf , [x] |= φ.

Proof. We proceed by induction on the structure of formulas. The base case for atomic
propositions is immediate by Def. 22. The cases for the boolean operators are standard.

The case for φ = N ψ is similar to standard modal logic [4]: we have M, x |= N ψ

iff x ∈ C({y | M, y |= ψ}) which by definition of the closure is equivalent to ∀N ∈
η(x) : N ∩ {y | M, y |= ψ} ≠ ∅. On quasi-discrete models, this is equivalent to ∃y ∈
Nmin(x) : M, y |= ψ. By property 2 of filtrations and the induction hypothesis, this implies
∃[y] ∈ Nmin([x]) : Mf , [y] |= ψ. Applying similar equivalences as before, we get that
Mf , [x] |= N ψ. Conversely, assume we have Mf , [x] |= N ψ. With the same reasoning as
above, this is equivalent to ∃[y] ∈ Nmin([x]) : Mf , [y] |= ψ. By the induction hypothesis, we
get M, y |= ψ, and from property 3 of filtrations, we have M, x |= N ψ.

Now consider φ = ψP χ. If M, x |= ψP χ, this is equivalent to the existence of a path
p : x⇝∞ and a n and M, p(n) |= χ as well as ∀i : 0 < i < n, we have M, p(i) |= ψ. That
is, there is a sequence x0, . . . , xn such that x0 = x and xi+1 ∈ Nmin(xi) for all i < n. By
property 2, we have [xi+1] ∈ Nmin([xi]) for all i < n, and by the induction hypothesis,
Mf , [xn] |= χ and for all 0 < i < n, we get Mf , [xi] |= ψ, That is, Mf , [x] |= ψP χ.
Conversely, assume Mf , [x] |= ψP χ. Then there is a sequence [x0], . . . , [xn] such that
[xi+1] ∈ Nmin([xi]) for all 0 ≤ i < n, and Mf , [xn] |= χ, as well as for all 0 < i < n, we get
Mf , [xi] |= ψ. By the induction hypothesis, we get M, xn |= χ and M, xi |= ψ for every
0 < i < n. Hence, by property 4, and since x0 ≏ x, we have M, x |= ψP χ.

The case for ψRχ is similar, by using property 5. ◀

Finally, we prove that there is always a filtration through Σ for any given purely quasi-
discrete model. This definition corresponds to the usual definition of smallest filtration [4].

▶ Lemma 24. Let Σ be a subformula closed set of formulas and M a purely quasi-discrete
model. Furthermore, let XΣ be the set of equivalence classes of ≏Σ, νΣ be defined as in
Def. 22 (6), and ηs([x]) = ⟨{[y] | ∃y′, x′ : y′ ∈ [y] ∧x′ ∈ [x] ∧y ∈ Nmin(x)}⟩ for each [x] ∈ XΣ.
Then the model (XΣ, ηs, νΣ) is a filtration of M through Σ.

Proof. Properties 1, 2 and 6 are immediate. So now assume that [y] ∈ Nmin([x]) and let
N φ ∈ Σ such that M, y |= φ. Then by definition of ηs, there are x′ ∈ [x] and y′ ∈ [y]
such that y′ ∈ Nmin(x′). Since y ≏Σ y′, we have M, y′ |= φ, and due to y′ ∈ Nmin(x′), this
implies x′ ∈ C({y | M, y |= φ}), which means M, x′ |= N φ. Since x ≏Σ x′, this implies
M, x |= N φ. Hence property 3 holds.

For proving property 4, we proceed by induction on the length of sequence [x0] . . . [xn].
For the base case, we have M, x0 |= ψ, which implies M, x0 |= φP ψ. So, assuming the
property holds for suited sequences of length up to n, consider a sequence [x0] . . . [xn] such
that the conditions of the property are satisfied. In particular, [x1] . . . [xn] is a sequence,
where [xi+1] ∈ Nmin([xi]), and for all 1 < i < n we have M, xi |= φ and M, xn |= ψ.
Hence, by the induction hypothesis, M, x1 |= φP ψ. Furthermore, by assumption on the
sequence, we get M, x1 |= φ. Now, by the definition of ηs, we know that there are x′

0 ∈ [x0]
and x′

1 ∈ [x1] such that x′
1 ∈ Nmin(x′

0), and since x1 ≏ x′
1, both M, x′

1 |= φ as well as
M, x′

1 |= φP ψ hold. Hence, by Lemma 21 (1), we have M, x′
0 |= φP ψ, and since x0 ≏ x′

0,
also M, x0 |= φP ψ.

