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Abstract. We present StEVe, a prototype tool modelling Stackelberg
Security Games (SSGs) and employing rational verification based on be-
spoke Stackelberg equilibrium computation. StEVe automatically ex-
tracts technical details from public vulnerability databases, transform-
ing these into Attack Defence Trees and then into SSG models. By using
the temporal logic rPATL, the tool enables the synthesis of optimal de-
fence strategies through Stackelberg equilibrium analysis, which is imple-
mented as a PRISM-games extension. Preliminary results demonstrate
StEVe’s ability to model and counteract cyber threats, reducing poten-
tial damages and financial losses.
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1 Introduction

Stackelberg Security Games (SSGs) [16,17], which utilise the concept of Stackel-
berg equilibrium for their solution, have proven effective for resource allocation
in security contexts. In these games, the leader (typically a defender) commits
to a strategy first, and the follower (the attacker) observes this strategy and re-
sponds optimally. This framework is particularly relevant in cybersecurity, where
defenders must allocate finite security resources to protect multiple targets, and
attackers choose targets based on the observed security measures.

To determine the optimal strategy for defenders, several factors need to be
considered, including the value of the targets, the potential impact of a breach,
and the evolving nature of cyber threats. One promising approach to solving
this problem is Rational Verification (RV) [18], which verifies agent systems by
assuming that agents act rationally to pursue their preferences. RV checks if
a temporal logic formula is satisfied in some or all game equilibria, ensuring
rational behaviour in the system. Recent works [1,8,11] have demonstrated the
effectiveness of RV in multiple agent systems. For example, Aslanyan et al. [2]
present quantitative verification methods for cybersecurity scenarios, illustrating
how RV can be applied to cybersecurity. While tools like EVE [5] and PRISM-
games [9] already support several types of equilibria, expanding their capabilities
to support Stackelberg equilibria would allow their applicability to a wider set of
cybersecurity scenarios, particularly those involving sequential decision making,
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where defenders commit to strategies in advance and attackers respond after
observing these strategies.

To bridge this gap, we propose a method for computing the Stackelberg
equilibrium in SSGs and introduce StEVe (Stackelberg Security Games and
Equilibrium Verification), a tool that integrates game theory and formal ver-
ification for rationality in cybersecurity. StEVe enables defenders to compute
optimal resource allocation strategies and verify rational attacker behaviour. It
transforms data from public vulnerability databases (such as CVEs from NIST’s
National Vulnerability Database) into SSG models, automating the process of
generating and verifying defensive strategies using rational verification and tem-
poral logic. Our work also extends the PRISM-games framework to support
Stackelberg equilibrium computation in cybersecurity scenarios.

2 Background

StEVe’s implementation is based on the concepts introduced in this section.
Attack Defence Trees (ADTs) [6] are graphical models used to express po-

tential security threats and their countermeasures. We restrict the ADT models
to one level of child nodes and construct them solely from the perspective of
a defender, which we denote as ADT(1). This is sufficient to express SSGs.
The syntax of ADT(1) comprises four terms: cd(b′, b); cd(b′, f(b1, ..., bk));
cd(f ′(b′1, ..., b

′
k′), b); cd(f ′(b′1, ..., b′k′), f(b1, ..., bk)), where a represents an at-

tacker and d is a defender, f ∈ {∨a,∧a}, f ′ ∈ {∨d,∧d}, b, bi ∈ Ba for 1 ≤ i ≤ k
and k ≥ 2, b′, b′j ∈ Bd for 1 ≤ j ≤ k′ and some k′ ≥ 2, and Bd,Ba ⊂ A
are disjoints sets of actions for the defender and the attacker, respectively. For
example, an ADT(1) for ensuring data confidentiality against employee attacks
can be represented as: cd(firewall, ∧a(send_vurs, get_password)), where ∧ rep-
resents a conjunction (both actions must occur) and ∨ represents a disjunction
(either action can occur). The defensive action is firewall, while the attacker’s ac-
tions include send_vurs and get_password. This indicates that the defender can
protect the system by investing in high performance firewalls, but the system
remains vulnerable to a coordinated attack involving both sending a virus and
obtaining a password.

