
Run-Time Probabilistic Model Checking for Failure
Prediction: A Smart Lift Case Study

Xin Xin
Digital Service

TÜV SÜD Asia Pacific
Singapore

Xin.Xin@tuvsud.com

Sye Loong Keoh
School of Computing Science

University of Glasgow
Glasgow, United Kingdom

SyeLoong.Keoh@glasgow.ac.uk

Michele Sevegnani
School of Computing Science

University of Glasgow
Glasgow, United Kingdom

Michele.Sevegnani@glasgow.ac.uk

Martin Saerbeck
Digital Service

TÜV SÜD Asia Pacific
Singapore

Martin.Saerbeck@tuvsud.com

Abstract—Modern smart systems are powered by cyber-
physical systems integrating sensor networks with service-
oriented architecture to automate their operations. Control algo-
rithms deployed on smart systems are now driven by connected
sensors with control decisions being made based on the sensor
generated data. As sensors tend to be unreliable and prone to
failures, this has resulted in the increase of system errors due
to the wrong control decisions derived from the faulty sensor
readings, thus affecting the performance, safety and quality of
the operational tasks. Existing methodologies to evaluate and
test such systems do not take into account the complexity and
uncertainty exhibited by the underlying sensor networks, and
hence not being able to dynamically verify the behaviour of the
smart systems at run-time. This paper proposes a novel run-time
verification framework combining sensor-level fault detection
and system-level probabilistic model checking. This framework
rigorously quantifies the trustworthiness of sensor readings, hence
enabling formal reasoning for system failure prediction. We
evaluated our approach on a passenger lift equipped with
sensor networks to monitor its main components continuously.
The results indicate that the proposed verification framework
involving the quantified sensor’s trustworthiness enhances the
accuracy of the system failure prediction.

Index Terms—Probabilistic Model Checking, Sensor Confi-
dence, Sensor Trustworthiness, Sensor Network

I. INTRODUCTION

There is an increasing number of sensors and actuators
being deployed in our environment such as modern smart
building systems to provide intelligent controls, predictive
analytics and optimisation of energy usage [1]–[4]. With the
advent of Artificial Intelligence (AI), machine learning and
data analytics, operators are now able to collect large volume
of environment and equipment data at run-time, deriving
insights on the operations of the building systems. This
significantly accelerates the automation of the smart building
management system (BMS), allowing for self-control actions
to be invoked automatically to ensure energy efficiency and
provide fault detection and diagnostics (FDD).

Two important challenges have been identified when de-
ploying a sensor network-based system as the backbone of
a smart BMS. Firstly, the system model used to define the

X. Xin is partially funded by the Singapore Economic Development Board
(EDB) through the Industrial Postgraduate Programme (IPP) Grant.
M. Sevegnani is supported by the EPSRC under PETRAS SRF grants MAGIC
and FARM (EP/S035362/1).

operational behaviour of the BMS is typically static and does
not accurately reflect the true behaviour of the equipment
or sensor over time. It is thus important to identify any
deviation to reduce equipment down time and to effectively
plan for component replacement and repair. Secondly, there
is a strong dependency between the accurate prediction of
a equipment’s behaviour and the data collected from the
sensors instrumenting the equipment. This means that it is
extremely important to acquire trustworthy sensor readings
to ensure the accurate prediction of the system behaviour.
Most of the systems deployed on the field currently assume
that the acquired sensor readings are accurate, which lead to
the inaccuracy in their predictive maintenance algorithms. We
advocate that all maintenance and control decisions are only
as good as the sensor data that they are based on.

In real-world deployments, sensor readings typically deviate
over time and hence leading to inaccurate readings being
acquired. This deviation could be due to wear-and-tear, cal-
ibration issues or even intentional data tampering. When these
inaccurate readings are used in BMS to derive maintenance
schedule, it may lead to errors, degradation of service quality,
and more seriously it poses a safety concern to the users. Our
observation of the current deployed systems tends to disregard
the dynamic nature of the sensor networks and ignoring the
inaccurate readings of sensors. Therefore, there is a need to
devise a new approach to automate the monitoring of sensor
networks that drive the smart BMS. Conventional approaches
that are time based, typically involve manual maintenance to
test and calibrate sensors using special instruments. Given
that there is a large number of sensors driving a wide range
of applications, it is no longer feasible to perform periodic
manual re-calibration and testing. Hence, there is a strong need
for a new sensor network monitoring and testing framework.