Property 5 can be proven similarly to the previous case, but using Lemma 21 (2). ◀

From the definition of filtration and Lemmas 23 and 24, where XΣ is finite as the set of
subformulas of a formula is finite, we obtain our first finite model property result.
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w x

y z

(a) Quasi-discrete model M

p(i) =


w i ≤ 1

2

x 1
2 < i < 1 ∧ i ∈ Q

y 1
2 < i < 1 ∧ i ∈ R \ Q

z i = 1

(b) Path with uncountably many changes

p′(i) =


w i ≤ 1

2

x 1
2 < i < 1

z i = 1

(c) Simplified path

Figure 3 Example of path simplification.

▶ Theorem 25. If φ is a SLCS formula that is satisfiable on a purely quasi-discrete neigh-
bourhood model, then φ is satisifiable on a finite purely quasi-discrete neighbourhood model.

5.2 Quasi-Discrete Spaces with Topological Paths
In this section, we prove that SLCS also admits finite models for the class of quasi-discrete
models over topological paths. This case is interesting, since topological paths behave very
differently from quasi-discrete paths. For example, topological paths are not required to
comply with the direction of the edges of the underlying graph.

▶ Example 26. Consider the model in Fig. 3a. We can define a topological path p as in
Fig. 3b. This function is indeed continuous. For i < 1

2 , the function is continuous, since it is
constant. At i = 1

2 , we have that for the minimal neighbourhood Nmin(w) = {w, x, y}, we
can always find a neighbourhood N ′ of 1

2 that does not contain 1, and so p[N ′] ⊆ Nmin(w).
If 1

2 < i < 1, then Nmin(p(i)) = {x, y}, and we can choose any neighbourhood N ′ ∈ η(i) that
does not contain values less than 1

2 and greater or equal to 1 to show continuity. At 1, the
function is continuous for similar reasons as at 1

2 . So the function is a path.
However, path p contains many “superfluous detours” in the set {x, y}. A simpler path

would be path p′ in Fig. 3c, or a variation in which p′ maps to y instead of x. This path
only visits points that were visited by p as well, but omits these detours.

The following Lemma formalises the intuition explained in Example 26. We will use it to
normalise the paths used as witnesses for the satisfaction of the propagate modality when we
prove the existence of filtrations.
▶ Remark 27. From this point onward, we will use the following slight abuse of notation. For
two indices r, s ∈ [0, 1], we write p[r, s] = {p(i) | r < i < s} to denote the values of a path
p on the open interval between r and s. If p[r, s] is a singleton (i.e., p is constant on the
interval (r, s)), we will also treat p[r, s] as a single value, to avoid unnecessary parentheses.

▶ Lemma 28 (Path Simplification). Let M = ((X, η), IR, ν) a neighbourhood model, where
(X, η) is a quasi-discrete space, and let p : [0, 1] → X be a path on M such that p has a finite
image. Then there is a path p′ and a sequence of indices i0, . . . , in with i0 = 0, in = 1 and
ir < ir+1 for all r < n, such that

1. p′(i) = p(i) for all the indices in the sequence,
2. p′ is constant on each open interval (ir, ir+1),
3. p′[ir, ir+1] ̸= p′[is, is+1] for r ̸= s,
4. if p′(ir+1) ̸= p′[ir, ir+1], then p′[ir, ir+1] ∈ Nmin(p′(ir+1)),
5. if p′(ir) ̸= p′[ir, ir+1], then p′[ir, ir+1] ∈ Nmin(p′(ir)),
6. if p(i) ̸= p′(i), then there are r, s ∈ [0, 1] and y ∈ X with r < i < s such that p(r) =

p(s) = y and p′(r) = p′(s) = y.
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Proof. Let M and p be as required, let x ∈ X be a point in the space, and 0 ≤ s ≤ 1 an
index. We indicate by sI(p, x, s) the smallest subinterval I of [s, 1] such that ∀i ∈ [s, 1] \ I it
holds that p(i) ̸= x. Let a be the infimum (resp., supremum) of sI(p, x, s), then it follows
that ∀N ∈ η(a) there exists an i ∈ N ∩ sI(p, x, s) such that p(i) = x.