An extensive form game [10] G is a tuple (N,A,H,Z, χ, π, γ, u) where N =
{1, ..., n} is a set of players, n ∈ N, n ≥ 2, A is a finite set of actions, H is a set
of non-terminal history (or choice) nodes, Z is a set of terminal history nodes
disjoint from H, i.e. H ∩ Z = ∅, χ : H → 2A maps each non-terminal history
node to its possible actions, π : H → N is the player function, which assigns to
each non-terminal history node a player i ∈ N who chooses an action at that
node, γ : H × A → H ∪ Z is the successor function mapping a choice node and
an action to a new node, either terminal or non-terminal, and u = (u1, ..., un) is
a profile of utility functions, where ui : Z → R is a utility function for player i
that assigns a real-valued utility to each terminal node.

A Stackelberg Security Game (SSG) [17] is a tuple (G, AP, L) where G is
a two-player (i.e., N = {1, 2}) extensive form game, AP is a set of atomic

https://nvd.nist.gov/vuln
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propositions, and L : H ∪ Z → 2AP is a labelling function. In this game, player
1 as the defender chooses an action and then player 2 as the attacker chooses
an action after observing the choice of the defender. In SSGs a strategy is a set
of actions that a player follows to make decisions in a game, based on available
information and their objectives.

The logic rPATL [3], which is used within RV, is a temporal logic for express-
ing properties of Stochastic Multiplayer Games (SMGs), with SSGs a subclass
of SMGs. This logic incorporates operators, including probabilistic (P), reward
(R), next (X), bounded until (U≤k), until (U), instantaneous reward after k steps
(I=k), accumulated reward over k steps (C≤k), and reachability reward (F). The
syntax of rPATL is given by the following grammar:

ϕ := true | a | ¬ϕ | ϕ ∧ ϕ | ⟨⟨C⟩⟩P∼q[ψ] | ⟨⟨C⟩⟩Rr
∼x[ρ] | ⟨⟨C : C ′⟩⟩max∼x(θ)

θ := P[ψ] + P[ψ] | Rr[ρ] + Rr[ρ] ψ := X ϕ | ϕ U≤k ϕ | ϕ U ϕ

ρ := I=k | C≤k | F ϕ

with a an atomic proposition, C,C ′ ⊆ N sets (or coalitions) of players such
that C ′ = N \ C,∼ ∈ {<,≤,≥, >}, q ∈ [0, 1], x ∈ R, r a state reward structure
mapping a state to a non-negative rational reward, and k ∈ N. The full semantics
is defined elsewhere [7].

The informal semantics for rPATL is as follows: ⟨⟨C⟩⟩P∼q[ψ] indicates that
coalition C has a strategy to ensure that the probability of ψ to hold meets the
bound ∼ q. ⟨⟨C⟩⟩Rr

∼x[ρ] means that coalition C can guarantee the expected re-
ward r accumulated over paths satisfying ρmeets the bound ∼ x. ⟨⟨C ′⟩⟩max∼x(θ)
states that coalition C can ensure the maximum value of θ with respect to C ′ is
within the bound ∼ x. For the temporal operators, X ϕ expresses that ϕ holds
in the next state, ϕ1 U≤k ϕ2 means ϕ1 holds until ϕ2 holds within k steps,
and ϕ1 U ϕ2 indicates ϕ1 holds until ϕ2 holds unbounded. I=k represents the
instantaneous reward after k steps, C≤k denotes the accumulated reward within
k steps, and F ϕ denotes the reward cumulated until eventually reaching a state
where ϕ holds.