We propose a novel run-time verification framework com-
bining data- and model-driven techniques. We introduce the
concept of trustworthiness to quantify the accuracy and relia-
bility of the sensor readings to allow for the system model to
be updated at run-time to reflect the actual behaviour. With
the integration of both data- and model-driven approaches,
coupled with software testing and cybersecurity principles to
ensure data integrity and authenticity, our approach provides
a new methodology to model the system behaviour more

accurately over time. We have developed this run-time ver-
ification framework to dynamically model a sensor network-
based passenger lift and evaluated the performance of this new
approach.

The contributions of this paper are as follows:
• A novel run-time verification framework is designed and

implemented to provide quantified trustworthiness for
sensor network-based systems.

• This framework combines both sensor-level data-driven
models and a system-level probabilistic model. Sensor-
level models are used to quantify the trustworthiness of
each sensor for the computation of transition probability.
The probabilistic model is a system abstraction to reflect
the status of the smart system over time and predict
system failure in a certain period.

• The passenger lifts are safety critical systems in modern
smart buildings. This verification framework is validated
using a real-life smart passenger lift, involving four
sensors and five states.

This paper is organised as follows: Section II provides the
background of this research and related work. Section III
describes the proposed run-time probabilistic model checking
design, with the ability to continuously monitor a sensor
network-based system. Section IV presents an implementation
to predict the failure probability of a sensor network-based
passenger lift. The experiment and results are presented in
Section V. Section VI provides further insights on the experi-
ment results. Finally, we conclude the paper with future work
in Section VII.

II. RELATED WORK

Many technologies and algorithms have been developed to
classify sensor faults and verify system formally. Ramanathan
et al. [5] demonstrated a solution to identify and calibrate a
sensor network-based environmental monitoring system. A set
of rules were defined to identify sensor faults after they found
a significant amount of uninterpretable readings of forty-eight
sensors. They showed an efficient method to verify the data
integrity of each sensor. However, this method did not reflect
the impact of the sensor faults at the system-level.

Three sensor fault categories are systematically classified
by Ni et al. [6]. This classification is defined according to the
nature of sensor attributes, which are environment features,
system features or specifications, and data features.

Similarly, Sharma et al. summarised four data-driven ap-
proaches for detection and identification of sensor faults
according to the types of faults, namely rule-based, time series
analysis-based, learning-based and estimation [7] methods.

Apart from statistical approaches, Donghyun Park et al. [8]
proposed a data-driven-based light-weight real-time sensor
fault detection system. This system employs a Long Short-
Term Memory (LSTM) model to detect sensor faults. It
overcomes the mathematical approaches limitation which is
sensitive to noise and system complexity. However, to train an
accurate model is still a challenge in a dynamic environment.
Furthermore, the sensor-level fault detection solutions are not

capable of quantifying the impact of faulty sensors on the
system as a whole.

Probabilistic model checking is a common formal verifi-
cation technique used to verify a system, analysing the per-
formance and reliability. Kwiatkowska et al. [9] demonstrated
an application using probabilistic model checking to model
a sensor network-based system with probabilistic properties.
The resulting model is used to simulate and verify the system’s
reliability with one or more faulty sensors by injecting failure
data. However, this approach lacks adaptation to run-time
systems according to sensors’ run-time uncertainties. Calder et
al. [10] introduced another application for failure prediction of
a critical communication system. Three status for each compo-
nent are defined within the system, namely working, reduced-
redundancy and no-service. The resulting model is used to
evaluate future service availability and predict probability of
system failure according to each component’s status.

In the interest of verifying a large-scaled sensor network
system, Sevegnani et al. demonstrated a framework using
Bigraphical Reactive Systems (BRS) [11]. This framework
is capable of evolving over both the temporal properties and
spatial properties, which is the sensor network systems’ dy-
namic behaviour. Epifani et al. [12] proposed a novel dynamic
probabilistic model checking framework based on Keep Alive
Models with Implementations (KAMI). This framework is
based on the Bayesian Estimate Theory (BET) to estimate tran-
sition matrix according to the run-time system. Subsequently,
this estimated transition matrix is applied to a Discrete-Time
Markov Chain (DTMC) model to increase the accuracy of
failure prediction. All these methods consider the sensor’s
working condition as a binary result only. However, inaccurate
readings of sensors likely affect the system’s reliability. And,
it is still challenging to involve the quantified trustworthiness
of sensor readings in a probabilistic model at run-time.