We now construct the sequence of indices i0, . . . , in and the path p′. We set i0 = 0,
p′(0) = p(0), and then proceed as follows starting from sI(p, p(0), i0).

Consider an index ik, a point x ∈ X, and let a be the supremum of sI(p, x, ik). We set
p′(i) = x for all ik < i < a, we set p′(a) = p(a), and
1. if a ̸∈ sI(p, x, ik), we set ik+1 = a, and then proceed with sI(p, p(a), ik+1);
2. otherwise (i.e., a ∈ sI(p, x, ik)), we need to find a possible way to proceed with the path

following the index a. That is, we need to find the right point and index for the function
sI. Let S = {y ∈ Nmin(p(a)) | ∀N ∈ η(a) : y ∈ p[N ∩ [a, 1]]} \ {p(a)}. Observe that
S ̸= ∅ as p is a continuous function on X, and any point in S is a good candidate for the
continuation of the construction. Now we need to understand whether or not to move
from the index ik to the index ik+1. If ik = a, then we proceed by choosing any of the
y ∈ S and considering sI(p, y, ik). Otherwise, we proceed by choosing any of the y ∈ S,
setting ik+1 = a, and considering sI(p, y, ik+1).

Since p has a finite image, the process above terminates when ik = 1.
Now let p′ be the path constructed as above. Properties 1, 2 and 3 are immediate results

of the construction of p′. Let us show that property 4 holds, and consider the case where
p′(ir+1) ̸= p′[ir, ir+1]. By construction we know that ir+1 is the supremum of sI(p, x, ir),
which means that ∀N ∈ η(ir+1)∃i ∈ N ∩ (ir, ir+1) with p(i) = x = p′[ir, ir+1]. By continuity
of p it must hold that ∃N ′ ∈ η(ir+1) such that p[N ′] ⊆ Nmin(p(ir+1)). As p′[ir, ir+1] ∈ p[N ′],
then p′[ir, ir+1] ∈ Nmin(p′(ir+1)). Property 5 follows immediately from point 2 above since
we select y among the elements in the minimal neighbourhood. Finally we consider property
6. Let i be an index such that p(i) ̸= p′(i). By property 1, we know that i cannot be any
of the indices in the resulting sequence. Let ik and ik+1 be the two indices in the resulting
sequence such that ik < i < ik+1. By definition of sI(p, p′(i), ik), there must exist two
indices r and s such that p(r) = p(s) = p′(i), and ik ≤ r < i < s ≤ ik+1. By property 2
p′[ik, ik+1] = p′(i), and the property holds. ◀

Similarly to the case with quasi-discrete paths, the following lemma allow us to transfer
information about the satisfaction of the path operator to neighbouring points.

▶ Lemma 29. Let M be a quasi-discrete neighbourhood model over topological paths and
x, y ∈ M two points. Then the following hold.
1. If y ∈ Nmin(x), M, y |= φ and M, y |= φP ψ, then also M, x |= φP ψ.
2. If x ∈ Nmin(y), M, x |= φ, M, y |= φ and M, y |= φP ψ, then also M, x |= φP ψ.

