
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. YY, DRAFT 22 NOVEMBER 2016 1

Stochastic model checking for predicting
component failures and service availability

Muffy Calder and Michele Sevegnani

Abstract—When a component fails in a critical communications service, how urgent is a repair? If we repair within 1 hour, 2 hours, or
n hours, how does this affect the likelihood of service failure? Can a formal model support assessing the impact, prioritisation, and
scheduling of repairs in the event of component failures, and forecasting of maintenance costs? These are some of the questions
posed to us by a large organisation and here we report on our experience of developing a stochastic framework based on a discrete
space model and temporal logic to answer them. We define and explore both standard steady-state and transient temporal logic
properties concerning the likelihood of service failure within certain time bounds, forecasting maintenance costs, and we introduce a
new concept of envelopes of behaviour that quantify the effect of the status of lower level components on service availability. The
resulting model is highly parameterised and user interaction for experimentation is supported by a lightweight, web-based interface.

Index Terms—Reliability, decision support systems, predictive models, stochastic systems, discrete-event systems.

F

1 INTRODUCTION

We report on our experience of developing a stochastic
model and temporal logic analysis to support the manage-
ment of a critical communications service deployed within
a large organisation. The service is key to their main safety-
critical system and so at all times, it must operate with
acceptable risk of failure.

Components of the service are organised hierarchically,
with several levels of redundancy. The service operates
continuously and individual component failures are mon-
itored and logged; the service is almost always in a degraded
configuration, i.e. one in which there are failed components,
but because of redundancy, the service is still operating. The
time/cost for a component repair depends on a number
of factors, including the nature of the failure and physical
distance or access to the component (many components are
physically remote). The key management questions posed
to us were how can a formal model support:

• assessing the impact, prioritisation, and scheduling
of repairs in the event of component failures,

• forecasting of maintenance costs.

The modelling and analysis challenge for us was to
develop an effective, tractable framework that addresses
the questions the organisation cares about, in the context of
a degraded service – so standard approaches that reason
from a fixed initial state are not applicable. There had been
no previous attempts to model the service, and no system
requirements or specification documents were available to
us, however, we were given access to all operational docu-
mentation, historical failure data, and freedom to interview
the operating engineers.

In this paper we focus specifically on questions and
decisions of the form:

• M. Calder and M. Sevegnani are with the School of Computing Science,
University of Glasgow, Glasgow, G12 8RZ, UK.
E-mail: {muffy.calder,michele.sevegnani}@glasgow.ac.uk

xxx.

From a given degraded configuration, do we need to
fix a particular fault right now, in the next n hours, or can
we wait until tomorrow?

For example, if we can determine the likelihood of
service failure over the next n hours remains well below an
established safety threshold, but thereafter rises well above
the threshold, then we can decide that a repair need not be
immediate, but must be completed within the next n hours.
However, the decision may also depend on other parame-
ters (e.g. resources and costs) to minimise or maximise.

The aim of this paper is to describe how we used formal
modelling and analysis based on continuous-time Markov
chains (CTMCs) and the temporal logic Continuous Stochastic
Logic (CSL) [1]. Our focus is not textbook performance analy-
sis such as occupancy or first passage time, but the questions
posed to us by the organisation, as mentioned above. While
the questions were posed for a particular deployed commu-
nications system, as the research progressed, we could also
see an appetite within the organisation to evaluate design
aspects such as adding degrees of autonomy to the system,
changing levels of redundancy and monitoring practices, so
we also factored these into requirements.

Our framework is based on treating each component as
a discrete-state process, with events representing failures,
repairs etc. The overall system is the concurrent composi-
tion of all components, synchronising on common events.
The passage of time is modelled continuously and so the
underlying models are continuous-time Markov chains, i.e.
the state space is discrete but time is continuous. While
modelling component-based systems with CTMCs is stan-
dard, we model at a higher level, using the PRISM language
(for reactive systems), which allows for elegant treatment of
components as modules, events as guarded commands, and
levels of the hierarchy as module compositions. The prop-
erties we consider are probabilistic, such as likelihood of
service failure and a new concept called envelopes of behaviour
that quantify the effect of different combinations of status
of lower level components on service availability. We also

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. YY, DRAFT 22 NOVEMBER 2016 2

consider properties that quantify recoverability and surviv-
ability after a loss of service and properties that employ
rewards to forecast maintenance costs, both cumulatively
and in steady-state.

Property analysis is by model checking, which provides
exhaustive analysis and probabilistic guarantees of temporal
logic properties over all possible executions. The properties
are easily expressed in CSL and the PRISM model checker
provides mechanisms that reason from states other than the
initial one. This approach is complementary to simulation,
which explores single executions. Further, by varying the
underlying time interval, we plot trajectories of temporal
property likelihood. This allows us to answer the questions
posed for this system, which are not based on the standard
analyses for CTMCs.

We do not expect engineers to be familiar with the details
of the model nor the PRISM language, so we developed
a web-based, lightweight interface that supports simple
instantiation, using sliders, of model parameters, and with
meaningful pre-determined default values.

1.1 Summary of modelling and analysis framework

The overall framework is depicted in Fig. 1 and summarised
as follows. Model definition and analysis is indicated by
solid lines, feedback from the analysis is indicated by
dashed lines. The example property outputs (bottom of
Fig. 1) are screenshots (that are displayed within the web
app). The model is validated by comparing the results of
steady-state temporal logic properties with the expected (or
required) results from the safety and business cases and
observed results inferred from the field data (left-hand side
of Fig. 1). The model is used for quantified prediction, e.g.
of service failure at future times and cumulative costs, by
examination of transient temporal logic properties that are
displayed through the web app (right-hand side of Fig. 1).
Model parameters (e.g. rates and component configurations)
are modified through the web app. The framework can be
used:

1) in real-time, on-line, to inform operational decision
making,

2) after the system has been deployed, and the model
is parameterised by operational data, to investigate
whether or not a particular architecture actually
meets service requirements,

3) at design time, to investigate whether or not a
particular architecture meets service requirements,

4) as a combination of the first and second in which a
“catalogue” of predictions (generated off-line) for a
variety of degraded configurations is provided and
then consulted as the system evolves in real-time.

Modelling for reliability analysis with CTMCs is well
known, but this was not an obvious solution to the problem
as originally presented; we had to work with the engineers
to uncover the stochastic nature of failures, what was re-
quired from a model, and from a modelling approach. We
identified that compositional modelling was intuitive for
the service, representing each component in the hierarchy
by a discrete-state process and the overall service as their
concurrent composition. The advantages of analysis by logic

Fig. 1. Modelling and analysis framework.

property and probabilistic model checking, compared with
simulation, are establishing causal relations and quantitative
properties (expressed explicitly in the logic) and exhaustive
exploration of the entire state space. Simulation is focussed
on individual trajectories, analysis is therefore approximate
and generally must include large numbers of runs.

The paper is organised as follows. The next section
contains an overview of the communications service and in
the following section we review basic definitions of CTMCs
and CSL. In Section 4 we give an overview of the model
and discuss event rates and their inference from observed
behaviour over an example (historical) time period. Sec-
tion 5 defines the propositions, steady-state and transient
CSL properties we use for analysis, along with example
results. Section 6 shows how, by way of examples, analysis
of transient properties can inform decision making con-
cerning which component to repair, and to what timescale.
In Section 7 we define envelopes of behaviour and give
example results. In Section 8, we consider recoverability
and survivability, two properties that quantify behaviours
after reaching no-service and in Section 9 we present an
analysis of maintenance costs using PRISM rewards, again
illustrating with examples. An overview of the web app
is in Section 10, and in Section 11 we reflect upon our
methodology and this study. Related work is discussed in
Section 12, followed by conclusions.

2 OVERVIEW OF THE COMMUNICATIONS SERVICE

The components of the service are sectors, sites, and channels,
which operate over various frequencies. There are 35 sectors
(physical, disjoint entities) each of which is allocated a
fixed set of frequencies, plus an emergency frequency. There
are 17 sites, each with antennas, or channels, that transmit
(Tx) and receive (Rx) on different frequencies. There is
redundancy by design: every sector is allocated several
frequencies, a frequency is covered by more than one site,
and in every site there are (usually) idle backup channels.
An example with 3 sectors and 6 sites is given in Fig. 2.