As the current modelling methods are highly system-
specific, manual and domain expertise dependent, significant
time and effort are required to build a proper model of the
system. Khoo et al. [13] proposed a data-driven approach
to automatically derive a system’s probabilistic model from
a historical dataset. This approach provides an alternative
method to define the system model without relying much on
the domain expert knowledge. It effectively helps to create a
programmable system models for complex real-world systems.
Even so, this method is not capable to update the probabilistic
model dynamically during the run-time.

We are extending existing works by integrating run-time
sensor faults detection and quantified sensor trustworthiness so
that the probabilistic model can evolve continuously to provide
an accurate representation of the physical system’s behaviour.

III. RUN-TIME PROBABILISTIC MODEL CHECKING

We propose an approach to embed quantitative sensor’s
trustworthiness into the system-level model to predict poten-
tial system failure at run-time using the probabilistic model
checker PRISM [14] .

A base probabilistic model is first defined according to the
system specification to provide a system level abstraction to
represent the system behaviour. The initial transition prob-
abilistic matrix of this base-model is manually defined by
experienced domain experts. The system then is deployed and
starts collecting data to learn about the sensor behaviour and
quantify the sensor’s trustworthiness against expectation. In
order to ensure the trustworthiness of the sensor readings, the
sensor data is collected and profiled as its normal behaviour
using time series analysis, estimation and rule-based methods.
If any deviation from the norm is detected, the quantified
sensor trustworthiness termed as the confidence of the sensor
will be updated at run-time. For instance, if a sensor fault is
detected, the transition probability matrix of the base-model
is updated with lower confidence in the trustworthiness of the
sensor data. The confidence of sensor trustworthiness leads to
the continuous updating of the transition matrix of the base
probabilistic model to reflect the system behaviour at run-time.
Essentially, the model evolves over time through this process
continuously, taking into consideration the trustworthiness of
run-time sensor readings to derive the appropriate probability
of state transitions. Consequently, this approach takes into
account both the run-time sensor readings with quantified sen-
sors’ trustworthiness and system-level verification. It allows
the verification of the system reliability at run-time and at the
same time predicts probability of system failures.

The proposed run-time probabilistic model checking frame-
work [15] employs both the model-driven and data-driven
approaches and is implemented by two modules, i.e., model-
driven System Model Verification (SMV) and data-driven Sen-
sor Fault Detection (SFD). The System Under Test (SUT) is the
actual sensor network-based system, streaming run-time sensor
readings to both SMV and SFD. SFD module calculates the
confidence of the trustworthiness of sensor readings and feeds
to SMV as an input to update system model. Furthermore,
the sensor readings and the system states are saved into a
historical data store to facilitate the learning of sensor normal
behaviour.

A. Sensor Fault Detection (SFD)

The SFD builds sensor normal behaviour profile from histor-
ical data collected over the time. Together with the expert rules
and a rule engine, SFD detects and quantifies the confidence of
sensor readings at run-time. Two modules are implemented to
handle the sensor’s data, namely Sensor Behaviour Analyser
(SBA), and the Rules Engine. SBA establishes the temporal
consistency of the sensors. In order to manage the evolution
of expectation over time, SBA updates the sensor normal be-
haviour periodically e.g., on a daily basis. A reading pipeline
is established and acts a data channel to collect sensor data. In
order to derive the sensor normal behaviour, SBA obtains the
sensor data from pipeline to extract data patterns at run-time.

Each sensor normal behaviour comprises three components:
• Statistical characteristics — summarises statistic features

from a sliding window of sensor readings on an individual
sensor basis, e.g. mean, standard deviation, median of

each sensor. In the context of sensor fault detection, the
mean and standard deviation are mainly used to measure
the reliability of a sensor. For instance, when the standard
deviation is higher than its normal behaviour, it adds
evidence to be classified as noise [16].

• Estimation model — exploits temporal correlation in
measurements from historical data-set on individual sen-
sor basis. This model is used to forecast reading range
and data patterns.

• Drift trend — is the gradient of the trend of normalised
sensor readings. This value is computed using an Autore-
gressive Integrated Moving Average (ARIMA) model to
decompose the trend component from sensor readings.
Once a consistent deviation is detected, the lower confi-
dence indicates that the reading is less trustworthy. Drift
is a typical sensor fault due to wear and tear or calibration
errors.