Proof. Case (1): Let p and n be witnesses for M, y |= φP ψ. There are two cases to consider.
In the first case, p stays on y for an infinite number of indices. That is, the initial segment
of p is not a singleton. Then we can define p′ by p′(0) = x and p′(i) = p(i) for i > 0. Since p
is continuous p′ is continuous for every i > 0. For i = 0, we can take any neighbourhood
N ∈ ηR(0) that only extends into the initial segment of p, where p(j) = y for any i ∈ N

with i ̸= 0. Then p′[N ] ⊆ Nmin(x). So p′ is also continuous at 0, and since M, y |= φ, it
is a witness for M, x |= φP ψ. In the other case, p stays on y for the single index 0, and
then moves to some point z. Then we define p′ by p′(0) = x, p′(i) = y for 0 < i ≤ 1

2 and
p′(i) = p(2i−1) for i > 1

2 . Similar to the case above, p′ is continuous at 0. Since the constant
path is continuous, p′ is continuous at 0 < i < 1

2 . And since p is continuous at 2i− 1, p′ is
continuous at i for i ≥ 1

2 . Furthermore, with n′ = 1
2 (n+ 1), p′ is a witness for M, x |= φP ψ.
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Case (2): By assumption on y, there is a path p : R → M and a value n, such that
p(0) = y, M, p(n) |= ψ and for all i with 0 < i < n, we have M, p(i) |= φ. Using this path,
we can construct the path p′ by setting p′(i) = x if i < 1

2 and p′(i) = p(2i − 1) for i ≥ 1
2 .

This function is continuous, and thus a path. Furthermore, we have M, p′(n+ 1) |= ψ, and
of course for all i with 0 < i < 1

2 (n+ 1) we have M, p′(i) |= φ. So this path is a witness for
M, x |= φP ψ. ◀

We now proceed with the definition of filtrations for quasi-discrete models over topological
paths. As can be expected, the definition differs from Def. 22 only in the treatment of paths.
Instead of explicitly enumerating the equivalence classes on a path, we only assume the
existence of a path on the filtration, and then transfer the satisfaction back to the original
model. Furthermore, we do not need to consider the reachability path operator, since it is
equivalent to the propagate modality, by Lemma 17.

▶ Definition 30 (Filtration with Topological Paths). Let Σ be a subformula closed set of SLCS
formulas, and M = ((X, η), IR, ν) a neighbourhood model, where (X, η) is a quasi-discrete
space. We call the neighbourhood model Mf = ((Xf , ηf ), IR, νf ) a filtration of M over
topological paths through Σ, if it satisfies the following conditions:
1. Xf = {[x]Σ | x ∈ X}
2. if y ∈ Nmin(x), then [y] ∈ Nmin([x])
3. if [y] ∈ Nmin([x]), then for each N φ ∈ Σ, we have that if M, y |= φ, then M, x |= N φ

4. if π : [0, 1] → Xf is a path on Mf where π(i) = [xi], then for every φP ψ ∈ Σ, we have
that whenever M, xi |= φ for each 0 < i < n and M, xn |= ψ, then also M, x0 |= φP ψ

5. νf ([x]) = {p ∈ AP | M, x |= p}

As in the purely quasi-discrete case, satisfaction of all formulas in the subformula closed
set Σ is preserved on filtrations through Σ.

▶ Lemma 31. Let Mf be a filtration of the quasi-discrete model M over topological paths
through Σ. Then for all φ ∈ Σ, we have M, x |= φ iff Mf , [x] |= φ.

Proof. We proceed by induction on the structure of formulas. The base case for atomic
propositions is immediate by Def. 30. The cases for the boolean operators are standard and
the case for φ = N ψ is exactly as for Lemma 23.

Now consider φ = ψP χ. If M, x |= ψP χ, this is equivalent to the existence of a path
p : x⇝∞ and a n and M, p(n) |= χ as well as ∀i : 0 < i < n, we have M, p(i) |= ψ. Observe
that for any j and k such that p(k) ∈ Nmin(p(j)), we have [p(k)] ∈ Nmin([p(j)]) by property 2.
Furthermore, for any j, we know that there is a N ∈ η(j) such that p[N ] ⊆ Nmin(p(j)) by
continuity of p. So, these two facts together imply that ∀k ∈ N , we have [p(k)] ∈ Nmin([p(j)]).
Hence we can define π : [0, 1] → Xf by π(i) = [p(i)] and then have that π is a path on Mf

such that π(0) = [x]. Furthermore, by the induction hypothesis, for all i with 0 < i < n, we
have Mf , π(i) |= ψ and Mf , π(n) |= χ. This of course means Mf , [x] |= ψP χ.