A channel is characterised by three parameters: whether
it is receiver (Rx) or transmitter (Tx), the frequency, and the
site reference. A site typically consists of a pair of receiver
channels and a pair of transmitter channels. The convention
is the main channel is known as channel A and the backup

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. YY, DRAFT 22 NOVEMBER 2016 3

Fig. 2. Example with 3 sectors (A, B, C) and 6 sites (s0, · · · , s5). Each
site is located in exactly one (physical) sector (left), but frequencies
overlay sectors (right). Areas covered by the frequencies in each site:
A = (s0, s1, s2), B = (s2, s3, s4) and C = (s2, s5). Note site s2 operates
frequencies for all sectors. Also, s2 provides coverage for sector B even
though it is physically located within the boundaries of sector C.

channel is channel B. Sites include sensors that monitor for
power line status, communication link status, and physical
intrusion and flooding. Together these sensors indicate the
site environment and environment events are characterised
as major events that cause a failure of the site (e.g. intrusion,
power-line and backup generator failure, flooding) or minor
events that mean the site is more likely to fail, but is still
functioning (e.g. power-line failure but backup generators
functioning). While in general the channels A and B operate
independently of each other, the site environment affects
them both simultaneously, e.g. a flood at the site causes both
channels to fail.

An n-ary sector has n constituent sites1. Without loss of
generality, for the remainder of this paper, unless otherwise
stated, we assume sectors with three sites. Within a sector,
the sites behave independently of each other and they may
be at different distances from each other. This means that
rates of events (e.g. that change status of a component) may
differ from site to site, within a sector. For example, for a
given sector, the rate of a given event at the first site may be
different from the rate for the same event but at the second
site (in that sector).

Components are monitored in real-time and their status
is reported using the colour coding: green – functioning
or serviceable; red – faulty, raise an alarm; blue – under-
maintenance; amber – reduced-redundancy and possibly
not fully functioning (for example, when one antenna goes
down for a given frequency).

In more detail, the status for a receiver/transmitter is
either: serviceable (green), faulty (red), site failure (red), or
under-maintenance (blue). There is no reduced-redundancy
for a single channel (i.e. no amber). Minor site environment
events typically precede major site failures events and a site
environment can have status: serviceable (green), minor site
failure (amber), or major site failure (red). A site has status:
serviceable (green), no-service (red), or reduced-redundancy
(amber). Finally, the status of a sector is: serviceable (green),
reduced-redundancy (amber), and no-service (red). The last
is our ultimate concern as no-service for a sector is a catas-
trophic failure for the organisation.

1. Sites may be shared among several sectors.

3 TECHNICAL BACKGROUND

Following [2], given a finite set of atomic propositions AP , a
(labelled) continuous-time Markov chain (CTMC) is a triple C =
(S,R,L) where S is a finite set of states with a designated
initial state, R : S × S → R≥0 a rate matrix, and L : S →
2AP a labelling of states. The exit rateE(s) =

∑
s′∈S R(s, s′)

denotes the probability of taking a transition from s within
t time units and is equal to 1 − e−E(s)·t. If R(s, s′) > 0 for
more than one state s′, a race between outgoing transitions
from s exists. That is, the probability of moving from s to
s′ in a single transition is the probability that the delay of
going from s to s′ finishes before the delays of any other
outgoing transition (from s). We use an informal, graphical
notation for indicating the states and transitions of a CTMC,
for example, in Fig. 3.

We use Continuous Stochastic Logic (CSL) [1], a stochastic
extension of the Computational Tree Logic (CTL) that allows
the expression of a probability measure of the satisfaction
of a temporal property in either transient or steady-state
behaviours. The formulae of CSL are state formulae Φ with
path formulae Ψ:

Φ ::= true | a | ¬Φ | Φ ∧ Φ | P./ p [Ψ] | S./ p [Ψ]
Ψ ::= XΦ | ΦUI Φ

where a ranges over a set of atomic propositions AP , ./∈
{≤, <,≥, >}, p ∈ [0, 1], and I is an interval of R≥0.

Informally, path formula XΦ is true on a path starting
in s if Φ is satisfied in the next state following s in the path,
whereas Φ1 U

I Φ2 is true on a path ω if Φ2 holds at some
time instant in the interval I in a state s′ in ω and at all
preceding times Φ1 holds. We additionally use the eventually
path operator F (future) defined as FI Φ ≡ trueUI Φ.

A transient formula P./ p [Ψ] is true in state s, denoted
by s |= P./ p [Ψ], if the probability that Ψ is satisfied by
the paths starting from state s meets the bound ./ p. A
steady-state formula S./ p [Ψ] is true in a state s if the steady-
state (long-run) probability of being in a state that satisfies
Ψ meets the bound ./ p.

We use the PRISM probabilistic model checker [3], which
allows us to leave the bound ./ p unspecified. The proba-
bility is calculated in PRISM thus: P=? [Ψ] and S=? [Ψ].
Additionally, PRISM allows for experimentation: the veri-
fication of an open formula, when the range, and step
size of the variable(s) are specified. This allows us to plot
trajectories of property likelihood over the free variable(s). For
example, a typical property is P=?

[
F≤tφ

]
, which delivers

the probability that we can reach a state in which φ is true,
within t units of time (e.g. hours or minutes). We typically
consider hours as the unit of time and vary t from 1 to 48
(i.e. behaviour over the next 48 hours).

PRISM allows for the augmentation of models with
rewards (or, equivalently, costs) that are associated with
states or transitions. The model checker can analyse prop-
erties that relate to the expected values of these re-
wards by using the R operator, which works in a simi-
lar fashion to the P and S operators, except that it de-
pends on the name of a reward structure. We employ re-
wards on transitions and cumulative and steady-state reward
properties. A cumulative (reward) property has the form
R{reward}=? [C ≤ t], which corresponds to the reward
(named reward) accumulated along all paths until t time

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. YY, DRAFT 22 NOVEMBER 2016 4

units have elapsed. A steady-state (reward) property has the
form R{reward}=? [S], which corresponds to the (named)
reward per unit time, in the long-run.

The PRISM language supports high level specification of
processes and compositionality. Processes are represented
by modules consisting of non-deterministic choice over
action-labelled guarded commands (which denote transi-
tions); modules are composed over all common actions. A
guarded command has the form:
[action] guard→ rate : update
meaning the process makes a transition to a state described
by the update at the given rate when the guard is true. In the
update, if x is a variable, then x′ denotes the value of x in
the next state.

Transitions are synchronised (i.e. occur simultaneously)
between modules when they have the same action labels,
in which case the rate of the synchronised transition is the
product of all the individual rates. For example, given
[action1] guard1 → rate1 : x′ = 2 and
[action1] guard2 → rate2 : y′ = 3
when guard1 and guard2 are true, then in a next state, x = 2
and y = 3, with transition rate rate1 · rate2.

4 OVERVIEW OF MODEL

Key considerations when developing the model are the
level of abstraction for components and events, dependen-
cies between events, modelling the passage of time, and
tractability.

Each component is represented by a PRISM module
that includes a local variable for status. Dependencies
between events are modelled by synchronisation. While
strictly speaking, the labels of states in a CTMC are the
propositions that are true in that state, here, we use a
convenient state labelling to represent status and conflate
labels with propositions. Tab. 1 contains a summary of the
(labels of the) states that are represented in a model with a
ternary sector, using regular expression notation, e.g. ‘|’ for
disjunction and ‘∗’ for wildcard. Since our primary concern
is the availability of the higher level services, we do not
reason about individual channels directly and thus employ
a counter abstraction for the lowest level of the hierarchy.
(A counter abstraction records the counts of processes in a
particular state, rather than details of which process is in
which state.)

The organisation expressed no views concerning how to
model the passage of time, certainly there was no require-
ment for real-time. However, during our interviews with the
operating engineers, it became clear that – at the level of ab-
straction in which they understood the system – the system
exhibits many Markovian properties, i.e. time-homogeneous
sojourn time distributions and behaviour that is determined
by current state, not the process history. We therefore chose
to adopt continuous CTMCs as the underlying semantics,
which gives more detail than discrete time and also allows
us to employ mean time between failure (MTBF) values: if
the MTBF is r, then the associated rate for the (failure) event
is 1/r and the probability the event occurs/has completed
by time t is exponential: 1− er·t. Note that any distribution
can be arbitrarily well approximated by a phase-type distri-
bution, i.e. a mixture of exponentials [4]. We will discuss this

approach for the approximation of rates from historical data
using hyper-Erlang distributions in Section 11.