Subsequently, the Rules Engine evaluates run-time sensor
readings with the sensor normal behaviour and domain knowl-
edge to compute the degree of deviation, i.e. sensor’s confi-
dence score. As the ground truth is not known, this deviation
is usually termed as fault. In order to quantify the sensor
trustworthiness, domain expert knowledge is extracted as a
set of pre-configured rules. Afterwards, the run-time sensor
readings obtained from the pipeline are assessed according to
these rules and the sensor normal behaviour to compute the
confidence score. Therefore, the sensor’s confidence score is
calculated as follows:

Confsensor =

n∑
i=0

factori × weighti (1)

where n is number of the rules defined, factori is the output
of each rule i and weighti is the weight of the rules.

This confidence score is subsequently fed into the SMV (c.f.
Section III-B) to update the transition probability matrix of the
model at run-time.

B. System Model Verification (SMV)

SMV is a probabilistic model-based system abstraction to
verify the working behaviour of SUT and to predict system
failure at run-time. It is a DTMC model defined as follows:

Msystem = (S, sinit, P, L) (2)

where Msystem is the probabilistic model of SUT, S is a finite
set of machine states of SUT, sinit ∈ S is the initial state,
P : S × S → [0, 1] is the transition probability matrix where∑

s′∈S P (s, s′) = 1 for all s ∈ S and L : S → 2AP are
function-labelling states with atomic propositions.

With this definition, the states and transitions of the model
are defined according to the system specification. They should
not change during run-time with only the probability of state
transition in the model responding to the working conditions
and sensor readings at run-time with changes. The initial
probability of state transitions is defined based on the domain
expert knowledge with the assumption that all the sensors are
fully trusted. Subsequently, the transition probability matrix P

Fig. 1. The sensor networks of a passenger lift.

evolves over time in keeping with the sensor’s trustworthiness,
which is the confidence score obtained from the SFD. With
this approach, the resulting model reflects the real behaviour of
the system according to the confidence of sensors, thus leading
to more accurate prediction results and better verification
performance.

IV. EXPERIMENTAL DESIGN

We demonstrate through an experiment illustrating how
the sensor’s confidence score is computed and influences the
probability model of a passenger lift system in this section.

Modern passenger lifts are equipped with sensors to capture
and process real-time data to monitor load conditions, detect
abnormal behaviour and to estimate when maintenance should
be performed. The efficiency and accuracy of these mainte-
nance processes are based on the quality of sensor readings.

We modelled a passenger lift using the proposed run-
time probabilistic model checking framework to evaluate this
approach’s performance. Internal institutional lift experts pro-
vided a list of lift parameters to be monitored, with the lift
motion status and door states having the highest priorities.
Hence, we set up two sensor networks for a passenger lift,
one monitors the door, while the other is responsible for
the car movement. The door module comprises two sensors,
namely accelerometer sensor and magnetometer sensor. The
car module includes accelerometer sensor and barometric air
pressure sensor. Fig. 1 shows the hierarchical structure of the
lift model. These sensors are connected to a gateway located
in the lift cabin, the extracted sensor readings are streamed to
the back-end data processing pipeline via Advanced Message
Queuing Protocol (AMQP) [17].

A. Sensor Fault Detection (SFD) Module

SFD was implemented using Python and the interfaces
were developed following RESTful [18] architecture patterns.
Historical data and configurations are provided through a web-
based interface. SFD inspects historical readings to extract
sensor normal behaviour on a monthly basis. During run-time,
the sensor readings are generated by the lift and published to a
cloud-based AMQP service. With this, all processing modules
can subscribe to the service to obtain the data to be processed
in a five minutes interval. SFD receives the run-time readings
to compute a confidence score for each sensor against its

Fig. 2. The state transition model of a passenger lift.

normal behaviour. Afterwards, this confidence score is fed to
SMV to update the transition probability matrix.

B. System Model Verification (SMV) Module

The SMV was implemented using PRISM 4.5 with a Java
wrapper. In order to interact with the SFD, a web server was
set up as a container to run the SMV module and to exchange
parameters.

A system-level probabilistic model was derived according
to [13]. Thereafter, each state is labelled by domain experts
based on the domain knowledge and operating experiences. We
describe an illustrative case to evaluate the proposed approach.
Fig. 2 shows the lift model, which includes five working states
and two error states:

1) fully-open — The doors of the passenger lift are fully
opened. As advised by the operators, this is the initial
state of the passenger lift. The sensors’ readings are most
stable at this stage.

