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1 INTRODUCTION
Bigraphs are a universal modelling formalism for describing systems that evolve in space, time,
and connectivity. They were introduced by Milner [32, 34], and have been extended to directed,
stochastic, sharing, conditional, and probabilistic bigraphs [3, 4, 21, 27, 39]. While they have seen
use in modelling a range of systems including: mixed-reality games [7], network management [10],
wireless communication protocols [11], biological processes [27], cyber-physical security [2, 42],
indoor environments [43], and sensor systems [41], they have not yet seen widespread adoption.
One reason is the early emphasis on theoretical aspects, including the relationship to specific
mathematical categories, and tools for deriving bisimulation congruences that are common in
work on process calculi. Less attention was given to bigraphs for system modelling and analysis.
The purpose of this paper is to provide practical guidance on how to model with bigraphs and to
illustrate some of our extensions to bigraph theory that enhance modelling in practice.

A bigraph consists of a set of user defined entity types relevant to the domain being modelled, e.g.
Computer, Person, Room, Cell, Protein, . . . , which can be related both spatially through nesting,
e.g. a Person in a Room, or and through linking, e.g. communication between Computers in different
Rooms. Spatial relations are described by place graphs (a forest), with regions indicating modules, or
adjacent parts of the system; linking is described by link graphs (a hypergraph). A bigraph reactive
system (BRS) consists of bigraphs and user-defined rewrite rules that define how bigraphs evolve
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over time. For example, the rules might express circumstances under which a Person leaves a Room
or a Computer is connected/disconnected to a Network.
A core advantage of bigraphs over other modelling formalisms is the diagrammatic notation,

backed by an equivalent algebraic form, which provides intuitive descriptions of systems without
requiring detailed knowledge of mathematical description languages. The notation is expressive,
compared with similar diagrammatic formalisms such as Petri-nets [18], as entity types (including
connectivity, placement etc.), their diagrammatic representations, and the rewrite rules for updating
a model, are all user defined. We have found the diagrammatic notation particularly useful and
accessible to system designers and users when developing models.
The example in Fig. 1 illustrates a bigraph model, in diagrammatic format. In Fig. 1a there are

two regions (the dashed rectangles), indicating there are two distinct parts of the model: physical
and data. The physical region consists of a Room, containing a Wi-Fi-enabled Display, a User,
and their Phone, which is connected to the Display. The data region consists of the User’s Name
and Address, which consists of a Street and House. In general, we may use (coloured) shapes to
denote different entities. Links are in green and may be named, e.g. r, w, which indicates a potential
link to other entities. Fig. 1d contains an example rewrite rule: a User leaves a Room, taking their
Phone with them. The Displaymay be connected to other devices (e.g.more phones or computers),
which is indicated, on the left-hand side, by the link named w. On the right-hand side, the User and
their Phone are no longer in the Room and the Display and Phone are disconnected, but any other
connections w remain (including no connection). The gray rectangles denote that anything else
that may have been in the Room will remain in the Room unchanged. Fig. 1e shows the transition
that results when we apply this rewrite rule to our example bigraph. Notice that the data region is
unchanged.
Our aim is to provide a core intuition behind bigraphs and familiarity with the diagrammatic

and text formats. To this end, we avoid giving formal mathematical descriptions where possible
and focus on example-driven explanations. We do not assume any existing knowledge, and by the
end of this paper a reader should be able to create their own bigraph models and use them for
rigorous system design and analysis. A previous example-driven tutorial [17] showed the versatility
of bigraphs for modelling, however it does not account for recent innovations, e.g. parameters,
priorities, and conditional bigraphs [3], nor give detailed descriptions of modelling techniques/styles
that are common in practice, e.g. how to apply a rewrite rule a certain number of times, or how to
model multiple perspectives. Likewise, existing bigraph publications usually show models without
explaining in detail why these modelling decisions were made.

To show bigraphs are not just a theoretical tool, but a practical one, we provide fully executable
model files of each example [6] in BigraphER format, and a wider collection of examples is available
online1. BigraphER [40] is an open-source framework for manipulating, visualising, and executing
bigraphical reactive systems by applying rewrites. We choose BigraphER as it is actively maintained,
features an intuitive syntax similar to the algebraic definition of bigraphs, and has a range of state-
of-the-art extensions such as probabilistic rewriting [4] and conditionals [3]. Examples not requiring
these features are applicable to other bigraph tools such as JLibBig [13], which also supports directed
bigraphs (we discuss emulating directed links in Section 7.2), or the Bigraph Toolkit Suite [22].
Historical tools such as BPL [26] (Bigraphical Programming Language), BigMC [37] (Bigraph Model
Checker), and BigRed [20] are unmaintained.

1https://uog-bigraph.bitbucket.io/examples.html
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Fig. 1. Example bigraph with two regions: a physical Room containing a Wi-Fi-enabled Display, a User, and
their Phone, and data consisting of a Name and an Address. (a) Diagrammatic representation: entities are
black shapes and links are green lines. (b) The place graph. (c) The link graph. (d) Example reaction rule: a
user leaves a room and takes the phone with them. (e) Application of the reaction rule from (d) to (a).

1.1 Paper organisation
The next five sections cover the basics of bigraphs and BigraphER. In Section 2 we show how
place graphs are used to model topological relationships, e.g. the spatial arrangement of entities; in
Section 3 we show how link graphs are used to model linking relationships such as communication;
and in Section 4, we show to model bigraph evolution through (user-defined) rewrite rules. Section 5
introduces a number of extensions we have defined and implemented: parameterised entities and
rules, and instantaneous and conditional rules.
The following three sections offer practical modelling advice for common scenarios: multi-

perspective modelling in Section 6, entity versus link structures in Section 7, and rewriting control
in Section 8, including phases and turn taking.
Further rewriting extensions: probabilistic, stochastic, and non-deterministic rewriting, are

covered in Section 9, and in Section 10 we give an overview of analysis through state space
exploration both using simulation (single trace) and model-checking (sets of traces). We also
introduce bigraph patterns and give pointers to several detailed bigraph models and their analysis.
In Section 11 we comment on the types of problems we think are best suited to Bigraphs and we
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(b)

1 atomic ctrl Adult = 0;
2 atomic ctrl Child = 0;
3 ctrl Building = 0;
4 ctrl Floor = 0;
5 ctrl Room = 0;
6
7 big space =
8 Building .(Floor.(Room.(Adult | Child) | Room .1) | Floor.Room .1)
9 || Building.Floor.Room.Adult;

(c)

Fig. 2. Modelling buildings. (a) Diagrammatic place graph (b) Forest representation (c) BigraphER model. In
(b), the red and blue dashed ovals, containing red and blue parallel and merge product operators resp., are
superposed on the place graph. These are not part of bigraph notation, but serve to highlight the difference
between || and |.

conclude in Section 12. Modelling tips are given throughout and summarised in Appendix A. A
note on port ordering in abstract bigraphs is contained in Appendix B.

2 PLACE GRAPHS
The place graph describes the topological relationships between entities. It is used to model spaces,
for example location: an Adult is in a Room, or ownership: a BatteryLevel belongs to a specific
Phone. In standard bigraphs, these relations are described by forests that are a collection of trees, i.e.
you are allowed multiple roots. In Section 2.4 we consider an extension that allows directed acyclic
graphs instead of forests.

To illustrate place graphs, we show a model of locations and people (adults and children) within a
building in Fig. 2. We give three equivalent representations: Fig. 2a shows the standard way to draw
a place graph where nesting is explicit, Fig. 2b shows the equivalent place graph as the underlying
forest, and Fig. 2c shows the BigraphER code corresponding to this graph. The binary operator . is
used to indicate nesting. For example, Room.Adult means an Adult within a Room. The keyword
atomic indicates an entity that cannot contain any children.
Types are defined with keyword ctrl 2. Keyword big introduces a named bigraph. BigraphER

comments are indicated by #. Entities are allowed any number of children—including none which
is represented by the special bigraph 1—and siblings are defined using merge product written |.
2We prefer the reserved word type but have remained faithful to Milner’s reference to control.
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Note that each entity also has “ = 0”. We have included this so that the BigraphER code is correctly
formed; strictly, this refers to the link graph, which will be explained in Section 3.
For example, Room.(Adult | Child) is a room containing one adult and one child. Merge

product is commutative, meaning children are unordered. That is, Room.(Adult | Child) and
Room.(Child | Adult)model the same room; if ordering is required it must be explicitly encoded
(see Section 7.3).

To create multiple regions (roots) we have the operator || called parallel product. Parallel
product can be seen as the juxtaposition of regions. For example, Building || Building is the
forest with two trees, each containing a building. Unlike merge product, parallel product is not
commutative. However, when used in reaction rules (see Section 4) the ordering does not matter.

Modelling Tip 1: || and | allow us to build bigger bigraphs from smaller. Use || to model
distinct bigraphs and | for merging bigraphs.

Notice that entities are typed, but do not have names, e.g. there may be several Room entities in
a Floor but we cannot identify a specific one. Formally, bigraphs without identifiers are called
abstract bigraphs whereas concrete bigraphs assign identifiers to entities. In this paper we refer
exclusively to abstract bigraphs.

2.1 Regions and sites
Bigraphs are always rooted3 using regions, represented by the dashed rectangles. Regions indicate
adjacent parts of the system. In the buildings example there are two regions, one for each building.

We stated above that the place graph 1 indicates an entity has no children; now we can be more
precise—it represents the place graph with a single region and nothing else.
We can abstract away from entities using sites, which are like variables (see Section 4.1). We

draw them as dashed gray filled rectangles. For example, in Fig. 3, each Room contains one site that
represents one or more bigraphs. A site can be nested wherever an entity can be nested, including
directly under a region, in which case this region/site pair is called the identity place graph and
denoted by id.

An example containing regions and sites is in Fig. 3, where we focus on a single floor of a building,
having abstracted away the specific contents of rooms using sites.

2.2 Two special place graphs: id and 1

We use 1 with a non-atomic entity to indicate that sites are not required, for example, when a room
is empty, as indicated in line 8 of Fig. 2c. Notice that in the diagrammatic form, e.g. in Fig. 2a, we
simply do not draw anything underneath Room to indicate an empty room, whereas in the textual
form, we have to make this explicit with the text 1 (as an operand of the nesting operator .).