After experimentation with a number of different ab-
stractions, we found the following as an ideal compromise
between detail, tractability and efficiency of analysis, and
ease of expression of key properties. The components chan-
nels, sites, and sectors are modelled by PRISM modules,
and events that must be synchronised have the same ac-
tion labels. In graphical representations (e.g. Fig. 3) black
transitions are internal (no synchronisation), red and green
transitions denote synchronised events. Frequencies are not
represented explicitly, as they are not relevant to sector
service availability.

4.1 Channels

We use the following representation for individual chan-
nel states: S for serviceable, F for faulty, M for under-
maintenance, and E for environment failure events. Recall
there is no reduced-redundancy in a single channel (i.e. there
is no amber for an individual channel).

We employ a counter abstraction whereby a pair of A
and B channels is represented by a single module and
state labels indicate the counts of the constituent channels.
For example, state (label) SS means that both A and B
channels are serviceable, state SF means that one channel
is serviceable and the other is faulty (note, the label notation
is not positional i.e. SF is not distinguished from FS). The
CTMC for a pair of channels is given on the left-hand
side of Fig. 3. States are colour coded to indicate status
so whereas individual channels may be green/blue/red,
channel pairs are green/amber/red2. For example, state
SF is amber (reduced-redundancy) because one channel is
serviceable and the other is not.

4.2 Sites

We represent a site by a triple (Tx,Rx,Env) consisting of the
two channel pairs and a site environment. This means the
notation for a site is positional: for example, site (SF,SS,E0)
is distinguished from (SS,SF,E0). The former denotes a
state where the transmitter is reduced-redundancy and the
receiver is serviceable, whereas the latter denotes a state
where the transmitter is serviceable and the receiver is
reduced-redundancy.

States of sites are labelled and classified by three
colours: W (working) for serviceable (green), R for reduced-
redundancy (amber), and N for no-service (red). In PRISM,
a site is represented by the concurrent composition of three
modules: the transmitters, the receivers, and the site envi-
ronment. Fig. 3 illustrates the resulting CTMC for a channel
pair and site environment with symbolic rates a, b, c, etc.
A key aspect of the model is the interaction between the
site environment and the channels: the transition between
E1 and E2 in the site environment synchronises with any
channel transition to state E (red arrows in Fig 3); that is, an
environment failure causes the channel to move to state E.
Similarly, the (site environment) transition between E2 and
E0 synchronises with the channels (reset) transition to SS

2. A component that is under-maintenance is not serviceable, there-
fore we have abstracted away from the “under-maintenance” (blue)
class.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. YY, DRAFT 22 NOVEMBER 2016 5

(green arrows in Fig. 3). Note, not all states are reachable.
For example, the state (SS,E,E2) is not possible because of
synchronisation on site failure: when a site failure occurs,
both the transmitter and receiver synchronise on this event
and move to (channel) state E. We assume the rates for
events for transmitters and receivers are identical (unless
clearly specified otherwise) and if either the transmitter or
receiver is no-service, then the entire site is no-service.

4.3 Sectors
Sectors (ternary) are represented as follows: WWW denotes
a serviceable sector (green), NNN is a no-service sector
(red), and amber is for a reduced-redundancy sector, which
consists of all remaining states, i.e. the language defined by
L \ {WWW,NNN}, where L = (W|N|R)(W|N|R)(W|N|R).
Note, this notation is positional.

As example, the code snippet in Fig. 4 gives the PRISM
modules for the transmitters (Tx) and the environment
for site X , in the context of rate declarations. Currently,
PRISM does not allow text variables and so state labels
are represented by (local) integer variables s0 X and env X,
e.g. 2 for FF, etc. Note the last two transition choices in
the transmitters module, labelled by alarm major X and
fix X, cause the synchronisation with the site environment.

4.4 Rates
The model is governed by seven rates, which we refer to
as a, . . . , g; these are indicated in Fig. 3. Note there are
two transitions from states with a faulty channel (F): a
quick, local repair that returns to the serviceable state, and a
slower transition to the under-maintenance state. The former
reflects a failure that can usually be fixed remotely. The latter
reflects the fact it may take some time for an engineer to
physically reach a site and/or repair the fault. Interviews
with engineers indicated the ratio between these rates is
typically about 3 : 1.

Rate a indicates the failure rate of a single channel.
Intuitively, it describes the transition of a channel from
state S to state F (downwards arrows in the Fig. 3). Since
state SS contains two channels that can individually and
independently fail, the rate for transition SS→ SF must be
2a.

Rate b is the rate of a quick repair. It describes the
transition of a channel from state F to state S (without
passing through an M state). Interviews with engineers
revealed that the time to repair a single channel and a pair
of channels is the same, we use b (not 2b) as the rate for
transition FF→ SF.

Rate c is the rate for slow repairs and describes the
transition of a channel from state F to state M. Events
of this kind are always in a race condition with b-rated
events. In order to reflect the 3 : 1 ratio between quick and
slow repairs, c is defined as b/r, where r is an additional
parameter for the expected ratio between quick and slow
repairs.

Similarly, rate d is the duration of a repair of an under-
maintenance channel (M), i.e. a transition of a channel from
state M to state S.

Rates e and g are the rates for minor environment events
and environment failures, respectively, and g is the rate of
site repair.

The company gave us access to their SAP incident tick-
eting system, which they employ for long term storage of
logged failures. The data logs record failure occurrences
and repair durations, as well as a textual description, which
allowed us to categorise events. Inference of rates was by
manual inspection, sector by sector, for nominated time
periods. Longer term, we aim to influence the design of
readouts and tickets, and subsequently to automate the
inference process.

As an example, we give results for one sector, which we
call FIR, over a one year period: February 2012 to February
2013. The data included 61 alarms, of which 24 were envi-
ronment events. From this data we calculated mean inter-
failure times, which we then used to define failure rates
(namely rates a, e and g), and we calculated and used repair
duration times and mean repair duration times to define
repair rates. The results are reported in Tab. 2.

Examination of the field data confirmed the inferred
rates are of the expected orders of magnitude and also our
assumption (as told to us during interviews with engineer-
ing staff) that the duration of repairs is independent of the
number of channels (requiring repair). However, analysis
raised some issues that require further consideration. First,
some events were impossible to classify by analysing the
chosen data set. For example, the textual descriptions for
repair events did not specify whether an event was a quick
or a slow repair. Therefore, in order to infer the ratio
between rates b and c, we assumed that repair events with a
duration greater than 2 hours were slow repairs. The inferred
ratio was 6.6 : 1, somewhat different from the expectation
of the engineers. Second, rare events such as site failures did
not occur in the time span covered by the data set; we had
to inspect data from previous years to find an occurrence.
Third, we identified two classes of events that may require
a different representation model: dependent events such as
failure of both A and B channels, and deterministic events
such as scheduled maintenance. We will return to these
issues in Section 11.

5 TEMPORAL LOGIC PROPERTIES

We now turn our attention to CSL properties for analysis,
considering atomic propositions, steady-state and transient
properties, and example results.
Atomic propositions indicate the status (i.e. level of service)
of channel pairs, sites, etc. and are defined in Tab. 3.
Steady-state properties express long-run behaviour3. Typi-
cally we examine steady-state behaviour for a given sector,
computing the likelihood to be in a serviceable state, a
reduced-redundancy state, or a no-service state, in the long-run.
Namely, we consider three steady-state properties:

S=? [serviceable sector(A)]

S=? [rr sector(A)]

S=? [noservice sector(A)]

Transient properties express the probability of reaching a
state that satisfies a proposition within a period of time. For
our analysis, the crucial question is: what is the likelihood

3. Note, in a CTMC, long-run behaviour is a distribution over states.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. YY, DRAFT 22 NOVEMBER 2016 6

Fig. 3. CTMC for channel pair and site environment. Synchronisation on red and green transitions. Rates: a = channel failure, b = channel quick
repair, c = channel slow repair, d = channel under-maintenance repair, e = minor environment event, f = site repair, g = environment failure.

TABLE 1
State labelling and colour coding.

Component Colour States Description
channel green S serviceable channel

blue M under-maintenance channel
red F faulty channel
red E site failure

channel pair green SS serviceable AB
(A,B) amber SF|SM reduced-redundancy AB

red FF|FM|MM|E no-service AB
site green SS,SS,E0 W serviceable site
(Tx,Rx,Env) amber SS,SS,E1 R reduced-redundancy site

amber SF,(SM|SF|SS),(E0|E1) R reduced-redundancy site
amber SM,(SM|SF|SS)(E0|E1) R reduced-redundancy site
amber (SM|SF|SS), SF(E0|E1) R reduced-redundancy site
amber (SM|SF|SS), SM(E0|E1) R reduced-redundancy site

red E,E,E2 N no-service site
red (FF|FM|MM) ∗ ∗ N no-service site
red ∗(FF|FM|MM)∗ N no-service site

ternary sector green WWW serviceable sector
(site,site,site) amber all other combinations reduced-redundancy sector

red NNN no-service sector

TABLE 2
Inferred rates from historical event data for sector FIR.