2) door-closing — The doors start to close until they are
fully closed. At this stage, any interruption to the door
movement will result in the doors turning to open again.
The lift’s state is then moved to door-opening. During
this stage, the door’s sensor network readings reflect the
movement behaviour. However, the car sensor network’s
readings remain stable.

3) door-opening — The doors start to open until they
are fully opened. During this stage, the door’s sensor
network readings reflect the movement behaviour, but
the car sensor network’s readings remain stable.

4) idle — The doors are fully closed and the lift cabin car
is stationary. During this stage, both door and car sensor
networks’ readings are stable.

5) car-moving — The doors are fully closed and the lift
cabin car is moving. During this stage, the door sensor
network’s readings are stable, while the car sensor
networks’ readings demonstrate the moving behaviour.

6) non-critical failure — The lift is working in an unex-
pected condition. However, it can be recovered automat-
ically.

7) failure — This is a state that indicates the lift is working
with unexpected behaviour that may cause subsequent
hazard or injury.

and the initial transition probability matrix is defined based
on Fig. 2. The initial transition probability matrix, assumes
that the sensors are new and behave correctly. The probability
of system failure is expressed by the following Probabilistic
Computation Tree Logic (PCTL) [19] formula:

Pfailure =? [F ≤24×30 (S10)] (3)

where Pfailure is the probability of lift failure in thirty days.
The failure state S10 is defined in the lift model in Fig. 2.

Ideally, the model should accurately reflect the system state.
In practise, this is not always the case. As mentioned, existing
methods tend to assure the sensors are working correctly at
all time. In reality, the deviation is bound to occur, among
others, by wear and tear of the sensors or sensor readings
drift. This deviation causes inaccurate decisions to be made
by the control system. In order to make the system model to
reflect the real behaviour, the probability of each transition can
be updated according to the run-time confidence score of each
sensor from the SFD.

As each lift state is monitored by two sets of sensors as
presented in Fig. 1 and each set is independent from the other,
we aggregated one set of sensors as a sensor network. With
this, we calculated a sensor network confidence score as a
whole to represent the set of the sensors. In this lift context,
we calculated the confidence scores of two sensor networks,
i.e., the door network and car network as following:

Cdoor = {Cm × wm}+ {Ca × wa} (4)

Ccar = {Cb × wb}+ {Ca × wa} (5)

where the Cm, Ca and Cb are the confidence scores of the
magnetometer, accelerometer and barometric sensor respec-
tively. The wm, wa and wb are the weight assigned to the
sensors in the current network. Subsequently, the probability
of each transition can be updated according to the run-time
sensor network confidence score based on the following:

Prt =

Pinit × Cdoor state ∈ {S1, S2, S3}
Pinit × {Cdoor, Ccar} state ∈ {S4}
Pinit × Ccar state ∈ {S5}

(6)

where the run-time probabilistic of transition between states
depends on the confidence scores of two sensor networks,
Cdoor and Ccar are sensor networks’ confidence scores ob-
tained from Eq. 4 and Eq. 5, Pinit is the initial probability
matrix.

Consequently, by knowing Prt, the system’s initial lift prob-
abilistic model, Pinit can be dynamically updated whenever
sensor faults are detected. The confidence coefficients are
defined based on a domain expert’s experience for this specific
lift model. Hence, domain expertise is not only used for the
initial model, but also guides the update of expectations.

C. Assumptions

The proposed run-time probabilistic model for the passenger
lift was implemented based on the assumptions defined below:

1) The initial transition probability matrix, Pinit was first
derived using Evidence-Driven State-Merging (EDSM)
algorithm [20]. Subsequently, the experienced operators
fine-tuned this matrix accordingly to actual running
status.

2) An experienced operator sets the weights of all sensors,
i.e., the weights of sensors in the door sensor network:

a) Magnetometer sensor: 0.6
b) Accelerometer sensor: 0.4

The weights of sensors for the car sensor network:
a) Barometric air pressure sensor: 0.5
b) Accelerometer sensor: 0.5

3) The initial sensor confidence score is set as 0.99 for all
individual sensors.

V. EXPERIMENTAL RESULTS

We observed the five lift states, fully-open, door-closing,
door-opening, idle and car-moving to evaluate our implemen-
tation.