To summarise the difference between 1 and id, consider Fig.’s 2 and 3. Room.1 indicates a room
with no possibility of children, whereas Room.id indicates a room with a site, which may be
instantiated with zero or more (children). That is, sites might themselves contain 1, meaning there
is nothing inside them.

Modelling Tip 2: Use 1 to indicate “no possibility of any children” and id to indicate “zero or
more children”.

3This only applies to standard bigraphs. Bigraphs with sharing allows bigraphs with no parents.
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Room Room Room

Floor

(a)

Floor

Room Room Room

(b)

1 ctrl Floor = 0;
2 ctrl Room = 0;
3
4 big space =
5 Floor.(Room.id
6 | Room.id
7 | Room.id);

(c)

Fig. 3. Place graph with one region and three sites.

2.3 Diagrammatic notation
The shapes and colours of entities in the diagrammatic4 notation are chosen by the user. In this
paper we mainly use simple geometric shapes that are easy to draw such as square, rectangle, and
circle, but any shape is possible, as well as colour or shading.

Shading might be used to represent a combination of bigraphs that denotes an entity in different
states or stages of a process, e.g. we might use a circle for File and a red circle for File.Open
or alternatively to represent a new entity type FileOpen. Note that in the theory there is no
subtyping so File and FileOpen are distinct entities. By giving them the same shape we are giving
(informally) an additional relationship between these entities.
Modelling Tip 3: Use prefixes/suffixes in entity names (in textual format) and colours and
shading (in diagrammatic format) to indicate relationships between states or stages of a process.

2.4 Sharing
In the standard definition of bigraphs, each entity is allowed only a single parent (another entity or
a region). However, it may be natural to allow a single entity to have multiple parents, for example
when modelling spatial overlap such as wireless signal ranges or fields of vision.

Bigraphs with Sharing [39] relax the restriction on place graphs from a forest to a directed acyclic
graph, meaning entities can have any number of parents (including being in multiple regions; or
having no parents at all). While there are a few key theoretical implications, from a modelling
viewpoint, bigraphs with sharing are a simple extension.

We illustrate by introducing security Cameras into our building model. A roommay have multiple
security cameras, each of whose field of vision might overlap, meaning that a single Adult entity
might be nested under two (or more) cameras at a time. This is shown in Fig. 4c, where line 8
by ([{0,1}, {1}], 2) specifies a map [𝑟0 ↦→ . . . , 𝑟1 ↦→ . . . , . . . ] of regions to sets of sites.
Here it indicates the first region (containing Adult) should appear in both sites {0,1} while the
second region (containing Child) should only appear in site {1}. We show this diagrammatically
in Fig. 4d. The additional 2 is required as the mapping might not be surjective, e.g. we may choose
to ignore a region of the share bigraph.

3 LINK GRAPHS
Bigraphs allow us to express non-spatial connectivity through the link graph, which is a set of
hyperedges. Each hyperedge consists of a non-empty set of vertices. This contrasts with conventional
graph edges that define one-to-one relationships (i.e. a hypergraph where all sets have cardinality
two).
4This is sometimes referred to as graphical notation, which we avoid in case of confusion with place and link graphs.
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1 atomic ctrl Adult = 0;
2 atomic ctrl Child = 0;
3 ctrl Room = 0;
4 ctrl Camera = 0;
5
6 big secure_room =
7 share (Adult || Child)
8 by ([{0,1}, {1}], 2)
9 in Room.( Camera.id | Camera.id);

(c)

0

Room

Camera

0

0

y

Camera

1

1

x

by ([{0,1}, {1}], 2)

(d)

Fig. 4. Bigraphs with sharing: cameras with overlapping fields of vision that may capture a single Adult.
(a) Bigraph model. (b) Place graph. (c) BigraphER snippet. (d) Deconstructed place graph showing how by
expressions work.

Camera Camera Camera

CtrlPanel

y y y x
y

CtrlPanel

(a)

1 ctrl Camera = 1;
2 atomic ctrl CtrlPanel = 2;
3 atomic ctrl Adult = 1;
4 atomic ctrl Child = 0;
5
6 big comms = /x/y/z (
7 Camera{x}.1 | Camera{x}.1 | Camera{x}.1
8 | CtrlPanel{x,y} | Adult{y}
9 | Adult{z} | Adult{z}
10 | /c Adult{c} | Child
11 );

(b)

Fig. 5. Link graph example: CCTV, phone calls, and remote network access. (a) Link graph. (b) BigraphER
snippet.

Each entity involved has a fixed arity that defines the number of ports: a name that reflects their
role in communication. In the diagrammatic form, ports are implicit—the point at which the edge
meets the entity boundary. In the text form, i.e. BigraphER snippet, entity definitions include their
arities following the symbol =. For example e.g. atomic ctrl Camera = 1, specifies a Camera
entity has 1 port.
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A link may be disconnected, i.e. the entity is not linked to any other entity, (a one-to-zero
hyperedge—a singleton set). This is drawn as a single edge with a short perpendicular line at one
end (not the entity).
To illustrate link graphs, in Fig. 5a we have security cameras that can be linked to form CCTV,

and adults that can communicate via phones or dial into the security control panel. Links are
drawn in green (any colour can be used). All Camera entities have arity 1 and are connected via a
single hyperlink to the security control panel. Adult entities also have arity 1 allowing them to
communicate, either with other people or via remote access to the security control panel. One of
the Adults (third from left) is not connected anywhere and so their link disconnected; the single
Child entity has no ports. Note, all entities appear in the link graph, regardless of whether they
have any links.

3.1 Closed and open links
A link may be partially specified, in which case it is named to indicate it may have connections
elsewhere. An example of this is the link named w in Fig. 1, which indicates the display may link
to other devices. This use of a name is similar to a free variable and we call such a link open. The
alternative is a closed link, which is fully specified, e.g. the link in Fig. 1 between the Phone and
User.
In the text form of bigraphs we use identifiers e.g. 𝑥 , 𝑦 to define both links and names, the

idea being that ports that share an identifier share a link. An example is in BigraphER code of
Fig. 5b. The closure operator / indicates the link that is identified is closed. For example, e.g. the link
identified by x is bound in /x (Device{x} | Device {x}) and so the link is closed and cannot
connect elsewhere. Like bound variables in programming languages, the actual identifier does not
matter, and so /y (Device{y} | Device{y}) is an equivalent bigraph. This also means there is
no global way to refer to a specific link, i.e. identifiers do not identify specific edges and so you
cannot refer to, for example, “the edge named 𝑦”. When an identifier is not bound it becomes a
name, allowing the link it defines to be extended. Finally, a name is idle when it exists but is not
connected to any other entities or names.

We illustrate links and names in Table 1, which is based on the declaration atomic ctrl Device = 1
that indicates a device has no children and one port.

Modelling Tip 4: Use a named, open link to indicate “this link potentially connects elsewhere”,
and a closed link to indicate “only these entities are connected”. The specific names used do not
matter.

3.2 Bigraphs: Combining Place and Link Graphs
A bigraph consists of a place graph (Section 2) and a link graph (Section 3) defined over the same
set of entities. A summary of the main components of bigraphs is in Table 2.

An example bigraph bringing together place and link graphs is in Fig. 6. When drawing bigraphs
we overlay the link structure on the place structure. By convention, open link names are always
drawn above a bigraph. Finally, we introduce additional terminology that allows us to ensure
correct bigraph composition and rewriting: link graphs have inner and outer names. Outer names
are the open links. Inner names occur rarely when developing a bigraph as a model5, and do not
occur in any examples in this paper; inner names exist mainly in internal bigraphs during rewriting.

5 A normal form for bigraphs [34, Chapter 3] allows most linking to be pushed upwards and joined at the top-level and this
allows most inner names to be expressed as outer names instead.

, Vol. 1, No. 1, Article . Publication date: February 2025.



Practical Modelling with Bigraphs 9

Table 1. Links and names: BigraphER notation on the left, diagrammatic notation on the right (a) A closed
link between two connected devices, no other connections are possible. (b) Two connected devices with a
further potential connection named 𝑥 . (c) A disconnected device. (d) A device with a potential link 𝑥 . (e) A
closed link (to the left) and a open link (to the right), 𝑥 is bound in the former and free in the latter. (f) An idle
link 𝑥 .

(a) /x (Device {x} | Device{x}) Device Device

(b) Device{x} | Device{x} Device Device

𝑥

(c) /x Device{x} Device

(d) Device{x} Device

𝑥

(e) /x (Device{x} | Device{x}) | Device{x} Device Device Device

𝑥

(f) {x}
𝑥

Table 2. Main Bigraph elements and syntax.

Element BigraphER Syntax Diagram

Entity of arity 1 K{a} K

𝑎

Name closure /a K{a}
K

Identity Place Graph id

Identity Link Graph id{x}

𝑥

𝑥

Empty Region 1

Idle (outer) name {x} 𝑥

Nesting /x A{x}.B{x}.id

B
A

Parallel product C{x}.id || D{x}.id
C D

𝑥

Merge product C{x}.id | D{x}.id
C D

𝑥
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y x y
CtrlPanel

y

Camera Camera

Room Room
Room

Floor
Floor

𝑥

(a) Bigraph model of a building.

1 atomic ctrl Adult = 1;
2 atomic ctrl Child = 0;
3 ctrl Floor = 0;
4 ctrl Room = 0;
5 ctrl Camera = 1;
6 atomic ctrl CtrlPanel = 2;
7
8 big space =
9 Floor .(/y (Room.( Camera{x}.( Adult{y} | Child))
10 | Room.( Camera{x}.Adult{y})) | id)
11 || Floor.(Room .(/z (CtrlPanel{x,z} | Adult{z})) | id);

(b)

Fig. 6. Example bigraph model of a building. (a) Bigraph representation (b) BigraphER snippet. There is one
open link named x.

We note there is a similar concept for place graphs, but does not require additional terminology:
sites are inner and roots are outer.

4 BIGRAPHICAL REACTIVE SYSTEMS
To encode system dynamics, i.e. how bigraphs evolve, we require a set of reaction rules (also called
rewrite rules). A distinctive feature of bigraphs as a modelling tool is that the rules are user defined.
Bigraphs together with rewrite rules are known as a Bigraphical Reactive System (BRS).