Rate Inferred value
Mean inter-failure time 452 h
Mean repair time 18 h
Environment event 1107 h
Percentage of quick repairs 15
Environment failure 1 every 11.33 years

of reaching no-service in a given sector within time t. This is
expressed by the transient property, for sector A,

P=?

[
F≤t(noservice sector(A))

]
(1)

By experimentation in PRISM with property (1) we can
consider different instantiations of t, to plot how the likeli-
hood changes over time. But there is another parameter to
consider: the state from which we compute the likelihood.

TABLE 3
Atomic propositions for status of channel pairs, sites and sectors.

serviceable chan(c) = (c = SS)

serviceable env(e) = (e = E0)

serviceable site(s) = serviceable chan(Txs)
∧ serviceable chan(Rxs)
∧ serviceable env(Envs)

serviceable sector(A) =
∧

s site in A serviceable site(s)

rr chan(c) = (c = SF) ∨ (c = SM)

rr env(e) = (e = E1)

rr site(s) = ¬(serviceable site(s) ∨ noservice site(s))

rr sector(A) =
∨

s site in A rr site(s)

noservice chan(c) = (c = FF) ∨ (c = FM) ∨ (c = MM) ∨ (c = E)

noservice env(e) = (e = E2)

noservice site(s) = noservice chan(Txs)
∨ noservice chan(Rxs)
∨ noservice env(Envs)

noservice sector(A) =
∧

s site in A noservice site(s)

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. YY, DRAFT 22 NOVEMBER 2016 7

// Parameterised rates
const double a=1/ failure; const double b=1/ qrepair;
const double c=b/r; const double d=1/ repair;
const double e=1/ event; const double f=1/ fix_e_event;
const double g=1/ site_failure;

module Site_Tx_X // A/B channels
// 0=SS , 1=SF , 2=FF , 3=SM , 4=FM , 5=SM , 6=E
s0_X : [0..6];

[] s0_X=0 −> 2∗a:(s0_X ’=1);
[] s0_X=1 −> a:(s0_X ’=2);
[quick_0_X] s0_X=1 −> b:(s0_X ’=0);
[] s0_X=1 −> c:(s0_X ’=3);
[quick_0_X] s0_X=2 −> b:(s0_X ’=1);
[] s0_X=2 −> c:(s0_X ’=4);
[alarm_0_X] s0_X=3 −> a:(s0_X ’=4);
[repair_0_X] s0_X=3 −> d:(s0_X ’=0);
[quick_0_X] s0_X=4 −> b:(s0_X ’=3);
[] s0_X=4 −> c:(s0_X ’=5);
[repair_0_X] s0_X=4 −> d:(s0_X ’=1);
[repair_0_X] s0_X=5 −> d:(s0_X ’=3);
[alarm_major_X] true −> 1:(s0_X ’=6);
[fix_X] s0_X=6 −> 1:(s0_X ’=0);

endmodule

module Site_env_X // Site environment
env_X : [0..2]; // 0=E0 , 1=E1 , 2=E2

[] env_X=0 −> e:(env_X ’=1);
[alarm_major_X] env_X=1 −> g:(env_X ’=2);
[fix_X] env_X =1 −> f:(env_X ’=0);
[fix_X] env_X =2 −> f:(env_X ’=0);

endmodule

Fig. 4. PRISM specification of transmitters and site environment mod-
ules, for site X. Rates are parameterised by constants failure,
qrepair, etc.

(Note, hereafter we use configuration and state interchange-
ably.) In standard model checking, the given state is, by
default, the initial state of the system. In our case, this
would be the all-green configuration (serviceable channels,
sites, sectors, etc.). However, we are considering a deployed
system in which failures have occurred and the interesting
cases are the degraded, amber configurations. Specifically,
once we have reduced-redundancy, we require to quantify
the criticality of the situation and take informed decisions –
for example, do I need to fix a fault now, or can I wait? And
if I can wait, for how long should I wait?

5.1 Example results

For example sector FIR, steady-state analysis results are
given in the left-hand column in Tab. 4, indicating that in
the long-run, the sector is serviceable for the majority of
time (over 88%). We also analysed the historical data for
that sector (over one year), to calculate the percentage time
spent in a serviceable state, etc., indicated in the right-hand
column in Tab. 4. As can be seen, the two results compare
well. This is not surprising given the model rates are derived
from the same data set. For completeness, we give detailed
results for the 52 configurations with probability > 10−3

in Fig. 5a, noting the log scale for probabilities and use of
shades of green to indicate degree of degradation/reduced-
redundancy.

For transient property analysis, recall we require to
choose a state (from which to perform the analysis). For
sector FIR there are 389, 017 states, of which one is fully
serviceable (WWW), 166, 375 are no-service (NNN), and
222, 641 are degraded, reduced-redundancy configurations.

The degraded configurations we examined for the FIR sec-
tor, with three sites that we call A, B, and C, are given in
Tab. 5. We refer to Tab. 1 for the definitions of W, R and
N. Observe that both N and R can be the result of many
different site configurations4, so we selected SM,SM,E1 and
MM,MM,E1 for each occurrence of R and N, respectively.
We will explain in Sec. 7 how these eight configurations can
be related to all the other possible degraded configurations.

Figures 5b, 5c, and 5d give the results for the probability
of reaching a no-service configuration, from eight different
degraded configurations, over a time interval of 48 hours.

We are considering a service in a safety-critical domain
and so we expect the probabilities of no-service to be very
low. However, observe the orders of magnitude difference
on the y-axis. In Fig. 5b, the scale is 10−4, whereas in Fig. 5c,
the scale is 10−2, and in Fig. 5d, the scale is 10−1. Also,
observe that in Fig. 5b the steepest trajectory is WWN,
which contains one no-service site, and in Fig. 5d, the
trajectory with highest probability, RNN, has two no-service
sites. However, in the same figures, WNN also contains two
no-service sites, but one serviceable site and the overall
probability of service failure is constantly low.

Following similar analysis of different sectors with dif-
ferent topologies, we observed service availability increases
as the number of sites grows. However, the contribution
of each additional site to that increase decreases as more
sites are added. The example in Fig. 6a illustrates this:
the difference between 3- and 4-ary sectors is negligible.
Overall, these results show that site redundancy (i.e. sector
topology) is the most crucial factor affecting the behaviour
of the system and we also conclude the system is not
sensitive to the number of sites n, when n > 3. This implies
the plots for the ternary site given in Fig. 5b to 5d are good
approximations for sectors with more sites.

Ideally, for validation, we would compare our proba-
bilistic model results against actual results, for different
sets of degraded configurations. However, experimentation
was not possible given this is a critical, deployed system.
In future, we may be able to compare steady-state results
against another trial period, if that data is available to us.
For now, we report the engineers we interviewed found
the results plausible and this type of analysis was useful
to them.

Finally, we remark that channel redundancy within a site
is a contributory factor to overall behaviour. When both
channels A and B are serviceable, i.e. the site is W, then
this redundancy guarantees safe service levels in the time
frame 0 − 48 hours, even in the extreme configuration in
which only one site is in configuration W. For examples of
this, see Fig. 5c, in which the plot for WRR is effectively flat,
and similarly in Fig. 5d, in which the plots for WRN and
WNN are also effectively flat.

6 TRANSIENT PROPERTIES FOR DECISION MAKING

We now show, with reference to an example, how predic-
tions of no-service can inform operational decision making.
Consider the following scenario:

4. For example, R could be SF, SM,E0 or SF, SS,E1; N could be
E,E,E2 or FF, SS,E0 or E,E,E2.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. YY, DRAFT 22 NOVEMBER 2016 8

TABLE 4
Comparison of model long-run behaviour and manual analysis of historical data for sector FIR.