A. Sensor Fault Detection (SFD)

In this implementation, we grouped the sensors into two
sensor networks: door network and car network. Each sensor
network’s normal behaviour was calculated based on the
individual sensors according to equation 1, 4 and 5. For the
confidence score of sensors and sensor networks in each lift
state, the same algorithm (c.f. Section III-A) was used to
analyse the readings.

12
:0

0

13
:1

2

14
:2

4

15
:3

6

16
:4

8

18
:0

0

19
:1

2

20
:2

4

21
:3

6

22
:4

8

00
:0

0

0.7

0.8

0.9

1.0

Time

C
on

fid
en

ce

Lift Door
Lift Car

Fig. 3. Sensor Network confidence score of Lift-Door and Lift-Car.

We configured the rules in consonance with the domain of
lift management to validate the concept. The actual parameter
values are related to the individual lift’s characteristics and
hence were chosen conservatively. They are generally fine-
tuned during the deployment stage to improve the perfor-
mance. The following example rules are sufficient to evaluate
the methodology:

1) If the lift status is not idle, but there is no variation
(standard deviation) in the sensor readings for more than
thirty seconds, the sensor is considered as having Stuck
At fault.

2) According to the experiences, in case that more than
50% of the readings are missing in the window of five
minutes, the sensor is deemed as having an Intermittent

fault. Otherwise, the normalised ratio of the received
readings and the total number of expected sensor read-
ings are returned.

3) Compute the distance between the actual sensor reading
pattern and the sensor’s normal behaviour model. This
distance is used as the factor to detect out of range faults.

4) If the drift trend value is greater than 0.5 which should
be close to 0, the sensor is deemed as having a Drift
fault.

Fig. 3 shows a snapshot of two sensor-networks’ confidence
score of a working day operation. Two series shows a similar
pattern that they are more stable in the morning than the after-
noon. This means that there were more rides in the afternoon
in this commercial building. However, the car sensor-network
presents higher fluctuation. In this case, the operator need to
pay more attention to inspect either the lift car sensor-network
or the related components, e.g., electric motor, pulleys and
metal cables, etc. It is relatively straightforward to identify the
working condition of each sensor according to the confidence
score. However, it is quite challenging to determine the impact
of the lift’s overall operating situation in line with the sensor’s
working condition. With the proposed run-time probabilistic
model checking approach, the resulting confidence scores are
employed to update the transition matrix of the model at run-
time.

B. Run-time Model Checking

This section demonstrates how run-time probabilistic model
checking presents a better reflection of the passenger lift’s
behaviour compared to a static model. Fig. 4 shows a static
model that assumed all sensor networks retain a steady con-
fidence score of 0.9. The resulting model provided a thirty-
day’s failure probability of 0.0432, which was constant at all
time. In the actual situation, based on the dataset we collected,
sensor faults were detected. It resulted in the degradation of
the sensor confidence score, as shown in Fig. 3. This affected
the overall system’s failure probability. Fig. 4 shows the failure
probability of the passenger lift changed with a model updated
at run-time. A strong correlation was established between the
system’s failure probability and the sensor-networks’ confi-
dence score effectively.

12
:0

0

13
:1

2

14
:2

4

15
:3

6

16
:4

8

18
:0

0

19
:1

2

20
:2

4

21
:3

6

22
:4

8

00
:0

0

0.04

0.06

0.08

0.10

0.12

Time

Pr
ob

ab
ili

ty

Dynamic
Static

Fig. 4. Comparison of system failure probability.

VI. DISCUSSION

We have proposed a novel sensor-network verification
framework for sensor network-based smart systems using
passenger lift as an evaluation use case. This framework can
be used to predict potential system failure probability over
time, model the sensor network’s behaviour and quantify the
trustworthiness of a sensor network at run-time.

With the passenger lift use case, we managed to derive
an abstract lift model comprising two sensor networks which
are responsible for monitoring lift doors and lift cabin car
respectively. In order to reflect the run-time sensor network’s
behaviour, we set up a data processing pipeline to collect
sensor readings and calculate statistical characteristics, includ-
ing total readings received, the mean value of the readings
of each lift state and standard deviations. Furthermore, we
developed a batch job to compute the sensor-level-drift trend
periodically, e.g. monthly basis. By combining the statistical
methods and drift-trend, our verification framework is able to
quantify the trustworthiness of a sensor network, namely the
confidence score. Subsequently, this confidence score is fed
to a probabilistic lift model to compute the probability of a
system failure over thirty days through model checking.