Conversely, assume Mf , [x] |= ψP χ. Then there is a path π : [0, 1] → Xf such that
π(0) = [x], for all i with 0 < i < n we have Mf , π(i) |= ψ and Mf , π(n) |= χ. Let
π(i) = [xi], then we get by the induction hypothesis that M, xi |= ψ for all i with 0 < i < n

and M, xn |= χ. By property 4 we get M, x0 |= ψP χ and by x ≏ x0, we get M, x |= ψP χ.
The case for φ = ψRχ is immediate by Lemma 17 and the previous case. ◀

The main part left in this section is to show that filtrations exist. This is more complicated
than in the purely quasi-discrete case, due to the different behaviour of topological paths.
However, if we restrict ourselves to finite sets Σ, then we can normalise the paths on the
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filtration according to Lemma 28, and use these simpler paths to establish satisfaction of the
path modalities on the original model. Since we are only interested in filtrations through the
set of subformulas induced by a single formula, this suffices for our purpose.

▶ Lemma 32. Let Σ be a finite subformula closed set of formulas and M a quasi-discrete
model over topological paths. Furthermore, let XΣ be the set of equivalence classes of ≏Σ, νΣ
be defined as in Def. 30 (5), and ηs([x]) = ⟨{[y] | ∃y′, x′ : y′ ∈ [y] ∧ x′ ∈ [x] ∧ y ∈ Nmin(x)}⟩
for each [x] ∈ XΣ. Then the model MΣ = ((XΣ, ηs), IR, νΣ) is a filtration of M over
topological paths through Σ.

Proof. First observe that MΣ is indeed a quasi-discrete neighbourhood model over topological
paths, since the underlying space of MΣ is finite, and any finite neighbourhood space is
quasi-discrete. We focus only on proving property 4 as all the others are already proved in
Lemma 24.

Let π : [0, 1] → Xf be a path as required. If n = 0 so that M, xn |= ψ, this means
M, x0 |= ψ, and so trivially M, x0 |= φP ψ. So, without loss of generality, we assume
n = 1. With π(i) = [xi], we have M, xi |= φ for 0 < i < 1 and M, x1 |= ψ. Since the set
of equivalence classes is finite, we can use Lemma 28 to get a path σ : [0, 1] → Xf , with
x0 ∈ σ(0) and x1 ∈ σ(1). Furthermore, the properties of σ in Lemma 28 ensure that for all
0 < i < 1, if σ(i) = [x′

i], then M, x′
i |= φ.

Now, let S = {[z] | ∃i : σ(i) = [z]} be the image of σ. Since S is finite, we define an
order on S by setting [zi] < [zj ] iff there exist s and t with s < t such that σ(s) = [zi]
and σ(t) = [zj ]. By Lemma 28 and since the index space is totally ordered, this order is
well-defined. So, in the following we will denote S by the sequence [z0], [z1], . . . , [zr].

We proceed to prove that M, x0 |= φP ψ by induction on then length r of this sequence.
If r = 0, then [z0] = [x1]. Since z0 ≏ x0 ≏ x1 and M, x1 |= ψ, we get M, x0 |= ψ, and thus
M, x0 |= φP ψ.

Assume that the property holds for all such sequences for a length up to r, and con-
sider [z0], [z1], [z2], . . . , [zr], [zr+1]. First, we can see that since σ is a path, the sequence
[z1], [z2], . . . , [zr], [zr+1] also induces a path that satisfies the precondition of the property.
So, we get by the induction hypothesis M, z1 |= φP ψ. We now need to examine the
relation between [z0] and [z1]. To that end, we first consider the preimages of both classes:
I0 = {i | σ(i) = [z0]} and I1 = {i | σ(i) = [z1]}. Furthermore, let j be the supremum of I0.
Recall that by Lemma 28, we have a sequence of indices i0, i1, . . . that partitions the interval
[0, 1] according to the values of σ. Now there are two possibilities for the relation between
[z0] and [z1] according to σ.