Status Proposition Model result Result from historical data
serviceable serviceable sector(FIR) 88.46% 86.54%
reduced-redundancy rr sector(FIR) 11.53% 13.56%
no-service noservice sector(FIR) 10−8% 0.00%

0.001

0.01

0.1

1

W
W
W

W
W
R

W
W
R

W
W
R

W
W
R

W
W
R

W
W
R

W
W
R

W
W
R

W
W
R

W
W
N

W
W
N

W
W
N

W
W
R

W
W
R

W
W
R

W
R
R

W
R
R

W
R
R

W
R
R

W
R
R

W
R
R

W
R
R

W
R
R

W
R
R

W
R
R

W
R
R

W
R
R

W
W
R

W
R
R

W
W
R

W
W
R

W
W
R

W
W
R

W
W
R

W
R
R

W
R
R

W
R
R

W
R
R

W
R
R

W
R
R

W
R
R

W
R
R

W
R
R

W
R
R

W
R
R

W
W
N

W
W
N

W
W
N

W
W
N

W
W
N

W
W
N

P
ro
b
a
b
ili
ty

Configurations

(a)

0

2e-05

4e-05

6e-05

8e-05

0.0001

0.00012

0.00014

0.00016

10 20 30 40

P
ro

b
a
b
il
it
y

Time (h)

WWN

WWR

WWW

(b)

0

0.005

0.01

0.015

0.02

0.025

0.03

10 20 30 40

P
ro

b
a
b
il
it
y

Time (h)

RRR

WRR

(c)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

10 20 30 40

P
ro

b
a
b
il
it
y

Time (h)

RNN

RRN

WNN

WRN

(d)

Fig. 5. Analysis results for sector FIR: (a) steady-state distribution of the 52 most probable configurations; probability of reaching a no-service
configuration within 48 hours from selected initial configurations: (b) from WWW, WWR and WWN; (c) from WRR and RRR; (d) from RNN, WRN,
RRN and WNN.

TABLE 5
Selected degraded configurations for sector FIR.

Site A Site B Site C
W W N

W N N

W W R

W R R

W R N

R R R

R R N

R N N

1) the current configuration of the system is RRR,
2) the system safety threshold (i.e. probability of no-

service) is 4× 10−3, and
3) the mean repair time is 20 hours.

We predict the behaviour of the system by checking the
transient property of reaching no-service as explained in the
previous section: the plot, from the current configuration, is
indicated with the red line in Fig. 8a. We remark that the
red line denotes the expected property if no assumptions are
changed in the system, i.e. if we assume the current failure

and repair rates. Now consider the red shaded area in
Fig. 8a, which indicates the probabilities above the safety
threshold. The prediction shows that the system is likely
to become unsafe after 20 hours. We reach the conclusion
that within 20 hours, we want to be on another trajectory for
the property, which is below the system safety threshold.
We can do this by altering one or more rates so as to, in
effect, transition to a more favourable configuration in an
alternative CMTC, i.e. in one that is structurally the same but
has different transition rates. For example, we could ensure
that maintenance on one of the no-service sites is prioritised,
effectively pushing down the mean repair time to 15 hours.
In this case, the expected property of the system over the
next 48 hours improves because the system becomes unsafe
only after 34 hours instead of 20 hours. This is shown in
Fig. 8a with the amber line. Now consider a configuration
with one serviceable site, WRR; this is the configuration of
the current system (RRR) after the site repair is successfully
completed. The expected property is indicated by the green
line in Fig. 8a. As can be seen, configuration WRR is much
safer because within the time frame, the safety threshold is
never reached.

Further, assume we choose to prioritise site maintenance
and the one site is repaired after 20 hours (a random value

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. YY, DRAFT 22 NOVEMBER 2016 9

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

10 20 30 40

P
ro

b
a
b
il
it
y

Time (h)

1 site

2 sites

3 sites

4 sites

(a)

0

500

1000

1500

2000

2500

10 20 30 40

P
ro

b
a
b
il
it
y

Time (h)

1 site

2 sites

3 sites

4 sites

(b)

Fig. 6. Comparison of 1- to 4-ary sector topologies over 48 hours: (a) probability of no-service; (b) maintenance cost. Each site configuration is
SM,SM,E1 ∈ R.

Fig. 7. Changing configuration after analysis of service availability.

taken by the exponential variable when the mean repair time
is 15 hours). The transient property never reaches the system
safety threshold, as shown by the green line in Fig. 8b. The
red line shows the original trajectory: the probability of no-
service if the repair is never performed. The discontinuity
indicates exactly when the current state of the system is
updated to WRR (at time 20h) because the site has became
serviceable.

Fig. 7 is a pictorial representation of decision making;
transitions indicate component failures. On the left we have
the initial (green) state and on the right the (red) no-service
states. The (amber) degraded configurations are the majority
of states in between these two extremes: the dashed edge
indicates the decision to make a discrete transition from one
degraded configuration to another (more favourable) one.

Note, we can employ a similar approach to predict a no-
service property of the system after specific events occur,
such as scheduled maintenance or rare site failures (since
they have such a small influence over transient probabilities,
within a short time frame). In such cases, we are moving the
trajectory up, instead of down at the discontinuity, i.e. we are
increasing likelihood of no-service.

It may be tempting to consider as more favourable states
those that are far (in terms of the number of transitions in the
shortest path) from a no-service configuration, in the belief
that configurations closer to a no-service configuration are
more degraded than more distant configurations. But this
is misguided, because the length of the path is possibly
irrelevant. For example, from one amber configuration it
may require only two events to reach a no-service config-
uration, yet both those events are very rare. On the other
hand, from another amber configuration, it may take more
discrete events (i.e. failures) before we reach no-service, yet
all of them may be quite likely. So, in the former case, the
probability of reaching no-service within a fixed time may

well be lower than in the latter case, depending on choice of
time interval.

We illustrate with an example. The distance to no-service
is at most 6, because every configuration is at most 3 steps
away from a site failure. For example, even configuration
WWW becomes NNN in 6 steps when, in each site, transi-
tions E0 → E1 → E2 take place. The first one is only two
transitions away from no-service, while the second one is
four transitions away. This is because two channel failures
FS→ FF and two site failures E0→ E1→ E2 are needed to
reach NNN in the first and in the second cases, respectively.
But the first is not more degraded because the probability
of reaching a no-service configuration within 48 hours is
2.251 × 10−5 and 3.304 × 10−4 for the first and the sec-
ond configurations, respectively. The second configuration
is more degraded – despite being more distant from no-
service than the first one: an example of how intuition can
be misleading in a probabilistic setting.

7 ENVELOPES OF BEHAVIOUR

When we require to reason about behaviour from a given
degraded configuration, we know exactly the configuration
of all the component sites. If we do not know the exact
configuration of all the components, we can simply select
some representatives, as above. An interesting question is:

can we quantify the effect of the choice of status of the lowest
level components on the analysis?

To answer this we consider how to identify, for a given
transient property, upper and lower probability bounds
induced by the possible combinations of the status of the
lower level components. These bounds allow us to define
envelopes of behaviour, for a property. We illustrate through
examples of the likelihood of reaching no-service, within 48
hours, when applied to the FIR sector5.

FIR is a ternary sector that has 25 possible degraded, or
reduced-redundancy configurations.6 This can be reduced
to 8 cases, by symmetry. For each configuration, we define
the lower bound to be the lower bound of reaching no-
service for the most degraded site, and conversely we define
the upper bound to be the upper bound of reaching no-
service for the least degraded site. The lower/upper bounds

5. This is the property defined by (1).
6. Each site can take one of 3 forms and there are 3 × 3 × 3 configu-

rations, from which we remove WWW and NNN.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. YY, DRAFT 22 NOVEMBER 2016 10

(a) (b)

Fig. 8. Transient property for service availability: (a) comparison of different configurations and repair rates and system safety threshold; (b) before
and after discrete transition to a new state, in context of 4× 10−3 system safety threshold.

for the most/least degraded sites are found by analysis of
all the possible component sites. We illustrate by example.
Assume the first two sites are W, then perform transient
property analysis (for the sector) for all possible R and N
configurations. For the former, there are 17 cases to consider,
which reduce to 11 after removing symmetric cases; for
the latter, there are 37 to consider, which reduce to 31.
Results are shown in figures 9a (WWR) and 9b (WWN); in
each, for comparison, we also give the result for SS,SS,E0,
which of course is not degraded. To ease interpretation,
configurations are colour coded according to the level of
degradation: recall, green means no degradation, while red
means consistent degradation (i.e. across all sites). It is not
surprising that two clusters occur, depending on the site
environment: all the configurations with E1 are considerably
more degraded than the configurations with E0.