Reaction rules have form 𝐿 ▶ 𝑅, where 𝐿 and 𝑅 are bigraphs; the rule specifies that an instance
of 𝐿 can be substituted by 𝑅. To apply a rewrite rule, we find an occurrence of sub-bigraph 𝐿 within
a larger bigraph 𝐵 and substitute 𝐿 with 𝑅 creating a new larger bigraph (state) 𝐵′. The relation
induced by the rewrite rules is denoted by ▷; i.e. 𝐵 ▷𝐵′ if 𝐵 can rewrite to 𝐵′ by application of
a of rule. While in general 𝐿 and 𝑅 can be any bigraphs, the interfaces (sites/regions/names) of
𝐿 and 𝑅 must be equal.
When more than one reaction rule applies, or the same reaction rule has multiple occurences,

then the rule applies non-deterministically, i.e. we pick any and apply it.
An example reaction rule, leave_secure, is in Fig. 7a, with BigraphER representation in Fig. 7b.

In BigraphER we write rules with --> separating 𝐿 and 𝑅. The rule describes how a Person, who is
connected to a security CtrlPanel, can move between rooms. Importantly, when moving out of the
room containing the CtrlPanel, they sever their link to the CtrlPanel to avoid information leaks.
Although parallel product is not commutative, for matching, the order we specify the regions does
not matter6, i.e. this will find any two rooms not only those where the second room is to-the-right
in the larger bigraph. The result of applying leave_secure to a given bigraph is in Fig. 8. Note
there is only one valid occurrence for leave_secure, and so all other entities in the system are
unchanged during the rewrite.
6Any required explicit symmetry operations are added during decomposition.
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y
CtrlPanel

Room
Room

𝑥

y
CtrlPanel

Room

y
Room

𝑥

▶

(a)

1 atomic ctrl Person = 1;
2 atomic ctrl CtrlPanel = 2;
3 ctrl Room = 0;
4 ctrl Floor = 0;
5
6 react leave_secure =
7 /z Room.( Person{z} | CtrlPanel{z,x} | id)
8 || Room.id
9 -->
10 Room .(/z CtrlPanel{z,x} | id)
11 || Room .(/z Person{z} | id);
12
13 big initialBigraph =
14 /z Floor.(
15 Room.( Person{z} | /x (Person{x} | /y CtrlPanel{x,y}))
16 | Room.Person{z}
17 );
18
19 begin brs
20 init initialBigraph;
21 rules = [ {leave_secure} ];
22 end

(b)

Fig. 7. BRS with a single reaction rule leave_secure. (a) Graphical notation for leave_secure. (b) BigraphER
snippet.

y y
CtrlPanel

y
RoomRoom RoomRoom

FloorFloor

CtrlPanelCtrlPanel
y y y

RoomRoom
RoomRoom

FloorFloor

▷

Fig. 8. Applying leave_secure to a simple scenario.

Sites/regions/names are especially important for rewriting as they allow a single rule to be applied
in many circumstances. In this case, the two sites allow any other bigraph to exist (including the
empty bigraph) within the rooms, and intuitively we can think of the rule as saying “find a room
with at least one Person and one CtrlPanel who are linked, and another Room that contains
anything, including nothing”. The use of parallel product (two regions) means the two Rooms cannot
be a descendant of the other and do not need to be siblings (but can be), i.e. the Person could move
to a Room on a different floor, or even a different building. The name 𝑥 allows the CtrlPanel to
(possibly) be connected elsewhere, e.g. to cameras in the building. If the link was closed (unnamed)
the link must be an exact match.
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Fig. 9. Applying a sequence of rewrite rules to an initial state (top left).

Given a reaction rule, we define a BRS in BigraphER using a begin brs ... end block. Inside
this block we specify an initial bigraph (initial state), using the syntax init b (where b is a named
bigraph), and set of rules as shown in Fig. 7b.
To show execution of a model, we give a possible sequence of rewrites in Fig. 9 for a BRS with

the rule leave_secure and two additional rules add_person and remove_person allowing people
to enter or exit the system so long as they are not connected elsewhere. We use the same initial
bigraph as in Fig. 7. This is one of many possible traces, e.g. we could also apply add_person in the
first state. Notice that, as we use diagrammatic elements, we can move them around as we draw
states so long as their relationships (nesting/linking) are maintained.

In practice, we require the left hand side of a rewrite to be solid [27]7.
A bigraph is solid if
• all regions contain at least one node and no outer names are idle
• no two sites or inner names are siblings
• no site has a region as a parent
• no outer name is linked to an inner name.

These constraints only apply to the left hand side. For example, we can disconnect a name,
e.g. A{x} --> /y A{y} | {x}, resulting in an idle name on the right hand side ({x}). BigraphER
automatically enforces these constraints and we assume them throughout this paper.

4.1 Sites as Variables: Manipulating Sites During Rewriting
Sites are a powerful feature of bigraphs because they act like variables. For example, consider a
rule to delete data from a server as shown in Fig. 10. Without sites, we are forced to include rules
to delete each number of data items as in Fig. 10a.

Sites allow us to specify a set of bigraphs without explicitly enumerating all the elements. That
is, one rule can apply in many situations. For example, we can delete any number of data items
(and anything else on the server) using a single rule shown in Fig. 10b. In this case, we have deleted
a site and the entire bigraph it abstracted over is removed.

7This ensures unique occurrences, which is central to probabilistic and stochastic rewriting (Section 9).

, Vol. 1, No. 1, Article . Publication date: February 2025.



Practical Modelling with Bigraphs 13

Data

Server
Server▶

Data Data

Server
Server▶

(a)

Server
Server▶

(b)

Fig. 10. (a) Delete requiring multiple rules. (b) Delete as a single rule using a site.

Modelling Tip 5: Sites are abstractions over bigraphs, i.e. they are bigraph variables that can be
instantiated with a bigraph. Sites should be used when defining general rules that apply in many
situations.

During rewriting we can duplicate or discard the contents of a site using a special construct
known as an instantiation map. These operations occur frequently in practical bigraph models.
We identify sites numerically based on their position in a rule definition, with the left-most

site being site 0. For example in A.id || B.id the site below A is site 0 and below B is site 1. An
instantiation map determines, for each site in the right-hand-side of a rule, which sites this maps
to on the left-hand-side of a rule. For example, an instantiation map: 0 ↦→ 1, 1 ↦→ 0, gives site 0 on
the right, the contents of site 1 on the left, and site 1 on the right, the contents of site 0 on the left
(i.e. it implements a swap). All sites on the right-hand-side must correspond to a site on the left,
but not all left-hand sites need to be included. For example, the map 0 ↦→ 0, 1 ↦→ 0, would duplicate
site 0 from the left into both right-hand sites and the remaining site (site 1) on the left is discarded.
We write instantiation maps at the end of a rule definition using the syntax @[n,...,m] (for

natural numbers n, m). The value of the 𝑖𝑡ℎ element of this list determines the left-hand site that
the 𝑖𝑡ℎ right-hand site corresponds to. For example @[0,1,1]maps sites 0 ↦→ 0, 1 ↦→ 1, 2 ↦→ 1. This
map must be fully defined and so the length should match the number of sites on the right hand
side. This avoids the situation where we have a site but no information about how to instantiate it.

Graphically, we draw instantiation maps using blue dashed arrows. For clarity, we may sometimes
draw only select arrows when it is a 1-to-1 mapping, other than specific sites, and it is clear from
the rule what we intend.

We show the power of instantiation maps by example, including how they let us model copy and
delete operations. Movement of entities happens often in physical scenarios, e.g. moving between
rooms, but copying and deletion of entities is less common. To show these features of instantiation
maps we extend our building example with servers and data.
An example rule using an instantiation map is in Fig. 11. In this case we copy everything that

was in the database (including nothing if it was empty) to the local server, while keeping all local
server data intact. To make this mapping clear we have numbered the sites in this example, but
will not number sites in general. Similarily, by just changing the instantiation map, we model
copy-and-delete in Fig. 12. In this case the site under the Database is not in the map and so is
dropped.
Modelling Tip 6: Careful consideration needs to be given to duplicating sites when the bigraphs
being duplicated contain links: when a site is duplicated that contains links, the links remain con-
nected. For example, if we copy A{x} to obtain A{x} | A{x}, then both A entities are connected
in the result8.
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y 0

Server

1

DB

y 0 1

Server

2

DB
▶

(a)

1 atomic ctrl Adult = 1;
2 ctrl Server = 2;
3 ctrl Database = 1;
4
5 react copy =
6 /y (/x (Adult{x} | Server{x,y}.id

)
7 || Database{y}.id)
8 -->
9 /y (/x (Adult{x}
10 | Server{x,y}.(id | id))
11 || Database{y}.id)
12 @[0,1,1]; # <- LHS sites
13 # 0,1,2 <- RHS sites

(b)

Fig. 11. Copy through instantiation map.

y 0
Server

1
DB

y 0
Server DB

▶

(a)

1 atomic ctrl Adult = 1;
2 ctrl Server = 2;
3 ctrl Database = 1;
4
5 react delete =
6 /y (/x (Adult{x} | Server{x,y}.id

)
7 || Database{y}.id)
8 -->
9 /y (/x (Adult{x}
10 | Server{x,y}.(id | id))
11 || Database{y}.1)
12 @[1]; # <- LHS sites
13 # 0 <- RHS Sites

(b)

Fig. 12. Copy-and-Delete through an instantiation map.

5 PARAMETERISED, INSTANTANEOUS, AND CONDITIONAL RULES
We have extended bigraph entities and rewriting in several ways, all of which have been imple-
mented in BigraphER.

5.1 Parameterised Entities
Modelsmay require numeric operations or to assign identifiers to entities, e.g. Person(1), Person(2),
etc. While it is possible to encode numbers using schemes such as Peano arithmetic, these can be
difficult to work with and have significant computational overhead.

BigraphER provides parameterised entities, e.g. Nat(n), 𝑛 ∈ N that represent families of entities,
one for each value of 𝑛. We also support float and string parameters. We view this as syntactic
sugar for defining a set of entities: e.g. Nat(0), Nat(1), . . . , where Nat(1) is just an entity in
the same way Server is an entity. For practical models we choose 𝑛 as finite (and defined by the
user), although the theory supports infinite entity sets if required. Entities can vary in multiple
parameters if required, e.g. A(n,m). We use the syntax fun ctrl A(x) = 0 (where x is an arbitrary
identifier) to denote a parameterised entity9.
9 fun is a reference to function, i.e. it takes parameters and produces new entities.
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Proc(n)

Server

Proc(n) Proc(n+1)

Server

▶

(a)

1 ctrl Server = 0;
2 atomic fun ctrl Proc(n) = 0;
3
4 fun react spawnProc(n) =
5 Server .(id | Proc(n))
6 -->
7 Server .(id | Proc(n)
8 | Proc(n+1))
9 if !(Proc(n+1)) in param;
10
11 big initial = Server.Proc (0);
12
13 begin brs
14 int ns = {0,1,2,3,4,5};
15 init initial;
16 rules = [ {spawnProc(ns)} ];
17 end

(b)

Fig. 13. Example parameterised rule. (a) Rule for spawning server processes. (b) BigraphER snippet.