3 Rational Verification under Stackelberg Equilibrium
for Reachability Reward Properties

For an SSG G, we extend rPATL to support rational verification under Stack-
elberg equilibrium for reachability reward properties in the coalition game of G
induced by coalition C = {defender, attacker} (denoted by GC), where coali-
tion C can consist of player 1 (the defender), player 2 (the attacker), or both
players 1 and 2 together. The defender selects a strategy (denoted as σ1) that
maximises their payoff, assuming that the attacker will best respond to this
strategy (denoted as σ2). On the other hand, given the defender’s strategy, the
attacker chooses a strategy that maximises their own payoff. In a typical SSG,
the defender first selects a strategy to maximise their payoff, assuming that the
attacker will respond optimally. The attacker, in response, attempts to exploit
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observed weaknesses. Using rPATL, we verify whether a given strategy is op-
timal under these conditions. We expand state formulas ϕ in the grammar by
adding the syntax ⟨⟨C⟩⟩Rr

SE=? to denote the Stackelberg equilibrium (SE) and
define its semantics as follows:

⟨⟨C⟩⟩Rr
SE=?[Fϕ ]

def
= Emax,max

GC ,s [rew(r, c,Sat(ϕ))] (1)

= sup
σ1∈Σ1

sup
σ2∈BR(σ1)

Eσ1,σ2

GC ,s [rew(r, c, Sat(ϕ))].

Emax,max
GC ,s represents the expected outcome for the coalition C starting from state

s, assuming that both players are acting optimally in their own interests in the
game GC . Reward calculation is done by rew(r, c, Sat(ϕ)), where r is a defined
reward structure, c denotes that the reward is accumulated along the paths to
the target set of states, and computes the set of states in which ϕ holds.

Σ1 is the set of strategies for the defender, and BR(σ1) is the attacker’s best
response strategy to the defender’s strategy σ1. Given the defender’s strategy
σ1, supσ1∈Σ1

supσ2∈BR(σ1) maximises the attacker’s payoff based on this strategy,
and given the attacker’s strategy σ2, it maximises the defender’s payoff accord-
ingly. For now, we only support rPATL formulas in the form ⟨⟨C⟩⟩Rr

SE=? [F a ].
This restriction to only reachability properties is sufficient for evaluating specific
system states that are necessary for security analysis.

4 Tool Overview

StEVe is the first rational verification tool for SSGs. It can automatically ex-
tract technical exploit descriptions into ADTs, which are then transformed into
SSGs for further analysis using rPATL. The overall architecture is in Fig. 1.

The tool starts analysing vulnerabilities by gathering specific CVE details
and their CVSS data from public vulnerability databases in JSON format. This
includes descriptions of the vulnerability, attack sequences, mitigation steps,
and impact scores. Security experts can manually refine this data and consider
realistic cost values before proceeding.

In creating the ADT(1), the tool extracts the mitigation steps as the de-
fender’s actions, maps attack sequences to the attacker’s actions, and adds de-
pendencies between actions using conjunctive or disjunctive operators. The ob-
tained ADT(1) is then transformed into an SSG. Preferences are calculated using
a risk estimation based on impact scores and cost, then defined at the endpoints
of the game.

The tool models defensive and offensive behaviours as a PRISM-games model.
A set of rPATL properties is generated to focus on security aspects such as con-
fidentiality, integrity, or availability, based on the mitigation technique in the
CVE. Security experts can specify additional security requirements as tempo-
ral formulae. The outcomes of this process include a model of the game and
expressions in temporal logic.
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Fig. 1. Overview of StEVe’s architecture and workflow. PRISM-games* is the version
we patched to support Stackelberg equilibrium.

The process for computing the Stackelberg equilibrium determines the strate-
gies for a defender and the corresponding responses from an attacker. StEVe
relies on our extension of PRISM-games to support Eq.(1) for the analysis of the
payoffs for both the defender and the attacker and the computation of the set of
states in the equilibrium. Rational verification allows us to answer whether there
is a defender strategy that comprises the equilibrium and satisfies their goals.
Furthermore, we can synthesise strategies that are rational for the defender. A
defender strategy that comprises the equilibrium refers to a strategy that satis-
fies the conditions for Stackelberg equilibrium, meaning it optimally coordinates
the defender’s and attacker’s objectives. A rational strategy for the defender is
one that minimises potential loss while considering the attacker’s best response.
As a final output we produce security advisory recommendations that include
rational verification results and strategies.