For a sector configuration C and property p, we define
the upper (lower) bound of the envelope of behaviour C ↑p (C ↓p)
as the uppermost (lowermost) trajectory for property p over
all combinations of the status of the lower level components
in C , for a given time interval.

For example, the lower bound for configuration WNN,
WNN ↓p, is the property trajectory obtained by selecting
SS,FF,E0 for both N sites. The lower bound for WWR is the
property trajectory obtained by selecting SS,FS,E0 for the
R site.

Details of the site configurations for each bound are
given in Fig. 6, with the corresponding probabilities of no-
service over 48 hours shown in Fig. 10. In the latter, for
simplicity, we omit the subscript p. Note that the red shaded
area between RNN ↑ and RNN ↓ indicates the envelope for
any configuration in the form RNN.

7.1 Limitations
In this case study we have been able to assume symmetries
in configurations. However, if for example, the transmitters
and receivers have different rates, then when identifying
bounds for R and N, we would have to consider all 17 WWR
configurations (instead of 11) and all 37 WWN configura-
tions (instead of 31). Additionally, if rates vary across sites,
then analysis has to be repeated independently for each site.

Another possible shortcoming is that, in some cases,
the envelope may be too broad. For example, con-
sider configuration RNN, with envelope bounds RNN ↓p
and RNN ↑p (as indicated in Fig. 10). That means

TABLE 6
Site configurations for bounds for property p = probability of reaching a

no-service configuration within 48 hours.

Bound Site A Site B Site C
RNN ↑p SM,SM,E1 E,E,E2 E,E,E2
RRN ↑p SM,SM,E1 SM,SM,E1 E,E,E2
RRR ↑p SM,SM,E1 SM,SM,E1 SM,SM,E1
WNN ↑p SS,SS,E0 E,E,E2 E,E,E2
WRN ↑p SS,SS,E0 SM,SM,E1 E,E,E2
WRR ↑p SS,SS,E0 SM,SM,E1 SM,SM,E1
WWN ↑p SS,SS,E0 SS,SS,E0 E,E,E2
RNN ↓p SS,FS,E0 SS,FF,E0 SS,FF,E0
WWR ↑p SS,SS,E0 SS,SS,E0 SM,SM,E1
WNN ↓p SS,SS,E0 SS,FF,E0 SS,FF,E0
RRN ↓p SS,FS,E0 SS,FS,E0 SS,FF,E0
WRN ↓p SS,SS,E0 SS,FS,E0 SS,FF,E0
RRR ↓p SS,FS,E0 SS,FS,E0 SS,FS,E0
WWN ↓p SS,SS,E0 SS,SS,E0 SS,FF,E0
WRR ↓p SS,SS,E0 SS,FS,E0 SS,FS,E0
WWR ↓p SS,SS,E0 SS,SS,E0 SS,FS,E0

the probability of no-service at 48 hours may take any
value in the range [2.54 × 10−4, 2.96 × 10−1]. If this
is considered too broad, we may specify intermediate
bounds for different sub-classes of RNN configurations
(i.e. other than the worst and best case scenarios). For
example, upper and lower bounds for RNN configura-
tions with all site environments set to E1 are trajecto-
ries with initial states (SM,SM,E1)(MM,MM,E1)(MM,MM,E1)
and (SS,SS,E1)(SS,FF,E1)(SS,FF,E1) respectively; this can
be confirmed by inspecting the plots in figures 9a and 9b.

8 RECOVERABILITY AND SURVIVABILITY

So far, we have considered properties that define the like-
lihood of reaching a no-service state from degraded (i.e.
reduced-redundancy) configurations. Now, we turn our at-
tention to properties after reaching a no-service state. We
consider two stochastic properties: recoverability and sur-
vivability, as proposed in [5]. Both properties refer to be-
haviours after a disaster has occurred – in our case the
“disaster” is reaching a no-service state. We assume here
that resources are readily available after such a disaster, i.e.
repair rates are unchanged, though we note that we could

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. YY, DRAFT 22 NOVEMBER 2016 11

0

2e-05

4e-05

6e-05

8e-05

0.0001

0.00012

0.00014

10 20 30 40

SS,SS,E0
SS,FS,E0
FS,FS,E0
SS,SM,E0
SM,FS,E0
SM,SM,E0

SS,SS,E1
SS,FS,E1
FS,FS,E1
SS,SM,E1
FS,SM,E1
SM,SM,E1

P
ro

b
a
b
il
it
y

Time (h)

(a)

0

5e-05

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

10 20 30 40

SS,SS,E0
SS,FF,E0
FS,FF,E0
FF,FF,E0
SM,FF,E0
SS,FM,E0
FS,FM,E0
FF,FM,E0
SM,FM,E0
FM,FM,E0
SS,MM,E0
FS,MM,E0
FF,MM,E0
SM,MM,E0
FM,MM,E0
MM,MM,E0

SS,FF,E1
FS,FF,E1
FF,FF,E1
SM,FF,E1
SS,FM,E1
FS,FM,E1
FF,FM,E1
SF,FM,E1
FM,FM,E1
SS,MM,E1
FS,MM,E1
FF,MM,E1
SM,MM,E1
FM,MM,E1
MM,MM,E1

E,E,E2

P
ro

b
a
b
il
it
y

Time (h)

(b)

Fig. 9. Probability of no-service within 48 hours for all the WWR (a) and the WWN (b) configurations.

Fig. 10. Envelopes of behaviour for property p for degraded configura-
tions. p = probability of reaching a no-service configuration within 48
hours.

alter repair rates to reflect a different availability of resources
(see Section 11). As before, we refer to examples taken from
the FIR sector. We also write noservice as a shorthand for
noservice sector(FIR).
Recoverability is the probability of recovering service
within time bound t. In our model, this is expressed by:

P=?

[
F≤t(¬noservice)

]
(2)

We denote this property by r and give results over time
interval t ≤ 48 h in Fig. 11a. The state(s) from which we
perform analysis are combinations of the bounds for N
identified in Fig. 9b. Observe the envelope of behaviour for
any no-service configuration is given by:

NNN ↑r = (SS,FF,E1)(SS,FF,E1)(SS,FF,E1) and
NNN ↓r = (E,E,E2)(E,E,E2)(E,E,E2) .

Generally, the patterns are preserved, i.e. SS,FF,E0 is less
degraded than MM,MM,E0. However, it interesting to ob-
serve that configurations with E0 take longer to recover than
configurations with E1, which is the opposite behaviour we
observed for N sites in reduced-redundancy configurations.
Note that the property r (trivially) evaluates to (proba-
bility) 1, for any time bound, when the initial state is a

reduced-redundancy configuration, this is because in that
state ¬noservice already holds.

Survivability offers a little more information, indicating the
ability of a no-service configuration to recover service, in a
timely manner and within a given probability bound. This
is a subtle elaboration on property (2) and expressed by:

noservice⇒ P≤q
[
F≤t(¬noservice)

]
(3)

There are two free variables, a time bound t and a proba-
bility q. If we inspect Fig. 11a, for a particular (no-service)
configuration, we can conclude the configuration is surviv-
able for all points (t, q) on and below the curve, whereas
the points above the curve indicate time bound/probability
pairs for which the system is not survivable. For example, the
plot for (MM,MM,E0)(MM,MM,E0)(MM,MM,E0) in Fig. 11b
indicates the configuration is not recoverable within 10
hours with probability greater than 0.8, therefore it is not
survivable. If we choose pair (40, 0.9) instead, the configu-
ration is recoverable (the point lays below the curve), thus
survivable. Further, we can conclude the system is survivable
for (48, 0.9) because all the configurations are survivable for
this pair (this follows from the lower bound NNN ↓r).

9 COST ANALYSIS WITH TRANSITION REWARDS

We may analyse costs of particular behaviours, and make
decisions based on those costs, using the facility in PRISM
to specify rewards and perform analysis of reward-based
properties. As an example, we associate a cost with each
transition in the model representing a maintenance inter-
vention, and then reason about (i.e. forecast) the expected
maintenance costs over one month period, for a given
configuration, using a cumulative reward property, as follows.