5.2 Parameterised Rules
Parameterised rules represent a family of rules. For example, we can write r(n) for 𝑛 ∈ N in place
of r(0), r(1), . . . . Within the rules we allow the bound variables to be used for parameterised
entities.
As with parameterised entities, in practice parameterised rule variables must be instantiated

with a finite set of values. In BigraphER we allow numeric operations on parameters to be applied
within a rule. These operations are performed as the model is compiled, i.e. the resulting rules are
fully instantiated.

A simple parameterised rule is in Fig. 13 where we allow processes running on a server to spawn
future processes: Proc(n) spawns Proc(n+1), up to 𝑛 = 5. The restriction that spawnProc(n) is
only specified for 0 ≤ 𝑛 ≤ 5 is captured by the rules clause in line 16, in conjunction with the set
ns specified on line 14. Currently there is no syntax to restrict parameter values at the point the
rule is specified, and so it does not appear in the diagrammatic notation10.
In this case there is no rule spawn_proc(6). We use the syntax fun react to define a parame-

terised rule instead of a standard rule.
Modelling Tip 7: Parameterised rules are syntactic sugar for a set of underlying rules, so use
them sparingly as each new rule increases the work needed for system analysis. In practice,
this affects how you describe entities. For example, it is often better to define Camera.CName(1)
which can be abstracted by a site whenever the identifier is unimportant, e.g. Camera.id, rather
than Camera(1), which requires a family of rules every time a rule uses a Camera.

We have extended bigraph rewriting in several ways, all of which have been implemented in
BigraphER.

5.3 Rule priorities
In general a reaction rule can be applied whenever there is a suitable match. However in practice we
often want more control over when rules can be applied. For example, consider the rule leave_room
in Fig. 14a. This rule generalises leave_secure (Fig. 7a) allowing people to move between between

10The reasoning behind this is that you often want to tweak parameters, e.g. ns, to explore larger models and so we keep all
parameters in one place: the brs block.
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y
Room

Room

𝑥

Room
y

Room

𝑥

▶

(a)

1 atomic ctrl Person = 1;
2 ctrl Room = 0;
3
4 react leave_room =
5 Room.( Person{x} | id)
6 || Room.id
7 -->
8 Room.id
9 || Room.( Person{x} | id);

(b)

Fig. 14. Leaving a room. (a) Reaction rule leave_room. (b) BigraphER snippet

y
CtrlPanelCtrlPanel

RoomRoom
RoomRoom

𝑦

y
CtrlPanelCtrlPanel

RoomRoom
RoomRoom

𝑦

▶

(a)

1 react fix_secure =
2 /x (Room.( Person{x} | id)
3 || Room.( CtrlPanel{x,y} | id))
4 -->
5 Room .(/x Person{x} | id)
6 || Room .(/x CtrlPanel{x,y} | id);
7
8 begin brs
9 init ...;
10 rules = [ {fix_secure}, {leave_room} ];
11 end

(b)

Fig. 15. Using priorities to ensure links to control panels are severed without stopping movement. (a) Rule
leave_room. (b) BigraphER snippet.

arbitrary rooms. Due to the connection to name x, this means a person connected to a CtrlPanel
might leave the room and still be connected to the security network: an information leak. To avoid
this, leave_secure can be applied with higher priority than leave_room.
A better way to model the above would be to have a single movement rule leave_room and a

high priority rule that fixes the model after a movement (before any other rule applies) by severing
any links to control panels in other rooms. This is shown in Fig. 15. This way we do not block other
entities from moving.

BigraphER allows rule priorities that define a partial ordering on rule application. Each reaction
rule belongs to one priority class (sets of rules with the same priority) and an operator < defines
the partial order. For example, we can define {𝑋 } < {𝑌 } meaning that rules in 𝑋 are checked for
matches only if no rule in𝑌 has a match. Within a priority class rules apply non-deterministically, as
before. In BigraphER syntax the classes are enumerated in the rule declaration within { } brackets,
e.g. in Fig. 15b there are two classes, one with higher priority containing fix_secure and the lower
priority class containing leave_room.
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Employee Server

RoomRoom

Employee Server

RoomRoom

if ⟨−, Visitor
, ↓⟩

▶

(a)

1 atomic ctrl Employee = 1;
2 atomic ctrl Visitor = 0;
3 ctrl Room = 0;
4 ctrl Server = 1;
5
6 react connect_server =
7 Room.( /x Employee{x}
8 | /s Server{s}.id
9 | id)
10 -->
11 Room .(/x
12 ( Employee{x}
13 | Server{x}.id)
14 | id)
15 if !Visitor in param;

(b)

Fig. 16. Conditional rule connect_server. (a) connect_server rule. (b) BigraphER snippet.

Modelling Tip 8: Be careful when assigning rule priorities. Although priorities stop a general
case applying when a specific should be applied, it also stops a general case being applied to any
other matches.

While it is possible to encode priorities directly in the bigraphs through additional entities, this:
i) causes larger models, ii) mixes domain specific modelling entities and control-only entities leading
to more complex models, and iii) is error prone.

5.4 Instantaneous rules
BigraphER supports instantaneous rules that allow a set of reactions to occur without adding inter-
mediate states to the transition system. The rules are specified in the standard manner and placed
in an instantaneous priority class, denoted in BigraphER with ( ) instead of { }. Instantaneous
priority classes are special in that they must fully reduce before any additional rules are called,
i.e. {𝑟1, 𝑟2} will apply either 𝑟1 or 𝑟2 (if possible) and then retry rules with higher priority; (𝑟1, 𝑟2)
applies continuously 𝑟1 or 𝑟2 until no further applications are possible. Instantaneous rules must be
confluent, that is, they must always create the same resulting bigraph regardless of the order of
application. Currently there is no tool support to check the confluence of rules, and a user must
verify this themselves. The result is a more efficient transition system in which many spurious
states and interleavings are removed.

5.5 Conditional rules
We often want to control the contexts under which a reaction rule can apply. This is possible in
Conditional Bigraphs [3], supported by BigraphER, that allow additional conditions—specified as
matches—to be attached to a rule.
A match for a rewrite has three components: the left-hand-side of the rule, a parameter that

is everything inside the sites, and a context that is everything other than the rule and parameter.
Conditional rules lets us constrain either the parameter (most commonly) or the context.

An example conditional rule is in Section 5.5.
In this example we want to avoid a leak of sensitive information by disallowing employees access

to a server if there are any visitors in the room. We specify this as a condition that states the rule
only applies when there are no Visitor entities in the parameter, i.e. the site.
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We use the notation if !X in param to specify that X should not appear in the parameter.
Similarly we can have conditionals that require an entity to be present, e.g. if Y in ctx means
there must be a Y somewhere in the model that is not in the rule or parameter.

In the diagrammatic notation we show conditionals under the rules in the form if ⟨−,
B

, ↓⟩
that denotes we do not (−) allow the (arbitrary) bigraph B in (any of) the sites (↓). We may also use
+ to enforce a bigraph must be present, and ↑ to denote context instead of the parameter.

Modelling Tip 9: Conditional rules allow us to restrict instantiation of sites: instead of allowing
arbitrary bigraphs, conditions allow only those that do/do not match a pattern.

Due to the technical challenges detailed in [3], there are three caveats when using conditions:
i) conditions cannot determine a specific site (or region) to match within, and need to be valid
regardless of where the condition is located in the parameter, i.e. we cannot say site 0 does not
contain a Person only no site contains a Person; ii) names in a conditional, even if they are the same
as those in the match, are not guaranteed to be connected—this is due to names being structural
elements (see Section 3.1) rather than global, i.e. we can rename in the conditional as required, and;
iii) conditions cannot be nested, i.e. a condition cannot itself have a condition. We hope some of
these restrictions can be removed in future.

Modelling Tip 10:Where possible, it is better to choose a conditional rule over rule priorities.
This is because conditions indicate the intent of a single rule, while priorities define relationships
across the whole set of rewrite rules.

This concludes our overview of BRS, the following three sections cover a range of practical
modelling advice for tackling common scenarios. Creating models is as much an art as a science,
and these techniques should be seen as pieces of advice rather than absolute rules.

6 MULTI-PERSPECTIVE MODELLING
The use of parallel regions, with links that can cross regions, provides a way to construct models
with a strong separation of concerns. We can consider each parallel region to be a perspective, for
example we might have a region that models the physical characteristics of a system, while another
might model virtual representations. Cross-region links between entities allow them to be related,
e.g. to tie a physical server to virtual characteristics. Note that rewrite rules can be over multiple
perspectives. As links are undirected hyperlinks, the relationships between perspectives form a
graph i.e. we can have multiple representations of the same entity.
Multi-perspective modelling has been used to good effect in previous works. For example, the

model of a cyber-physical game, Savannah [7], is split into four design perspectives: physical,
that models people entering and exiting the physical game space (a playing field); human, that
models proxemics and how human players interact to form groups; technology, that models how
GPS technology senses and represents the physical reality, including drift and ghosting; and
computational, that implements the rules of the game. The model was used to study behaviours
observed in user trials, in particular player cognitive dissonance in certain situations. Another
example is a model for a sensor system that is split into three perspectives: physical, where
each sensor is located; control, information on sensor capabilities; and application, the devices
an application requires to operate [41]. Finally, plato-graphical models [9] use three perspectives:
context for a true environment; proxy as a representation of the context (the shadows on the wall);
and agents that interact with the real context (environment) through the proxy.
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y y
Room Guard Manager Manages

Room Room
Employee EmployeePhysical

Social

𝑠1 𝑠2

(a)

1 # Perspectives
2 ctrl Physical = 0;
3 ctrl Social = 0;
4
5 # Physical
6 ctrl Room = 0;
7 atomic ctrl Server = 1;
8 atomic ctrl Person = 2;
9
10 # Social
11 ctrl Employee = 1;
12 atomic ctrl Manager = 0;
13 atomic ctrl Manages = 1;
14 atomic ctrl Guard = 0;
15
16 big multipersp =
17 Physical .(/x Room.( Person{s1,x} | Server{x}) | /y Room.Person{s2,y} | Room .1)
18 || Social .( Employee{s1}.Guard | Employee{s2}.( Manager | Manages{s1}));

(b)

Fig. 17. Building model with two perspectives: Physical and Social. (a) Bigraph model, coloured links distin-
guish hyperedges (b) BigraphER snippet.