5 Security Examples and Experiments

In this section, we present some experimental results. We select the two com-
mon vulnerabilities CVE-2017-8759 and CVE-2024-3400 due to their high sever-
ity and impact [12,13]. These have been exploited in targeted attacks, received
extensive media attention, and highlight the need for robust defensive measures.

CVE-2017-8759, known as the .NET Framework remote code execution,
serves as our primary example. In this CVE, the defensive solutions include the
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Mitigation Techniques

b'1 - Patch
Management

Attack Sequencesb'2 - Email Filtering
b'3 - Backup 
and Recovery

b1 - Initial Malicious
Document Delivery
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of the OLE Object
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Fig. 2. Graphical representation of the ADT(1) term cd(∨d(b′1, b
′
2, b

′
3),∧a(b1, b2, b3))

generated from the CVE-2017-8759 example, which is then automatically transformed
into an SSG. The defender (green nodes) can choose mitigation techniques for each of
the following separately: b′1 - patch management, b′2 - email filtering, or b′3 - backup
and recovery. However, the attacker (red nodes) can initiate an attack by combining
actions involving b1 - initial malicious document delivery, b2 - exploitation of the OLE
object, and b3 - payload delivery.

following actions: b′1 – patch management, b′2 – email filtering, b′3 – backup and
disaster recovery, b′4 – application whitelisting, b′5 – network segmentation and
monitoring, b′6 – user training and awareness, b′7 – multi factor authentication,
b′8 – endpoint protection, and b′9 – regular security audits. The exploit activities
involve: b1 – malicious document delivery, b2 – exploitation of the OLE object,
b3 – payload delivery, b4 – execution of the HTA file, b5 – establishment of per-
sistence, b6 – command and control communication, and b7 – lateral movement
and further exploitation. In this experiment, we assume that the defender takes
the following disjunctive actions: b′1, b′2, and b′3. The attacker uses the following
conjunctive actions: b1, b2, and b3. The ADT(1) term encoding this scenario is
cd(∨d(b′1, b

′
2, b

′
3), ∧a(b1, b2, b3)) and graphically represented in Fig. 2, which is

then transformed into an SSG with payoffs derived from adjustment costs. Each
of the defender’s strategies σ1, . . . , σ8 ∈ 2{b

′
1,b

′
2,b

′
3} is verified against the security

requirements ρ1 = F applyPatch, ρ2 = F filterEmail, and ρ3 = F backup,
where applyPatch, filterEmail, and backup are user-defined atomic proposi-
tions corresponding to the actions b′1, b′2, b′3 respectively. Then the tool generates
the three corresponding rPATL formulae ⟨⟨C⟩⟩Rr

SE=?[ρi], for i ∈ {1, 2, 3}.
We analyse multiple defensive strategies, as shown in Table 1. The cost of

each strategy is calculated from deployment and maintenance expenses, while
the attacker’s gain is estimated based on potential financial damages from suc-
cessful exploits, including data loss and business disruption. These estimates
are informed by historical data collected by the company. The strategies are
evaluated based on their effectiveness in minimising the defender’s loss and the
attacker’s gain. The Stackelberg equilibrium is highlighted in bold. Among the
evaluated strategies, σ5 (patch management) is the optimal choice as it satisfies
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the Stackelberg equilibrium, resulting in the least loss for the defender and a
moderate gain for the attacker. Rational verification with StEVe returns “true”
when a security requirement satisfies some of the rPATL formulae and the Stack-
elberg equilibrium, and “false” when it fails to meet these criteria or does not
achieve the Stackelberg equilibrium. If the user does not provide a security re-
quirement, StEVe will synthesise strategies that satisfy both the Stackelberg
equilibrium and the applicable rPATL formulae.

Table 1. Summary of defensive & attacking strategies. Stackelberg equilibrium in bold.