We augment our model with the reward structure for
site X given in Fig. 12. Each transition is assigned a cost
– most have no precondition (i.e. the condition is simply
true), but a condition is used to disambiguate the two
transitions labelled by fix X. For confidentiality reasons,
we refer here to costs that are fictional but reflect actual
proportions: q = 10, r = 100, s0 = 100, s1 = 3000.
The cumulative reward property is R{cost}=? [C ≤ 730]
where 730 is the time bound expressed in hours. Results for

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. YY, DRAFT 22 NOVEMBER 2016 12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40

(E,E,E2)(E,E,E2)(E,E,E2)=NNN�

(MM,MM,E0)(MM,MM,E0)(MM,MM,E0)
(MM,MM,E1)(MM,MM,E1)(MM,MM,E1)

(SS,FF,E0)(E,E,E2)(E,E,E2)
(MM,MM,E0)(MM,MM,E0)(SS,FF,E0)
(MM,MM,E1)(MM,MM,E1)(SS,FF,E1)
(SS,FF,E0)(SS,FF,E0)(E,E,E2)

(MM,MM,E0)(SS,FF,E0)(SS,FF,E0)
(MM,MM,E1)(SS,FF,E1)(SS,FF,E1)
(SS,FF,E0)(SS,FF,E0)(SS,FF,E0)
(SS,FF,E1)(SS,FF,E1)(SS,FF,E1)=NNN✁

P
ro

b
a
b
il
it

y

Time (h)

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40

(10,0.8) (40,0.9)

P
ro

b
a
b
il
it

y

Time (h)

(b)

Fig. 11. Recoverability of eleven no-service configurations within 48 hours (a) and survivability of example configuration
(MM,MM,E0)(MM,MM,E0)(MM,MM,E0) for pairs (10, 0.8) (not survivable) and (40, 0.9) (survivable) (b).

rewards cost
// Transmitter
[quick_0_X] true: q;[repair_0_X] true: r;
// Receiver
[quick_1_X] true: q;[repair_1_X] true: r;
// Site environment
[fix_X] e_X=1: s0;[fix_X] e_X =2: s1;

endrewards

Fig. 12. PRISM specification of cost reward structure for site X.

19 configurations are given in Tab. 7. Note the maintenance
cost of the more degraded configurations are higher than
those for less degraded configurations. This is because when
considering short time windows, maintenance interventions
are more likely to be scheduled in more degraded configu-
rations.

Cost analysis can be used along with safety analysis
for decision making as described in Section 6. We note
that while total maintenance costs increase linearly with
the number of sites (when changing sector topology), as
indicated in Fig. 6b, where each site is in the upper bound
SM,SM,E1 ∈ R configuration, recall the contribution to
overall safety, from each site, decreases exponentially with
the number of sites, as indicated in Fig. 6a.

Finally, we note that the reward structure defined in
Fig. 12 also allows for the analysis of steady-state properties
i.e. the cost in the long-run. The corresponding formula is
R{cost}=? [S] which for the example FIR sector evaluates
to 6.93. This represents the expected long-run cost rate per
unit of time (one hour in our model), and is independent of
the initial configuration.

10 IMPLEMENTATION

We developed a multi-platform web app, as illustrated in
Fig. 13 running on an Android tablet. The system is a client-
server architecture, implemented in Node.js7 that relies on
remote PRISM instances for heavyweight computations. The
web app supports a simple interface for users unfamiliar
with the underlying model, enabling simple instantiation,
using sliders, of parameters such as rates for events, sector
topologies, percentage of quick repairs, and current con-
figuration. Default values are provided. Analysis results

7. https://nodejs.org/

TABLE 7
Expected monthly maintenance cost for 19 configurations

Site A Site B Site C Monthly cost
E,E,E2 E,E,E2 E,E,E2 13448.19
SM,SM,E1 E,E,E2 E,E,E2 11851.93
SS,SS,E0 E,E,E2 E,E,E2 10558.47
SM,SM,E1 SM,SM,E1 E,E,E2 10255.67
SS,SS,E0 SM,SM,E1 E,E,E2 8962.21
SM,SM,E1 SM,SM,E1 SM,SM,E1 8659.41
SS,SS,E0 SS,SS,E0 E,E,E2 7668.75
SS,SS,E0 SM,SM,E1 SM,SM,E1 7365.95
SS,SS,E0 SS,SS,E0 SM,SM,E1 6072.49
SS,FF,E0 SS,FF,E0 SS,FF,E0 4964.70
SS,SF,E0 SS,FF,E0 SS,FF,E0 4933.75
SS,SF,E0 SS,SF,E0 SS,FF,E0 4902.81
SS,SS,E0 SS,FF,E0 SS,FF,E0 4902.81
SS,SF,E0 SS,SF,E0 SS,SF,E0 4871.86
SS,SS,E0 SS,SF,E0 SS,FF,E0 4871.86
SS,SS,E0 SS,SF,E0 SS,SF,E0 4840.92
SS,SS,E0 SS,SS,E0 SS,FF,E0 4840.92
SS,SS,E0 SS,SS,E0 SS,SF,E0 4809.97
SS,SS,E0 SS,SS,E0 SS,SS,E0 4779.02

displayed on the device are in the formats used in this paper
(e.g. graphs or bar charts) or PRISM textual output.

11 DISCUSSION

Methodology. With the exception of envelopes of behaviour,
the methods we employ are not novel, our contribution is
the way we have employed them: how we modelled the
service, what we analysed and how. The new concept of
envelopes of behaviour allows us to quantify the effects of
lower level components on properties (about higher level
components) by identifying best and worst case scenarios,
which can be useful when assessing impacts and priorities.
We remark that the properties of interest here, e.g. (1), (2),
do not expose the full expressiveness of the logic. Properties
could be more complex formulae such as when channel c
is reduced-redundancy then the probability of sector A being
serviceable, between times 10 and 30, without channel d becoming
reduced-redundancy is greater than .75:

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. YY, DRAFT 22 NOVEMBER 2016 13

Fig. 13. Web app for setting rates and topologies running on an Android
tablet.

rr chan(c)⇒

P≤.75
[
¬rr chan(d)U[10,30]serviceable sector(A)

]
Applicability. The framework is applicable to other com-
ponent based systems exhibiting Markovian behaviour. Key
steps are identifying the components and the hierarchies,
the events representing failures, repairs etc. and their rates,
and, crucially, the dependencies between events for a compo-
nent and dependencies between components. Dependencies
are represented by common (named) events in PRISM. The
overall system is simply the concurrent composition of all
the components. In the example presented here, the rates
do not depend on the number of components involved in a
synchronisation (i.e. the products involve identities). Other
application rates may, for example, depend on mass action
kinetics, which is easily accommodated in our framework.
We did not encounter state space explosion problems nor
numerical difficulties, mainly because our modelling ap-
proach involves counter abstraction and we do not anal-
yse the system from the standard “initial state”, but from
degraded configurations that can occur as the system is
running (regardless of the probability of reaching them). We
remark that in the event of state explosion problems, a so-
lution would involve simulation methods, which generally
scale much more effectively.

Scheduled events, non-stochastic and spatial aspects. One
consequence of modelling within a Markovian framework
is that we cannot easily model scheduled and non-stochastic
events. There are several possible solutions such as a) re-
maining within the CTMC paradigm but modelling the new
events with hyper-Erlang distributions, which means the
state space explodes because of all the interleaving/expan-
sions or b) modelling with probabilistic timed automata,
which means the (exponentially distributed) failure rates are
discretised by a geometric distribution, or c) modelling with
hybrid CTMCs that model the scheduled events as discrete
switching between CTMCs. Each of these would result in
(possibly unnecessarily) more complicated semantics and
analysis techniques. On the other hand, it would be rela-
tively simple to encode any spatial aspects of the system
(e.g. if transmitters/receivers are mobile) using (stochastic)
bigraphs with sharing [6]. Given the data we have seen
for scheduled maintenance here is sparse, we have not yet
incorporated it into the model.

Validation. Ideally, this involves experimentation with the
actual system and comparing results with probabilities of
the no-service property in the model, for given configura-
tions and time bounds. However, experimentation was not
possible because we are dealing with a deployed, critical
service: a service failure in the live system is catastrophic.
We recognise that traditional statistical validation remains
an open question, a solution might be to gain access to the
infrastructure for a sector that is not in operation and use it
as a testbed for experimentation.
Rates. There are two simple ways to alter rates in the model.
The first is simply to alter the rate parameters using the web
app, as described above. The second is to encode evolving
rates within the model, for example, to reflect wear and tear
over time or anticipated rate changes after a discrete event.
This is easy to do within the PRISM language; we did not do
so here because there was no requirement. Rate evolutions
could be informed by Bayesian learning over observed data.
However, if there are dependencies between events, then
the structure of the model (e.g. synchronisations between
updates in the relevant modules) would have to be altered
by hand.
Dependencies. When we inspected the historical data, we
found evidence of dependencies between channel A and
B faults. The cause of dependencies is as yet unclear, but
in part it may be due to the formats for recording faults
and the use of free text. However, there may be further
contributory factors in that transmitters and receivers are
usually commissioned at the same time, and more likely,
communications network failures typically affect both chan-
nels simultaneously. Determining the causes requires fur-
ther investigation; modifications to the model would likely
include synchronisation of Tx and Rx failures.