6.1 Example: Multi-perspective modelling of a building
So far, our building model has been concernedmainly with the physical location of people within the
building and their interactions with physical devices; we might consider this a physical perspective.
The people themselves have been kept abstract, i.e. we have a single Person entity (ignoring

Adult/Child distinction), although in practice people will have different roles in the building,
and relationships with others. We could add these directly into the existing model, perhaps by
nesting specific roles, e.g. Manager, Guard, under a Person entity, but this mixes physical and social
information. In the multi-perspective approach we can instead introduce a social perspective to
track roles and relationships.

Figure 17 shows a simple multi-perspective model of a building extended with a social perspec-
tive. To enable cross-perspective linking, we have added an additional link to the Person entity
(alternatively we could introduce the link to a nested entity: see Section 7.1). To make it clear we
colour these links differently per person. For each Person in the physical perspective, they have
a social representation as an Employee (assuming no visitors are allowed in this building). Not
all entities will have a representation in other perspectives, e.g. the Servers exist physically but
not socially. Within the social perspective, employees have information about roles and possible
perspective-local links, e.g. to represent management organisation.

Modelling Tip 11: For multi-perspective modelling it is useful to add a top-level entity that
allows a region to be referred to by name, e.g. Physical, Social.
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Server1 Server2 Server3
. . .

(a) Family of entities

L L

Server
(b) Link nesting

In Out

Server
(c) Directionality through typed
links

1 ctrl Server = 0;
2 atomic ctrl L = 1; # Links
3
4 big tree_network = Server .(L{x} | L{y}) || Server.L{x} || Server.L{y};

(d)

Fig. 18. Overcoming fixed arity and directed links. a) The family of Server entities with 1, 2, 3 etc. ports we
want to represent. b) The new definition of Server where instead of e.g. 2 links, we have 2 nested L entities.
c) New entities In and Out.

The multi-perspective approach is extensible. For example, and additional perspective could
model an employee (virtual) staff record, i.e. a Database perspective, by linking to the Employee in
the Social perspective. Not only does this mean the database can reflect social changes, but it can
also reflect physical changes directly as all three representations share a hyperlink.

7 MORE ENTITIES OR MORE LINKS?
While the place and link graph are disjoint relations, the interactions between them can be used to
model a wide range of scenarios. The general advice is as follows:

Modelling Tip 12: If it is difficult to model with places, add more link structure; if it is difficult
to model with links, add more place structure.

In the next four sections we give examples of adding place structure to increase expressiveness.

7.1 Overcoming Fixed Arity
Recall that entities have fixed arity, i.e. a fixed number of ports. A common modelling paradigm
is some objects have a varying number of ports, e.g. a server that may have 𝑛 (point to point)
connections.

Intuitively, we would like to model this with a family of Server entities, i.e. Servern for 0 ≤ 𝑛 ≤
𝑚𝑎𝑥_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 , where each Servern allows 𝑛 links. In effect, these are sub-types, which are not
supported in bigraphs. So, each of these entities would have to be specified separately, requiring an
explosion in the number of rewrite rules required.
A practical way to deal with this is to introduce a new entity of arity 1 that represents a link

endpoint. Now, whenever we need to add a new connection, we simply nest a new L entity and use
that link to form the connection. This reduces the total number of entities required to 2 instead
of a family of 𝑛, and there is now no problem to match directly on a Server entity regardless of
the connections (by hiding them in a site). This approach is shown in Fig. 18a and Fig. 18b and is
an example of using the place graph to fix what is essentially an expressiveness of link problem.
Figure 18d shows BigraphER code using this technique to model a simple tree network topology.
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7.2 Directed Links
It is possible to use this approach to encode directed links. For example, instead of introducing a
single L entity, we introduce a pair of entities Out and In (illustrated in Fig. 18c) entities representing
the source and target of a link resp.

This approach should not be confused with directed bigraphs [21], an extension to the bigraph
theory where the link graph itself is directed. While they both allow direction to be specified,
directed bigraphs allows names to also have direction11.

This is shown in Fig. 18c.

7.3 Ordered children
Similarly, the children of a entity are unordered, and merge product is commutative. If we want to
order children we can again add extra entities. For example, L and R might represent the left and
right argument of a subtraction function, e.g. Sub.(L.Int(5) | R.Int(2)) meaning 5 − 2.
To avoid introducing an entire family of entities when working with long lists of ordered

arguments, e.g. Arg_1, Arg_2, . . . , we can encode a linked-list structure, the simplest being a single
Cons entity and 1 to represent the empty cell. For example b | Cons.(b' | Cons.(b'' | 1))
is a list of length 3 (where b, b',. . . are arbitrary bigraphs). Alternatively a list could be encoded
through links, e.g. with links representing pointers to the next cell. In both cases it is possible to use
rewrite rules to implement the usual functional abstractions for lists: map, fold etc.

8 APPLYING A RULE A FIXED NUMBER OF TIMES AND TAKING TURNS
Often we require to apply a rule, or a sequence of rules, exactly 𝑛 times, which is not expressible
within a standard rewriting framework. In bigraphs, we can encode rule control by tagging: using
additional tag entities to mark where rules have previously been applied. Note that tagging requires
rule priorities (Section 5.3) or conditional rules (Section 5.5).
We illustrate with an example. Consider the scenario where access to the vault of a building

requires 𝑛 people to log into the vault access system at the same time. The model is in Fig. 19.
Essentially, the vault is initially Closed, then 𝑛 people Login, and then the vault is Open. But, any
number of people may be trying to gain access and so we have to restrict successful logins to
exactly 𝑛. In other words, we cannot allow the rule for login to be applied any number of times.
For simplicity we assume 𝑛 = 2 in this example.

We introduce two new tags for controlling the reaction sequence: Login denotes a login sequence
has started and LoginT controls the number of people required to open the vault—we use it to
distinguish those that have already logged in from those that have not. The rules are modified to
reflect four phases:

Start tagging Add a tag to denote the sequence has started and is in progress. In this case
tryOpen adds an entity Login to the Vault to note the start of a login sequence. As we want
a fixed number of logins, we additionally add 𝑛 LoginT tokens (in this case 2, but can be
changed without affecting the rest of the login mechanism).

Apply rule(s) Once the sequence has started, apply the rule(s) 𝑛 times. In this case login
allows a Person, in the same room as the vault (note use of | and not ||) who has not logged
in before, i.e. does not nest a LoginT tag, to perform a login by accepting the LoginT token.

Base case(s) The base case determines when the sequence of operations should stop, e.g. when
there are nomatches left. In this case open checks all LoginT tokens have been taken, allowing
the vault door to open. If not enough people log in, a second base case failed stops the

11Directed bigraphs are designed to allow bisimulation congruences to be derived in the face of name aliasing rather than
to solve specifically the directed link problem in models.
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▶
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▶

Closed Login
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▶

Closed Login

Vault
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(a) tryOpen, login, open, failed, and clean rewrite rules.

1 ctrl Vault = 0;
2 ctrl Person = 0;
3
4 atomic ctrl Login = 0;
5 atomic ctrl LoginT = 0;
6 atomic ctrl Closed = 0;
7 atomic ctrl Open = 0;
8
9 # start
10 react tryOpen =
11 Vault.Closed --> Vault.( Closed | Login | LoginT | LoginT);
12
13 # apply
14 react login =
15 Person .1 | Vault.( LoginT | id) --> Person.LoginT | Vault.id;
16
17 # Base cases
18 react open =
19 Vault.( Closed | Login) --> Vault.Open;
20
21 react failed =
22 Vault.( Closed | Login | id) --> Vault.Closed @[];
23
24 # Cleanup
25 react clean =
26 Vault.id | Person.LoginT --> Vault.id | Person .1 if !( Login) in param;
27
28 begin brs
29 init ...;
30 rules = [ {clean}, { tryOpen , login , open}, {failed} ];
31 end

(b)

Fig. 19. Tagging example: vault login process. Two people are required to open the vault.
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login sequence. Rule priorities are used to enforce failed can only be applied once we have
checked all possible applications of login.

Cleanup The final step removes redundant tags. Here, the conditional rule clean removes
LoginT entities when the Login sequence has ended (either successfully or with failure).

For tools that do not support conditional bigraphs, we can add an extra tag, e.g. LoginDone, to
determine when the sequence has ended in order to control when cleanup can happen.

Modelling Tip 13: If you want to apply a rule sequence a fixed number of times, add tags to
entities to indicate whether or not the sequence has been applied, and modify the rules so they
introduce and then remove tags.

While powerful, tagging increases the number of entities and can make it less clear how entities
are supposed to be used. One solution is to use tagging with instantaneous rules, see Section 5.4, this
allows us to apply sequences transparently, as if in a single step. An alternative approach is to define
a family of rules for each number of people we need to log in, e.g. open_vault_1, open_vault_2, . . . ,
but as with parameterised rules, this can lead to an explosion of the total number of rules.

8.1 Turn taking or phases of operation
A similar, but distinct scenario is modelling phases of operation. For example, we might have a
movement phase, where all people in our building can (but don’t have to) move between rooms.
Once everyone has made a movement (or idled), we might then have a sensing phase, where the
security cameras try to detect intruders, before moving back to the movement phase.
This sort of turn-taking is well captured using multi-perspective modelling (Section 6), where

a Control perspective can track the current state of the system, e.g. Movement vs Sensing. As
perspectives are just additional parallel regions, it is easy to match on them, i.e. we just extend a
rule 𝐿 ▶ 𝑅 to 𝐿 ∥ 𝐶 ▶ 𝑅 ∥ 𝐶 for some control information encoded by 𝐶 .
Alternatively we can use a conditional rule (Section 5.5, 𝐿 ▶ 𝑅 if C in ctx If C does not

change during rule execution. Keeping track of who still needs to move/sense can be done by
nesting additional tokens, e.g. Person.Move, Person.Sense.
A snippet of a movement and sensing example is in Fig. 20. We show both direct matches and

conditionals; in general it is good practice to use a single style only.
Key to turn taking is phase shift functions that move between movement and sensing, e.g. they

model a state machine. Here we have used context conditions (Section 5.5) to check all Person
entities have acted before swapping phase. If conditionals are not supported, then tagging (Section 8)
could be used.