Strategy Def. Actions Att. Actions Def. Loss (£) Att. Gain (£)

σ1 {b′1, b′2, b′3} {b1, b2, b3} -85,015 1,504.5
σ2 {b′1, b′2} {b1, b2, b3} -35,900 1,770
σ3 {b′2, b′3} {b1, b2, b3} -76,018 6,018
σ4 {b′1, b′3} {b1, b2, b3} -72,537.5 3,761.25
σ5 {b′

1} {b1,b2,b3} -24,750 4,425
σ6 {b′2} {b1, b2, b3} -43,600 7,080
σ7 {b′3} {b1, b2, b3} -100,150 15,045
σ8 ∅ {b1, b2, b3} -59,000 17,700

To further validate StEVe, we conduct additional experiments on CVE-
2024-3400, which affects Palo Alto Networks, potentially allowing arbitrary code
execution on the firewall. Table 2 summarises the defensive strategies and their
outcomes for both CVE examples. The “Securing with Stackelberg” and “Best
Case” scenarios both demonstrate significantly lower defender losses and mod-
erate attacker gains, indicating that these strategies are highly effective in mit-
igating damage and deterring attackers. In contrast, the “Worst Case” scenario
results in the highest financial losses for defenders and the greatest gains for at-
tackers, highlighting a critical failure in defensive measures. Additionally, strate-
gies such as “Minimise Rewards for the Attacker” and “Exhaustive Approach”
result in identical defender losses and notably low attacker gains, underscor-
ing their effectiveness in discouraging attackers by minimising their potential
rewards.

Table 2. Experimental results in various scenarios.

Scenario CVE-2017-8759 CVE-2024-3400

Securing with Stackelberg -£24,750, £4,425 -£13,000, £3,150
Worst Case -£100,150, £15,045 -£60,000, £25,200
Best Case -£24,750, £4,425 -£13,000, £3,150
Minimise for the Attacker -£85,015, £1,504.5 -£29,000, £450
Exhaustive Approach -£85,015, £1,504.5 -£29,000, £630
Do Nothing -£59,000, £17,700 -£60,000, £25,200
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6 Discussion and Conclusion

StEVe’s capability to automatically derive ADTs from CVEs and transform
them into SSG models represents a new contribution. By using the temporal
logic rPATL and the extended PRISM-games framework, the tool supports the
computation of Stackelberg equilibria, ensuring that the defence strategies syn-
thesised are not only optimal but also rational given the attacker’s best re-
sponses. This shows how rational verification can guide security experts in mak-
ing informed decisions about the allocation of limited resources. Our experiments
with two CVEs demonstrate StEVe’s potential to model security scenarios and
suggest optimal defensive strategies. However, further validation in practical,
real world scenarios is necessary to fully assess its impact on reducing damages
and financial losses. We chose PRISM-games as the backend for StEVe due
to its robustness in handling game-theoretic analysis, even in non-probabilistic
settings. The ability to compute Stackelberg equilibria, along with its support
for rPATL, makes it the most suitable option.

There are currently some limitations to our approach. StEVe does not sup-
port social engineering attacks. Since these exploit human psychology rather
than technical vulnerabilities, it is difficult to model them, within the frame-
work of SSGs. Another limitation is that the tool cannot analyse scenarios where
multiple vulnerabilities are combined by an attacker to achieve their objectives.

We plan to address these limitations in future work by extending StEVe to
support a diverse range of vulnerabilities. We consider using requirements elici-
tation tools like FRET [4] to help users specify their logical specifications. Ad-
ditionally, moving beyond single shot games to represent repeated SSGs [17] by
integrating probabilistic and Bayesian games [14] will allow for better modelling
of uncertainties and incomplete information prevalent in cyber-defence scenar-
ios. We also foresee the possibility of integrating StEVe’s approach into the
EVE [5] framework, which would further enhance its ability to handle rational
verification in cybersecurity scenarios by enabling the computation of Stackel-
berg equilibria. This would allow EVE to support the analysis of leader-follower
interactions in security games, improving its capability to model interactions
between defenders and attackers. Finally, our code and the examples presented
in this paper are publicly available [15].
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