12 RELATED WORK

The field of probabilistic verification (in particular by model
checking) has grown considerably since the 1980s (see [7]).
But to our knowledge there has been little work using these
methods to predict future service availability and inform
operational decisions in the presence of component failures.

If we choose to model scheduled maintenance by deter-
ministic, timed events, as mentioned above, then we may
also consider how these are handled in [8], where a system
with rejuvenation – a system that is periodically stopped
and then restored in a robust state after maintenance –
is modelled as a Markov regenerative process and then
Markov renewal theory [9] is applied to carry out quanti-
tative analysis. The work of Trivedi et al. [10], [11] would be
relevant in that context.

Another approach is considered in [12], which employs
a partially observable Markov decision model for a mainte-
nance problem. How these models may provide a suitable
semantic underpinning for our framework, especially with
regard to reasoning about logical properties, is further work.
We note also the possible state space explosion and numeri-
cal simulation difficulties in the presence of rare events [13].
We use PRISM in preference to other model checkers, such
as the MRMC model checker [14] or SMART [15], because it
supports modules, event synchronisations, experiments and
CSL rewards: these are integral to our framework. Finally,

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. YY, DRAFT 22 NOVEMBER 2016 14

parts of this study and preliminary results were presented
in [16].

13 CONCLUSIONS AND FUTURE WORK

We have presented a stochastic framework that supports
decision making in the event of component failures and
our experience of applying it to a critical communications
service deployed within a large organisation. A typical
question it helps address is: when a component fails how
urgent is a repair? In the system we have considered, this
involves being able to answer questions such as: from a
given degraded configuration, for a given future time period
and a safety threshold, what is the likelihood of the system
becoming unsafe?

While modelling for reliability analysis with CTMCs is
well known, this was not an obvious solution to the problem
as originally presented. The novelty of our contribution
is the way we have employed CTMCs as models and
the stochastic temporal logic CSL to address the questions
posed to us, rather than textbook analysis and simulations.
We also defined and applied the new concept of envelopes
of behaviour, which allow us to quantify the effects (best/-
worst case) of the status of lower level components on
properties about higher level components. The framework
can be used in a variety of ways: from evaluating whether
an architecture meets service requirements, to assessing the
impact of prioritisation of repairs in real-time.

The temporal logic allows us to define and explore both
standard steady-state and transient properties concerning
the likelihood of service failure within certain time bounds,
and envelopes of behaviour that give the lower and up-
per (probability) bounds of a property (e.g. of service fail-
ure within n hours) induced by different combinations of
lower level components. We also use the logic to quantify
and explore recoverability and survivability after a loss of
service, as well as rewards to forecast maintenance costs,
both cumulatively and in steady-state. The framework is
implemented in the PRISM language and model checker,
making extensive use of high level features such as modules,
synchronisation and rewards and it is supported by a web-
based, lightweight interface that allows users unfamiliar
with PRISM to interact with the model.

Much future technical work is possible, for example,
on model validation in the context of a critical, deployed
system and combining deterministic and stochastic events
within the models.

ACKNOWLEDGMENTS

We thank our industrial collaborators (Suki Lal, Dave Bell-
shaw and Terry Wright) for help and guidance throughout
the project. This work was partially funded by the EP-
SRC grant Verifying Interoperability Requirements in Pervasive
Systems EP/F033206/1, the University of Glasgow EPSRC
funded Impact Acceleration Account and Sevegnani’s EP-
SRC Doctoral Prize Research Fellowship.

REFERENCES

[1] C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen, “Model-
Checking Algorithms for Continuous-Time Markov Chains,” IEEE
Trans. Software Eng., vol. 29, no. 6, pp. 524–541, 2003.

[2] M. Kwiatkowska, G. Norman, and D. Parker, “Stochastic model
checking,” in Formal Methods for the Design of Computer, Communi-
cation and Software Systems: Performance Evaluation (SFM’07), 2007.

[3] ——, “PRISM 4.0: Verification of probabilistic real-time systems,”
in Proc. 23rd International Conference on Computer Aided Verification
(CAV’11), ser. LNCS, vol. 6806. Springer, 2011, pp. 585–591.

[4] W. Bux and U. Herzog, “The phase concept: Approximation of
measured data and performance analysis,” Computer Performance,
pp. 23–38, 1977.

[5] L. Cloth and B. R. Haverkort, “Model checking for survivability!”
in Quantitative Evaluation of Systems, 2005. Second International
Conference on the, Sept 2005, pp. 145–154.

[6] M. Sevegnani and M. Calder, “Bigraphs with sharing,” Theoretical
Computer Science, vol. 577, p. 43 74, 2015.

[7] J.-P. Katoen, “The Probabilistic Model Checking Landscape,”
LICS16 (Logics in Computer Science), 2016.

[8] S. Garg, A. Puliafito, M. Telek, and K. Trivedi, “Analysis of
software rejuvenation using markov regenerative stochastic petri
net,” in Software Reliability Engineering, 1995. Proceedings., Sixth
International Symposium on, 1995, pp. 180–187.

[9] R. Pyke, “Markov renewal processes: definitions and preliminary
properties,” The Annals of Mathematical Statistics, pp. 1231–1242,
1961.

[10] D. M. Nicol, W. H. Sanders, and K. S. Trivedi, “Model-based
evaluation: from dependability to security,” Dependable and Secure
Computing, IEEE Transactions on, vol. 1, no. 1, pp. 48–65, 2004.

[11] P. E. Heegaard and K. S. Trivedi, “Network survivability model-
ing,” Computer Networks, vol. 53, no. 8, pp. 1215–1234, 2009.

[12] R. Srinivasan and A. Parlikad, “Semi-markov decision process
with partial information for maintenance decisions,” Reliability,
IEEE Transactions on, vol. 63, no. 4, pp. 891–898, Dec 2014.

[13] D. Reijsbergen, P.-T. de Boer, W. R. W. Scheinhardt, and B. R.
Haverkort, “Rare event simulation for highly dependable systems
with fast repairs,” Perform. Eval., vol. 69, no. 7-8, pp. 336–355, 2012.

[14] J.-P. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, and D. N.
Jansen, “The ins and outs of the probabilistic model checker
MRMC,” Performance Evaluation, vol. 68, no. 2, pp. 90 – 104, 2011,
advances in Quantitative Evaluation of Systems QEST 2009.

[15] G. Ciardo, R. L. Jones, A. S. Miner, and R. Siminiceanu, “Logic and
stochastic modeling with SMART,” Performance Evaluation, vol. 63,
no. 6, pp. 578–608, 2006.

[16] M. Calder and M. Sevegnani, “Do I need to fix a failed component
now, or can I wait until tomorrow?” Proceedings Tenth European
Dependable Computing Conference (EDCC 2014), IEEE, 2014.

Muffy Calder is Professor of Formal Methods
and Vice-Principal and Head of the College of
Science and Engineering at Glasgow Univer-
sity. Previously she was the Chief Scientific Ad-
viser for Scotland. She received her PhD in
Computational Science from the University of
St. Andrews, Scotland in 1987. She has col-
laborated with scientists and engineers from a
wide range of disciplines, from electrical and
aerospace engineering, to cancer and cardio-
vascular medicine. She is a Royal Society Wolf-

son Merit Award Holder and a Fellow of the Royal Academy of Engineer-
ing, the Royal Society of Edinburgh, and the British Computer Society.
She was awarded the OBE for services to Computer Science in 2011.

Michele Sevegnani is an EPSRC Doctoral Prize
Research Fellow at the University of Glasgow,
based in the School of Computing Science. He
received a PhD in Computing Science from the
University of Glasgow, Scotland in 2012 and an
MSc in Bioinformatics jointly from the universi-
ties of Edinburgh (Scotland) and Trento (Italy)
in 2008. His research focusses on the theory
of bigraphs and how to use it to reason about
safety, reliability and predictability of location-
aware, event-based, software systems, particu-

larly complex systems that are already deployed.