1. If i ∈ I0, then either i = i0 = 0, or i = i1. In the first case, [z0] = σ(i0) ̸= σ[i0, i1] = [z1],
and so [z1] ∈ Nmin([z0]) by Lemma 28 (5). In the other case, we have [z1] = σ[i1, i2], and
so [z0] = σ(i1) ̸= σ[i1, i2] = [z1]. Again, by Lemma 28 (5), we have [z1] ∈ Nmin([z0]).
By construction of Mf there are y0, y1 ∈ M such that y1 ∈ Nmin(y0) and y0 ∈ [z0]
and y1 ∈ [z1]. By assumption, we have M, x0 |= φ as well, so by x0 ≏ z0 ≏ y0, we get
M, y0 |= φ and M, y1 |= φP ψ. Then we have M, y0 |= φP ψ from Lemma 29 (1) and
thus M, x0 |= φP ψ.

2. Otherwise, we have i ̸∈ I0, and thus i ∈ I1. Then certainly i = i1, and so [z1] = σ(i1) ̸=
σ[i0, i1] = [z0]. By Lemma 28 (4), we get [z0] ∈ Nmin([z1]). By construction of Mf there
are y0, y1 ∈ M such that y0 ∈ Nmin(y1) and y0 ∈ [z0] and y1 ∈ [z1].
However, in this case we also have that i1 > 0, since otherwise [z0] = [z1], which
contradicts Property 3 of Lemma 28. So there is an x ∈ [z0], such that M, x |= φ by
the properties of σ. Since x ≏ y0, this means M, y0 |= φ. By assumption on σ, we have
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M, y1 |= φ and since y1 ≏ z1, we also have M, y1 |= φP ψ. So, Lemma 29 (2) gives us
M, y0 |= φP ψ, and with x0 ≏ z0 ≏ y0 we can conclude the proof. ◀

The definition of filtrations together with Lemmas 31 and 32 yield the finite model
property. Note that we can apply Lemma 32, as the set of subformulas of a formula is finite.

▶ Theorem 33. If φ is a SLCS formula that is satisfiable on a quasi-discrete neighbourhood
model over topological paths, then φ is satisifiable on a finite quasi-discrete neighbourhood
model over topological paths.

6 Conclusion

We have shown that SLCS does not have the finite model property over arbitrary neighbour-
hood models. Furthermore, we have proven that even when restricting to only quasi-discrete
paths, there are still formulas that can only be satisfied on infinite models. Finally, we have
shown that SLCS has the finite model property over models with underlying quasi-discrete
neighbourhood spaces and quasi-discrete or topological paths. These results highlight that
the types of spaces allowed have a much stronger impact on the existence of finite models
than the types of paths allowed.

Our results are specific to the two types of paths we analysed. While these are the
most common ones, it is possible to consider other definitions. Bubenik and Milićević [5]
introduced other types of paths over neighbourhood spaces and analysed their properties.
For example, they defined an index space based on a finite set J = {1, . . . ,m}, which is close
to the idea of a quasi-discrete space. However, the neighbourhood system on this index space
is very different from our setting, since it includes both the predecessor and the successor in
the minimal neighbourhood of a point. Several of their other index spaces are even more
different. An interesting research direction for future work is to study how these types of
paths interact with the operators of SLCS.

A more applied strand of research is to analyse some of the extensions of SLCS. A natural
first step would be to consider the temporal extension of SLCS with operators from CTL [10]
and prove whether it has the finite model property. This would build upon previous results
stating that CTL has the finite model property [15] and the combinations of logics that
admit finite models typically also admit finite models [13]. Similarly, interesting future work
would be to analyse the extension of SLCS with set-based operators introduced by Ciancia
et al. [11], and the metric extensions by Bartocci et al. [1]. Finally, a model-theoretic study
of a variant of SLCS presented by Bezhanishvili et al. would be interesting [3]. This variant
is defined with a semantics based on polyhedra in continuous spaces, which is in some sense
“in between” the class of quasi-discrete, graph-like models, and the class of general, arbitrary
neighbourhood spaces.

Our results are a further step towards a comprehensive model theory for SLCS. Under-
standing how the models of SLCS behave can guide how and where we may apply this logic,
as well as its extensions.
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