Modelling Tip 14: There may be several possible ways to model a system feature, e.g. tagging,
conditional rewriting, parameterisation, etc. It is good practice to employ one consistent approach
throughout the model.

9 FURTHER EXTENSIONS: PROBABILISTIC, STOCHASTIC, AND
NON-DETERMINISTIC REWRITING

In standard BRSs, reaction rules are applied non-deterministically: any rule (within the current
priority class) that has a match in the current state can be applied. Selection is random. Extensions
to BRSs allow reaction rules to be annotated, allowing them to be applied probabilistically [4],
stochastically (exiting a state at some rate) [27], or through explicit non-deterministic action choice,
in the style of an Markov Decision Process [4].
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1 ctrl Room = 0;
2
3 ctrl Person = 0;
4 atomic ctrl Move = 0;
5 atomic ctrl Sense = 0;
6
7 atomic ctrl Camera = 0;
8 atomic ctrl Alarm = 0;
9
10 # Phases
11 ctrl Control = 0;
12 atomic ctrl Movement = 0;
13 atomic ctrl Sensing = 0;
14
15 # Matching style
16 react move =
17 Room.(id | Person.Move) || Room.id || Control.Movement
18 -->
19 Room.id || Room.(id | Person.Sense) || Control.Movement;
20
21 # Conditional Style
22 react sense =
23 Room.(id | Camera | Person.Sense)
24 -->
25 Room.(id | Camera | Person.Move | Alarm)
26 if Control.Sensing in ctx;
27
28 react no_sense =
29 Room.(id | Person.Sense)
30 -->
31 Room.(id | Person.Move)
32 if Control.Sensing in ctx , !Camera in param;
33
34 # Phase shifts
35 react move_sense = Control.Movement --> Control.Sensing if !Person.Move in ctx;
36
37 react sense_move = Control.Sensing --> Control.Movement if !Person.Sense in ctx;

Fig. 20. Turn Taking: BigraphER snippet for movement and sensing phases.

For each extension, we annotate a rule 𝑟 : 𝐿 ▶ 𝑅 with additional information, e.g. 𝑟𝑝 : 𝐿 2
▶ 𝑅

is a probabilistic rule with weight 2; 𝑟𝑠 : 𝐿 0. 2
▶ 𝑅 is a stochastic rule with exit rate 0.2; and

𝑟𝑎 : 𝐿 𝑎𝑐𝑡

4 ▶ is a rule with weight 4 if action 𝑎𝑐𝑡 is chosen. Weights give the relative application
chance for a rule. That is for rules 𝑟𝑝 : 𝐿 2

▶ 𝑅 and 𝑟𝑞 : 𝐿 4
▶ 𝑅, if both have a match in the current

state, then 𝑟𝑞 should be twice ( 42 ) as likely to be applied. Weightings are scaled relative to the
number of matches possible, for example if 𝑟𝑝 has two valid matches, while 𝑟𝑞 only has one, then
they are applied with the same probability.
An example probabilistic BRS is in Fig. 21. A probabilistic BRS is requested using begin pbrs

instead of begin brs in the BRS definition block. In this example, we want to detect possible
security threats using the security camera(s) in a room. In practice sensors, e.g. cameras, are not
100% accurate, and we want to model this uncertainty. As is common in probabilistic modelling,
we use two rules representing the cases detect and the converse avoid_detect. The weights give the
relative probability of application – in this case detection is 4 times as likely as avoidance. When
one Intruder is in the room detect applies (after normalisation) with probability 0.8. In practice,
when there are many matches and priority ordering on rules etc. it becomes much harder to predict
the rule probability by hand.

We give two short examples of featuring stochastic rules and non-deterministic action choice in
Figs. 22 and 23.
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Intruder CameraCamera

Room

Intruder CameraCamera Alarm

RoomRoom
4
▶

(a)

Intruder CameraCamera

RoomRoom

Intruder CameraCamera

RoomRoom
1
▶

(b)

1 atomic ctrl Intruder = 0;
2 atomic ctrl Camera = 0;
3 atomic ctrl Alarm = 0;
4 ctrl Room = 0;
5
6 react detect =
7 Room.( Intruder | Camera | id)
8 -[4]->
9 Room.( Intruder | Camera | Alarm | id);
10
11 react avoid_detect =
12 Room.( Intruder | Camera | id)
13 -[1]->
14 Room.( Intruder | Camera | id);
15
16 begin pbrs
17 init ...;
18 rules = [ {detect , avoid_detect} ];
19 end

(c)

Fig. 21. Probabilistic reaction rules with weights. (a) Rule detect has weight 4. (b) Rule avoid_detect has
weight 1. (c) BigraphER snippet.

Stochastic rules are like probabilistic rules but with rates (positive real numbers) that determine
how often a particular rule should be applied. Rules with higher rates occur more often, e.g. in
Fig. 22 people exit the building more often than they enter.

Non-deterministic action choice is offered in action bigraphs, which, like probabilistic bigraphs,
specify a weight between the left and right of a rule, however in this case the set of rules that can
be applied is affected by the action they are in. Actions are specified in the begin abrs block using
a set syntax, e.g. actions = [ move = {move_stay, move_room} ] meaning that when move is
chosen only reactions move_stay and move_room can be applied. These rules are then applied in
the same style as probabilistic bigraphs.

Modelling Tip 15: Probabilistic, stochastic, and action bigraphs control how rules are applied,
e.g. how often, but do not affect the rules themselves that keep the same rewriting mechanism as
before.

10 MODEL ANALYSIS
While defining a BRS can be useful in its own right, e.g. to document design decisions, we can
perform analysis through simulation and model checking. BigraphER exports a transition system (a
table of transitions; possibly labelled with probabilities/rates/actions), and an initial state, that can
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1 atomic ctrl Intruder = 0;
2 atomic ctrl Person = 0;
3 ctrl Room = 0;
4 ctrl Entrance = 0;
5
6 big s0 = Room.Entrance .1;
7
8 react enter = Room.Entrance.id -[0.2]-> Room.Entrance .(id | Person);
9
10 react exit = Room.Entrance .(id | Person) -[0.3]-> Room.Entrance.id;
11
12 react enter_intruder = Room.Entrance.id -[0.01]-> Room.Entrance .(id | Intruder);
13
14 begin sbrs
15 init s0;
16 rules = [ {enter , exit , enter_intruder }];
17 end

Fig. 22. Stochastic model of entrance hall: People exit the room more often than entering (rates of 0.3 vs 0.2).
Intruders can enter but at a much lower rate (0.01).

1 atomic ctrl Guard = 0;
2 atomic ctrl Intruder = 0;
3 ctrl Room = 0;
4 atomic ctrl Door = 1;
5 atomic ctrl Alarm = 0;
6
7 react move_stay =
8 Room.(id | Guard) -[5]-> Room.(id | Guard);
9
10 react move_room =
11 Room.(id | Door{x} | Guard) || Room.id
12 -[1]->
13 Room.(id | Door{x}) || Room.(id | Guard);
14
15 react check_room =
16 Room.(id | Guard | Intruder) -[1]-> Room.(id | Alarm | Guard | Intruder);
17
18 react check_room_safe =
19 Room.(id | Guard) -[1]-> Room.(id | Guard) if !Intruder in param;
20
21 big s0 = /x (Room.(Door{x} | Guard) || Room.(Door{x} | Intruder));
22
23 begin abrs
24 init s0;
25 rules = [ {move_stay , move_room , check_room , check_room_safe }];
26 actions = [ move = {move_stay , move_room}, check = {check_room , check_room_safe} ];
27 end

Fig. 23. Action based (non-deterministic) model of guarded rooms. The system can decide to let guards move
between rooms or check the room they are in. Moving between rooms is less likely than staying put (weight
5 vs weight 1). Only one of the two check rules is applicable when the action check is taken.

be analysed in tools such as PRISM [28] or STORM [25]. The initial state is required to be ground—a
bigraph that does not contain sites or inner names. We specify the initial bigraph using init b
(for some bigraph 𝑏), e.g. line 26 of Fig. 24. Before giving details of simulation and model checking,
we introduce the concept of bigraph predicates, which we have found useful for analysis.
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10.1 Bigraph Patterns
Often it is useful to label a subset of states that have a (domain specific) feature of interest, i.e. they
they satisfy a predicate. We specify the predicate with a bigraph pattern [7], which abstracts the
states that may match the left-hand-side of a rewrite rule (the pattern). Bigraph patterns are simply
(named) bigraphs that define static (state) properties. An example is in Fig. 24; the patterns are
indicated by the reserved word preds (for predicates), as shown on line 28.

A state that matches pattern 𝑝 is then labelled with 𝑝 , and it may be labelled with more than one
pattern. Pattern matching uses the same semantics as reaction rule matching, which means we
have name equivalence, i.e. A{x} and A{y} are the same pattern.

Bigraph patterns may occur in path formulae in temporal logics, an example using the patterns
from Fig. 24 is in Section 10.2.
Developing new logics and specification languages for bigraphs remains an active research

area [15].

10.2 Model Checking
In model checking we apply all possible rules, in a breadth first manner, for a given state to explore
all possible traces. Each new state is checked for equality with a previous state, allowing loops
in the underlying transition system. BigraphER supports model checking for all extensions, e.g.
probabilistic, stochastic, and non-deterministic rewriting by exporting the transition system in
PRISM format.12 To generate the transition system use the following command line:

bigrapher full -M <maxstates> -l <predicates.csl> -p <transition.tra> <model.big>

where predicates.csl and transition.tra are the exported pattern mapping and transition
system resp. Once the transition system is generated, we can check temporal logics properties
expressed in logics such as LTL, CTL, and PCTL [14].