Verifying the passenger lift using the proposed approach has
provided insightful findings. We provide further analysis and
discussion of the experiment results and findings below:

1) The system failure probability is in inversely proportion
to the sensor’s confidence score. When the sensor’s
confidence score is low, this results in the high prob-
ability of a failure. In the case of the passenger lift, a
linear function is applied to compute the sensor network
confidence score to the transition probability matrix. The
choice of function very much depends on the logical
relationship between the sensors and the system, this
can be configured and customised accordingly. Extensive
discussions were held with the passenger lift domain
experts and it is appropriate to define a linear function
for this use case. Nonetheless, machine learning might
be another option if the necessary dataset is available.

2) As the sensor is dynamic in nature, a transient fault
in the sensor leading to the system failure will recover
automatically. Thus, we observed that the overall system
failure probability fluctuated over time, and did not show
a trend towards high failure probability. For instance,
when unexpected interference happened, this caused the
abnormal fluctuation of the sensor readings. Whenever
this interference has stopped, the environment is back to
normal, which means that the sensor recovered and it is
back to normal behaviour as well. Naturally, the overall
system’s failure probability will be reduced accordingly.
In fact, some recoverable failures were captured, e.g, an
obstacle blocked the cabin doors which had led to door
closing failure. Once the obstacle had been removed,
the lift recovered automatically. We used a general state
named non-critical failure as in Fig. 2 to capture these

transient faults, with the assumption that there is a high
probability of recovery.

3) Throughout the 2-month monitoring of the passenger
lift, we did not observe any persistent sensor failure
and that no actual lift failure had occurred. Hence, the
resulting system failure probability was rather low. This
could be attributed to the frequent maintenance and the
replacement of sensors to ensure the reliability of the
lift. With the proposed verification framework, we can
optimise the maintenance schedule by examining the
system failure probability such that when a threshold
is reached, it triggers the maintenance process to take
place.

The experiment result shows a strong correlation between
the sensor network’s trustworthiness and the probability of
system failure. Considering the dynamic nature of the sensor
networks, this framework provides a viable approach for
monitoring and maintaining sensor network-based systems,
especially for safety-critical systems.

VII. CONCLUSIONS

We have demonstrated a new approach that combines data-
driven sensor model for quantifying the sensor trustworthiness
and model-driven probabilistic system abstraction to form a
rum-time probabilistic model. We described how to update a
probabilistic model of sensor network that explicitly reflect
sensor uncertainty. The methodology forms a unified run-
time model that presents more accurate prediction results of
impending system failures, even while the system is running.
Furthermore, possible future work includes the following three
directions:

1) The rules for deriving sensor network confidence score
are manually defined according to the expert on a
specific system basis. This should be generalised so that
the proposed approach can be applied to a wider range
of systems.

2) A context-awareness adaptive algorithm is needed to
reflect more general scenarios, e.g., the lift moves with
passengers and without passengers.

3) A hybrid probabilistic model is required to model
more sophisticated sensor network-based systems. For
instance, to model control system as discrete model and
physical modules as continuous model.

The evaluation results have highlighted the efficiency of
explicitly modelling sensor trustworthiness, especially because
all consequential decisions of sensor network-based systems
will be driven by automatically collected sensor data. More-
over, it helps the system operators allocate and provision
resources timely and efficiently.

REFERENCES

[1] A. Shah, H. Nasir, M. Fayaz, A. Lajis, and A. Shah, “A Review
on Energy Consumption Optimization Techniques in IoT Based Smart
Building Environments,” Information, vol. 10, no. 3, p. 108, Mar.
2019.

[2] H. Zou, Y. Zhou, H. Jiang, S.-C. Chien, L. Xie, and C. J. Spanos,
“WinLight: A WiFi-based occupancy-driven lighting control system for
smart building,” Energy and Buildings, vol. 158, pp. 924–938, Jan.
2018.

[3] Y. Agarwal, B. Balaji, R. Gupta, J. Lyles, M. Wei, and T. Weng,
“Occupancy-driven energy management for smart building automation,”
in Proceedings of the 2nd ACM Workshop on Embedded Sensing
Systems for Energy-Efficiency in Building - BuildSys ’10. Zurich,
Switzerland: ACM Press, 2010, p. 1.