10.2.1 Example. Servers contain sensitive data and so server rooms should be secure. A simple
model is in Fig. 24.

The model has explicit Door entities that determine valid pairs of rooms. Assume that an intruder
is captured by a camera—so long as they pass through a room containing at least one camera. We
want to check whether there is an insecurity via a property such as: “is there a path to the server
room that passes only through rooms that do not contain a camera?” We define three bigraph
patterns: seen that matches a room containing at least one Camera and an Intruder; entrance
that matches the entrance hall containing an Intruder; and serverRoom that matches a room
containing at least a Server and an Intruder.
The transition system generated by BigraphER is in Fig. 25, and shows all possible movements

between states. As we do not model capture of the intruder they are always allowed to move even if
they have been seen. This means there are infinite traces possible, e.g. 0 → 1 → 0 → 1 → 0 → . . . .

Although it is fairly obvious from the transition system that there is a path (0 → 1 → 3) to the
server room without being seen, for larger models visually inspecting the transition system is error
prone and likely too complex to draw. Instead, we can express the properties logically, in a form
suitable for model checking software. The property can be expressed by the (PRISM formatted)
LTL formulae, using bigraph patterns, as:

E ["entrance" & (!"seen" U "serverRoom")]

12BigraphER natively supports PRISM format, but as the transition system is just a matrix it is likely to be supported by
other tools with minor changes.
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1 atomic ctrl Camera = 0;
2 atomic ctrl Server = 0;
3 atomic ctrl Intruder = 0;
4 ctrl Room = 0;
5 atomic ctrl Door = 1;
6 atomic ctrl Entrance = 0;
7
8 react move =
9 Room.( Intruder | Door{x} | id) || Room.(id | Door{x})
10 -->
11 Room.(Door{x} | id) || Room.( Intruder | id | Door{x});
12
13 # Patterns/Predicates
14 big seen = Room.( Intruder | Camera | id);
15 big entrance = Room.( Entrance | Intruder | id);
16 big serverRoom = Room.( Server | Intruder | id);
17
18 big building = /d1/d2 (
19 Room.( Entrance | Intruder | Door{d1})
20 || Room.( Camera | Door{d1} | Door{d2})
21 || Room.(Door{d1} | Door{d2})
22 || Room.(Door{d2} | Server));
23
24
25 begin brs
26 init building;
27 rules = [{move }];
28 preds = {seen , entrance , serverRoom };
29 end

Fig. 24. Secure building model: Can we reach a server without passing a camera?

0 -- entrance

1

move

2 -- seen

move

3 -- serverRoom

move

move

move

move

move

move

move

move

Fig. 25. Transition system generated by the model of Fig. 24. Bold state is the starting state, numbers are
state numbers, and labels are predicates.

That is: there exists (E) a path where initially entrance holds, and for this state13, and all future
states, seen does not hold until serverRoom becomes true. The property holds as expected because
of the non-secured room (i.e. a room without a camera) between the entrance and the server room.

13This formula would not work if there was a camera in the entrance hall as seen would immediately be true.
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10.3 Simulation
Simulation can be seen as a weaker form of the model checking approach where, instead of applying
all rules at each state, we instead apply a single reaction rule (respecting priority and instantaneous
rules), resulting in a single trace through the system. Simulation is particularly useful for models
with large state spaces. BigraphER supports simulation for all extensions e.g. probabilistic and
stochastic rewriting.

To run a simulation of model.big in BigraphER use the following command line:
bigrapher sim -S <maxstates> -l <predicates.csl> <model.big>

where predicates.csl is the name of the (exported) file that maps bigraph patterns to states.
As withmodel checking, properties of interest can be expressed using LTL formulae. Alternatively,

each state can be exported with '-s .' which allows further analysis or visualisation14.

10.4 Common Errors
We end with a discussion of common errors you might see when executing your models with
BigraphER and how to fix them.

Init bigraph is not ground When using models we assume the initial state is fully formed,
i.e. does not contain sites15. Usually this means you have a non-atomic entity with a (implicit)
site: big s0 = A; (which means big s0 = A.id). Fix Put an empty bigraph in place of the
site, i.e. big s0 = A.1.

Invalid Reaction: Inner interfaces<1, {}> and <2, {}> do not match This error means that
the number of sites on the left hand side (1 in this case) does not match the number of sites
on the right hand side (2 in this case), i.e. we haven’t specified what should go into the second
site on the right. FixWhen the number of sites are unequal youmust specify an instantiation
map (Section 4.1) to determine the content of the sites after rewriting.

Invalid Reaction: Outer interfaces <1, {x}> and <1, {}> do not match Outer interfaces (num-
ber of regions and outer names) are not allowed to change during a rewrite. In the example
above we have lost the name 𝑥 , e.g. A{x}.1 --> 1. Fix if an open name is no longer required
you should make it idle on the right of a rule, e.g. A{x}.1 --> {x} | 1 is the correct rule. A
similar error occurs if you drop a parallel region, requiring additional || 1 components to
fix.

Invalid Reaction: Instantiation map is not valid This error means the instantiation map
is badly formed. Fix ensure the map has an entry for each site on the right hand side and
that entries point to valid sites on the left, e.g. a map @ [5] when the left hand side only has
one site is invalid.

10.5 Further examples
We give an overview of five real-world systems we have modelled. For each, we indicate if (and how)
we employed multi-perspective modelling, sharing, diagrammatic notation, rules, and analysis.
With one exception, the shapes in the diagrammatic form are geometric (circle, rectangle, etc.). The
exception is the mixed-reality game Savannah (Section 10.5.2) where shapes that represent entities
in the game, such lions, impalas, and the human players, are hand-drawn.
The Bigraph code is available in the associated paper, or on the BigraphER website16, which

contains over 25 examples.

14Exporting all states also works for full transition system analysis, but is less practical given the much larger systems
15or inner names.
16https://uog-bigraph.bitbucket.io/examples.html
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10.5.1 802.11 CSMA/CA RTS/CTS communications protocol [10]. This well-known communications
protocol applies to any network topology, including potentially overlapping wireless signals. The
protocol employs four way RTS/CTS (ready to send/clear to send) handshaking. The system
modelled includes arbitrary topologies and the possibility of the hidden node problem – when two
transmitting stations cannot sense each other, thus causing a collision, which is resolved through
exponential backoff.
Multi-perspective modelling: none.
Sharing: for wireless signal ranges.
Diagrammatic notation: shapes for types, coloured shading for different types or stage of data
packets (e.g. queued, sent, CTS, RTS).
Rules: priorities to implement instantaneous rules; stochastic rules for rates of transmission and
retransmission.
Analysis: model checking CSL (Continuous Stochastic Logic) properties that express quantitative,
dynamic properties such as what is the probability of successful transmission of a packet and what is
the likelihood of a collision or being in an error state.

10.5.2 Mixed-reality multi-player game [7]. This ubiquitous system, called Savannah (also men-
tioned in Section 6), models the dynamic behaviour of players in a mixed-reality game in which
the human players are instrumented and their real-world physical location affects their capabilities
as players in the game. The game involves wildlife and different types of terrain (the Savannah),
which is mapped on to the physical playing space (e.g. a field or football pitch). There is different
wildlife in each terrain. The players hunt wildlife by forming and disbanding teams; how and when
they do that depends on their proxemics: the personal (physical and social) space of each player.
Multi-perspective modelling: four perspectives – Human, Physical, Computational, and Technology.
Sharing: for overlapping auras (personal space).
Diagrammatic notation: shapes for types, coloured shading for animals and players at different
stages in the game (e.g. idle lion, lion initiating an attack, lions and players in a group).
Rules: the main model employs standard reaction rules, additionally, there is an investigation of the
use of weights, inferred from user trials, to represent GPS drift.
Analysis: simulation for replay of scenarios uncovered in user trials - scenarios in which some
players experienced cognitive dissonance; manual inspection of rewrite rules for matches with
bigraph patterns, which revealed missing relationships between some perspectives and a system
design flaw.

10.5.3 Network and network policy management [10]. The management of a network with an
evolving topology, due to network events such as machines leaving and joining the network, is
modelled. In addition, the system has dynamic access control policies that enforce or forbid certain
behaviours and thus constrain network evolutions. Policies can be invoked or lifted, as the network
evolves, so event streams include both network and policy events.
Multi-perspective modelling: none.
Sharing: for overlapping wireless signals.
Diagrammatic notation: shapes for types.
Rules: standard reaction rules that make use tagging to model invocation and lifting of policies.
Analysis: runtime monitoring of bigraph patterns that express static properties such as the current
configuration complies with the current policies.

10.5.4 Large-scale sensor network infrastructures [41]. A model of sensor network infrastructures
that enable investigations of how requirements for a sensor network can be met, individually and
collectively, and can continue to be met, in the context of large-scale, evolving network and device
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configurations. The exemplar is an urban sensor network infrastructure with two applications:
environmental monitoring and structural and (material) health of buildings and bridges.
Multi-perspective modelling: three perspectives – Physical, Data, and Services (requirements for
applications).
Sharing: for overlapping wireless signals.
Diagrammatic notation: shapes for types, coloured shading to distinguish whether a node is in use
or in failure, and for different types of sensor.
Rules: standard reaction rules; stochastic rules for failure rates and repair rates.
Analysis: simulations using actual data streams and events generated by the Cooja network
emulator/simulator [36]; runtime monitoring of bigraph patterns that express static properties such
as there are sufficient nodes available in every network partition and model checking LTL (Linear
Time Logic) and CSL (Continuous Stochastic Logic) properties that express dynamic properties such
as pollution, temperature, and humidity data are delivered when pollution levels exceed a threshold
and the probability of a node to fail within a certain time interval, while serving an app, is below
a threshold. This application used a custom tool, based on BigraphER’s bigraph manipulation
library’s OCaml interface17, to allow bigraphs to update in response to simulated data streams, i.e.
events were converted to reaction rules and applied rather than BigraphER selecting the rules (as
in the standard simulation mode).

10.5.5 CAN programming language for BDI agents [5]. The operational semantics for CAN (Con-
ceptual Agent Notation), an agent system programming language, is encoded in bigraphs. The
structural encoding is natural, with bigraph reaction rules corresponding directly to the (semantics)
inference rules. A motivation for the encoding is to be able to verify agent requirements. The
exemplar is a case-study based on UAV (unmanned aerial vehicles).
Multi-perspective modelling: perspectives for B,D, and I – Beliefs, Desires, Intentions, and for Plans.
Sharing: none.
Diagrammatic notation: shapes for types, coloured shading for plan success or failure.
Rules: parameterised entities and rules, conditional rules, and rule priorities.
Analysis: bigraph patterns to express static properties such as there is goal corresponding a given
task and model checking CTL properties dynamic properties such as the goal corresponding to a
given task is persistent and two sensing tasks can always be completed regardless of their interleaving.

11 WHEN TO USE BIGRAPHS
We have shown bigraphs to be an expressive modelling approach applicable to a wide range of
scenarios such as the examples in Section 10.5. While they are universal, they are not always the
best tool. In this section we comment on the types of problems we think are best suited to Bigraphs,
but you should feel free to experiment.
Bigraphs are based around relationships, both spatial and non-spatial, between entities and are

well suited to model situations where relationships change over time. For example, the networking
examples of Section 10.5 often allow dynamic connectivity between nodes. Bigraphs are often much
less suited for models with large amounts of state, and these are often better described with tools
like Event-B [1] that describe how states evolve over time.

While we support parameterised entities in BigraphER (Section 5.1) to enable some basic support
for primitive data-types, e.g. integers, bigraphs are not well suited to data-intensive applications
that require, for example, filtering of a system based on values. They are much more suited to
symbolic analysis data, e.g. showing properties of commutativity of data-types.

17https://uog-bigraph.bitbucket.io/docs/bigraph/index.html
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Bigraphs are primarily a system design tool that determines how a design may respond to
particular inputs/environments. Given our analysis is largely based on model checking, not proof,
bigraphs are not currently a good tool for code verification as found in, for example, Isabelle/HOL [35],
or Lean [16]. Similar system design is popular with tools such as TLA+ [29], but this lacks the
diagrammatic notation and is more state-based rather than relation-based. Although stylistically
quite different, there are overlaps with existing graph transformation technology and bigraphs can
be applied in similar areas [24].
Model checking is well known to sometimes produce a large number of states, which limits

the scale of systems we can analyse. This can be mitigated in places, e.g. via bounded model
checking [8] and executing models at runtime [12] (to only analyse the actual path, not all possible
paths). Bigraphs are an active area of research and it is likely new analysis techniques will become
available in future. For example, the theory already includes methods for computing equivalences
(bisimulations) between agents (bigraphs) [30] that could be used to reduce the search space, but no
implementation exists. Likewise techniques from graph rewriting such as confluence checking [38]
and inductive proofs [19] would enable a much wider range of systems to be modelled.

12 CONCLUSIONS
Bigraphs are a versatile modelling formalism, capable of describing a wide range of systems and their
dynamics. At their core is the juxtaposition of two relations: placement, described by a place graph
(a forest), and connectivity, described by a hypergraph. The ability to connect entities in multiple
ways not only models realistic scenarios, in that what you can do might depend both on where you
are, and who you might be connected to, but leveraging both together can also overcome modelling
challenges such as fixed arity constraints, ordering children, as well as enabling multi-perspective
modelling.
Bigraphical reactive systems (BRSs) allow models to evolve over time. Dynamics are specified

through user specified reaction rules that rewrite (sub-)bigraphs by bigraphs. We have shown
how our extensions of priority, conditional, instantaneous, probabilistic, and stochastic rewriting,
coupled with control-entities such as tagging, make BRS a powerful and expressive modelling
framework.
Model analysis can be performed through simulation and model checking by generating a

transition system with bigraphs as states and reaction rules as transitions.
This tutorial has foregone much of the theoretical aspects of bigraphs in favour of practical mod-

elling techniques; key contributions are our Modelling Tips and examples expressed in BigraphER.
As Milner noted:

“The model [bigraphs] is only a proposal; it can only become a foundational model for
ubiquitous computing if it survives serious experimental application. For the latter, it
must be seen to yield language for programming and simulation, and equipped with
appropriate mechanised tools for analysis, such as model checking.” [33]

With BigraphER, the programming and tooling support is now available: it is time for the
application. We hope this tutorial enables modellers to learn the formalism quickly, benefit from
bigraphs in their work, and develop these “serious” experimental applications.
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A MODELLING TIPS
(1) || and | allow us to build bigger bigraphs from smaller. Use || to model distinct bigraphs and |

for merging bigraphs.
(2) Use 1 to indicate “no possibility of any children” and id to indicate “zero or more children”.
(3) Use prefixes/suffixes in entity names (in textual format) and colours and shading (in diagram-

matic format) to indicate relationships between states or stages of a process.
(4) Use a named, open link to indicate “this link potentially connects elsewhere”, and a closed

link to indicate “only these entities are connected”. The specific names used do not matter.
(5) Sites are abstractions over bigraphs, i.e. they are bigraph variables that can be instantiated

with a bigraph. Sites should be used when defining general rules that apply in many situations.
(6) Careful consideration needs to be given to duplicating sites when the bigraphs being dupli-

cated contain links: when a site is duplicated that contains links, the links remain connected.
For example, if we copy A{x} to obtain A{x} | A{x}, then both A entities are connected in
the result.

(7) Parameterised rules are syntactic sugar for a set of underlying rules, so use them sparingly as
each new rule increases the work needed for system analysis. In practice, this affects how you
describe entities. For example, it is better to define Camera.ID(1), which can be abstracted by
a site whenever the identifier is unimportant,e.g. Camera.id, rather than Camera(1) which
requires a family of rules every time a rule uses a Camera.

(8) Be careful when assigning rule priorities. Although priorities stop a general case applying
when a specific should be applied, it also stops a general case being applied to any other
matches.

(9) Conditional rules allow us to restrict instantiation of sites: instead of allowing arbitrary
bigraphs, conditions allow only those that do/do not match a pattern.

(10) Where possible, it is better to choose a conditional rule over rule priorities. This is because
conditions indicate the intent of a single rule, while priorities define relationships across the
whole set of rewrite rules.

(11) For multi-perspective modelling, it is useful to add a top-level entity that allows a region to
be referred to by name, e.g. Physical, Social.

(12) If it is difficult to model with places, add more link structure; if it is difficult to model with
links, add more place structure.

(13) If you want to apply a rule sequence a fixed number of times, add tags to entities to indicate
whether or not the sequence has been applied, and modify the rules so they introduce and
then remove tags.

(14) There may be several possible ways to model a system feature, e.g. tagging, conditional rules,
parameterisation, etc. It is good practice to employ one consistent approach throughout the
model.

(15) Probabilistic, stochastic, and action bigraphs control how rules are applied, e.g. how often,
but they do not affect the rules themselves, which retain the same rewriting mechanism as
before.

B UNORDERED PORTS IN ABSTRACT BIGRAPHS
We have not presented details of the mathematical theory of bigraphs in this paper, which are
available elsewhere e.g. [34]. However, one aspect of abstract bigraphs requires some discussion.
As stated earlier, concrete bigraphs associate names (identifiers) with entities and closed links,
whereas in abstract bigraphs, names are absent. The names are referred to as support. For example,
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RoomRoom RoomRoom

r1 r2

e1
e2

(a)

RoomRoom RoomRoom

n1 n2

l1

l2

(b)

RoomRoom RoomRoom

n1

(c)

Fig. 26. (a): Concrete bigraph with two named Rooms (r1 and r2) and two links named e1 and e2. (b) Concrete
bigraph with two named Rooms (n1 and n2) and two links named l1 and l2. (c) Abstract bigraph with no
named entities or links that captures the support-equivalence class of concrete bigraphs (a) and (b).

RoomRoom Datacentre

Lift

(a)

RoomRoom

Datacentre

Lift

(b)

Fig. 27. (a) Abstract bigraph with three entities: Room, Datacentre, and Lift. The Room entity is linked to
Datacentre and to Lift. (b) Abstract bigraph with three entities: Room, Datacentre, and Lift. The Room entity
is linked to Datacentre and to Lift. (a) and (b) are the same abstract bigraph when ports are not ordered.

Fig. 26 shows two concrete bigraphs (a) and (b); abstract bigraphs capture equivalence classes of
bigraphs by “forgetting” names, as illustrated by the abstract bigraph (c).
In concrete bigraphs, ports are ordered, i.e. we can refer to the 𝑖𝑡ℎ port. This may not be so

apparent in the diagrammatic form, and representation of port ordering in diagrammatic form was
never discussed by Milner, but we can easily define an ordering for any diagrammatic form e.g.
scanning left to right, top to bottom. For example, in Fig. 26, e1 is the first (closed) link in concrete
bigraph (a) and l1 is the first (closed) link in concrete bigraph (b). Note that e1 and e2, and l1 and l2,
have the same arity and are links between two Rooms.
Abstract bigraphs capture support-equivalence classes of concrete bigraphs. In [34] Definition

2.4, this equivalence, between two concrete bigraphs, is defined by a pair of bijections 𝜌𝑉 and 𝜌𝐸 ,
on entities and edges, respectively, that “respects the structure”, i.e. the controls. However, these
bijections induce a further bijection, 𝜌𝑃 , on ports. Only one publication by Milner gives details of 𝜌𝑃 ,
which is on page 16 of [34]. Here, the definition is given as 𝜌𝑃 ((𝑣, 𝑖)) = (𝜌𝑉 (𝑣), 𝑖). Note the indices
are not mapped and so port ordering is preserved. We find this an anomaly, our intuition being that
in abstract bigraphs when we “forget” link names we should also “forget” link order—otherwise, we
have not really forgotten names. We suggest the definition should be 𝜌𝑃 ((𝑣, 𝑖)) = (𝜌𝑉 (𝑣), 𝜌𝑛 (𝑖)),
for some port order bijection 𝜌𝑛 . Adopting this definition would mean the two abstract bigraphs in
Fig. 27 are the same, which we propose is more appropriate for practical modelling.
Milner referred to moving between concrete and abstract bigraphs18, though no examples

are given. We suggest that regardless of whether ports are ordered in abstract bigraphs, any
transformation sequence concrete->abstract->concrete cannot be guaranteed to return to the
original concrete bigraph because the names are collected as a set, not a list. Therefore, we would
18"In later chapters we shall move back and forth between concrete and abstract bigraphs, according to whether or not we
need to identify support elements." pg. 27 [34].
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need an equivalence induced by a port order bijection. For example, the two concrete bigraphs in
Fig. 27 are equivalent under a port order bijection.

We have been unable to find any examples in the literature that rely on port ordering in abstract
bigraphs and none of the examples in this paper require port ordering. We note that several tools
and encodings e.g. [23, 31, 40], assume that ports are not ordered (in abstract bigraphs). If abstract
bigraphs did not have port orderings, then an ordering could always be introduced by adding the
ordering information through more structure (similar to that described in Section 7.3).
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