[4] H. Park and S.-B. Rhee, “IoT-Based Smart Building Environment
Service for Occupants’ Thermal Comfort,” Journal of Sensors, vol.
2018, pp. 1–10, 2018.

[5] N. Ramanathan, L. Balzano, M. Burt, D. Estrin, T. Harmon, C. Harvey,
J. Jay, E. Kohler, S. Rothenberg, and M.Srivastava, “Rapid Deployment
with Confidence:Calibration and Fault Detection in Environmental
Sensor Networks,” 2006.

[6] K. Ni, N. Ramanathan, M. N. H. Chehade, S. Nair, S. Zahedi, G. Pottie,
M. Hansen, M. Srivastava, and E. Kohler, “Sensor Network Data Fault
Types,” vol. 5, no. 3, p. 29.

[7] A. B. Sharma, L. Golubchik, and R. Govindan, “Sensor faults: Detection
methods and prevalence in real-world datasets,” ACM Transactions on
Sensor Networks, vol. 6, no. 3, pp. 1–39, Jun. 2010.

[8] D. Park, S. Kim, Y. An, and J.-Y. Jung, “LiReD: A Light-Weight
Real-Time Fault Detection System for Edge Computing Using LSTM
Recurrent Neural Networks,” Sensors, vol. 18, no. 7, p. 2110, Jun.
2018.

[9] M. Kwiatkowska, G. Norman, and D. Parker, “Quantitative Analysis
With the Probabilistic Model Checker PRISM,” Electronic Notes in
Theoretical Computer Science, vol. 153, no. 2, pp. 5–31, May 2006.

[10] M. Calder and M. Sevegnani, “Stochastic Model Checking for Predicting
Component Failures and Service Availability,” IEEE Transactions on
Dependable and Secure Computing, vol. 16, no. 1, pp. 174–187, Jan.
2019.

[11] M. Sevegnani, M. Kabac, M. Calder, and J. McCann, “Modelling and
Verification of Large-Scale Sensor Network Infrastructures,” in 2018
23rd International Conference on Engineering of Complex Computer
Systems (ICECCS). Melbourne, VIC: IEEE, Dec. 2018, pp. 71–81.

[12] I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli, “Model
evolution by run-time parameter adaptation,” in 2009 IEEE 31st
International Conference on Software Engineering. Vancouver, BC,
Canada: IEEE, 2009, pp. 111–121.

[13] T. P. Khoo and J. Sun, “The Miles Before Formal Methods - A Case
Study on Modeling and Analyzing a Passenger Lift System,” in Formal
Methods and Software Engineering, J. Sun and M. Sun, Eds. Cham:
Springer International Publishing, 2018, vol. 11232, pp. 54–69, series
Title: Lecture Notes in Computer Science.

[14] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification
of probabilistic real-time systems,” in Proc. 23rd International Confer-
ence on Computer Aided Verification (CAV’11), ser. LNCS, G. Gopalakr-
ishnan and S. Qadeer, Eds., vol. 6806. Springer, 2011, pp. 585–591.

[15] X. Xin, S. L. Keoh, M. Sevegnani, and M. Saerbeck, “Dynamic
Probabilistic Model Checking for Sensor Validation in Industry 4.0
Applications,” in 2020 IEEE International Conference on Smart
Internet of Things (SmartIoT). Beijing, China: IEEE, Aug. 2020, pp.
43–50.

[16] A. Sharma, L. Golubchik, and R. Govindan, “On the Prevalence of
Sensor Faults in Real-World Deployments,” in 2007 4th Annual IEEE
Communications Society Conference on Sensor, Mesh and Ad Hoc
Communications and Networks, Jun. 2007, pp. 213–222, iSSN: 2155-
5494.

[17] S. Vinoski, “Advanced Message Queuing Protocol,” IEEE Internet
Computing, vol. 10, no. 6, pp. 87–89, Nov. 2006.

[18] R. Richards and R. Richards, “Representational State Transfer (REST),”
pp. 633–672, 2006.

[19] H. Hansson and B. Jonsson, “A logic for reasoning about time and
reliability,” Formal Aspects of Computing, vol. 6, no. 5, pp. 512–535,
1994.

[20] S. Verwer, M. de Weerdt, and C. Witteveen, “Efficiently identifying
deterministic real-time automata from labeled data,” Machine Learning,
vol. 86, no. 3, pp. 295–333, Mar. 2012.

