
BigraphER: rewriting and analysis engine for
bigraphs

Michele Sevegnani and Muffy Calder

School of Computing Science, University of Glasgow

Abstract. BigraphER is a suite of open-source tools providing an effi-
cient implementation of rewriting, simulation, and visualisation for bi-
graphs, a universal formalism for modelling interacting systems that
evolve in time and space and first introduced by Milner. BigraphER con-
sists of an OCaml library that provides programming interfaces for the
manipulation of bigraphs, their constituents and reaction rules, and a
command-line tool capable of simulating Bigraphical Reactive Systems
(BRSs) and computing their transition systems. Other features are native
support for both bigraphs and bigraphs with sharing, stochastic reaction
rules, rule priorities, instantiation maps, parameterised controls, pred-
icate checking, graphical output and integration with the probabilistic
model checker PRISM.

1 Introduction

Bigraphs were first introduced by Robin Milner as a universal mathematical
model for representing the spatial configuration of physical or virtual objects,
their interaction capabilities and temporal evolution. They were subsequently
extended to stochastic bigraphs [11] and bigraphs with sharing [16], and have
been applied in areas such as wireless protocols, home network management,
mixed reality systems, cloud computing, security and as meta-models to encode
process calculi (e.g. Mobile Ambients, CSS).

BigraphER is a modelling and reasoning environment for bigraphs consisting
of an OCaml library and a command-line tool. The functionality includes:

– native support for both bigraphs and bigraphs with sharing;
– a rewrite engine with support for stochastic reaction rules, rules with in-

stantiation maps, rule priorities, (stochastic) simulation and exhaustive state
space exploration;

– predicate checking;
– efficient matching engine based on SAT (used to implement rewriting and

predicate checking);
– support for parameterised controls and parameterised reaction rules;
– export labelled transition systems to probabilistic model checker PRISM [12];
– graphical output of bigraphs, reaction rules and transition systems (see Fig. 1

(right) for an example bigraph and graphical layout).

Router

Internet

Machine

Router signal

Machine signal

0

S S

l_in l_out

In In Out Out

M R

Fig. 1. Left: wireless network with a router and a machine; signal coverage is repre-
sented by coloured circles. Right: corresponding bigraphical representation automati-
cally generated by BigraphER (S = signal, R = router, M = machine).

Example Applications. While many early applications of bigraphs have been
to meta-modelling, e.g. for encodings of the π-calculus, λ-calculus, and CCS
(Calculus of Communicating Systems), applications in other domains are re-
cently beginning to emerge. Some examples are: security for cyber-physical sys-
tems [18], quantitative analysis of biological processes [11], cloud computing [19],
and a framework to control systems of networked mobile robotic systems [14].
BigraphER has been used to specify and analyse a wide range of case studies
in many different application domains: wireless network protocols [6], wireless
mesh networks [4], run-time policy management for domestic networks [5], and
human-computer interaction in mixed-reality systems [2]. Example analysis has
ranged from detecting basic “programming” errors (e.g. through type checking)
in [2], to generation of example state spaces, and run-time checking of invariants
(i.e. predicates), implemented on a router in [5].

Related Tools. BigMC [15] is an explicit-state model checking tool for BRSs
based on the BPL matching engine [3]. Currently, it does not support stochastic
bigraphs nor bigraphs with sharing and can only check reachability properties.
Big Red [9] is a visual editor for bigraphs and bigraphical reaction rules imple-
mented as an Eclipse plugin; it does not implement rewriting. DBtk [1] is an
implementation of matching for directed bigraphs, a variant of bigraphs with a
directed link structure; there is no support for rewriting and BRS execution.

2 Bigraphical Reactive Systems – Overview

A bigraph [13] is a pair of relations over the same set of nodes: a directed forest,
called place graph, representing topological space in terms of node containment
and a hypergraph, called link graph, representing the interactions and (non-
spatial) relationships among nodes. There is both an algebraic and graphical

form. The graphical representation of an example bigraph is in Fig. 1 (right);
it models the simple network in Fig. 1 (left) with a router, a machine, and the
range of their wireless signals.

Nodes are indicated by circles and ovals and are assigned a type called con-
trol indicated here by S (for signals), M (the machine), R (the router), etc. The
place graph is specified by black arrows. Bigraphs with sharing [16] extend the
original theory by defining the place graph as a Directed Acyclic Graph (DAG),
thus allowing a natural representation of overlapping or intersecting locations.
For instance, the M-node in the example is contained by both nodes of control
S, meaning the machine is in a spatial location covered by both wireless sig-
nals. The link graph is represented by green edges called links. Links may be
only partially specified, in which case they connect a name. Names are links
(or potential links) to other bigraphs representing the external environment or
context. By convention, names are drawn above the bigraph. In the example,
names l in and l out are used to name incoming and outgoing (potential) links
to remote resources. The number of links of a node, also called arity, depends
on its control, i.e. entities with the same control have the same number of links.
Dashed rectangles denote regions of adjacent parts of the system and sites are
used to model parts of the model that have been abstracted away (see Fig. 3
(top)). A bigraph with node identifiers is said to be concrete. When all the iden-
tifiers are ignored, we obtain an abstract bigraph which can be interpreted as an
equivalence class of bigraphs with the same structure.

A BRS consists of a set of reaction rules together with an initial bigraph
on which the rules operate. In stochastic bigraphs [11], a rate is associated with
each rule.

3 BigraphER Specification Language

The BigraphER specification language almost corresponds to the standard alge-
braic notation for bigraphical expressions [13,16]. In the following, we highlight
some of the distinctive features of the BigraphER language by presenting a simple
model for wireless networks inspired by [5]. The model is specified by the code
in Fig. 2. A valid BRS model consists of four separate blocks of definitions: a
signature containing all the controls in the model, a set of bigraphs, a set of
reaction rules and a reactive system specifying the initial state of the BRS, the
priority hierarchy among reaction rules and a set of predicates.

Controls are defined in lines 1-2 by using keyword ctrl. The integer on
the right-hand side of each definition indicates the arity of each control. The
keyword atomic specifies that a node may not contain other nodes. Bigraph
definitions are in lines 4-8. Line 5 defines bigraph s0. Expression M{w,s} de-
notes a node of control M with names w and s. Operators . and | denote nesting
and merge product, respectively. Nesting is the operation allowing to place a
bigraph inside another one; merge product is the operation placing two bigraphs
side-by-side inside the same region. Closures like /s0 indicate that a link has
no names (see link between M and S). Sharing is introduced by ternary opera-
tor share ... by ... in The first argument specifies the entities to be

1 ctrl M = 2; ctrl R = 2; ctrl S = 1;
2 atomic ctrl In = 1; atomic ctrl Out = 1; atomic ctrl Block = 1;
3

4 big links = In{l_in} | Out{l_out };
5 big s0 = /s0 /s1 (share (/w (M{w,s0}.links || R{w,s1}.links))
6 by ([{0,1}, {0,1}], 2)
7 in (id{s0 ,s1,l_in ,l_out} | S{s0} | S{s1}));
8 big is_in_blocked = M{w,s}.(In{l} | Block{l} | id);
9

10 react block_in =
11 M{w,s}.(In{l} | id) --> M{w,s}.(In{l} | Block{l} | id);
12

13 react leave_net =
14 /s (share (M{w,s} || id) by ([{0, 1}, {1}], 2) in (id(1,{w,s}) || S{s}))
15 --> ({w} || 1 || 1 || 0 || 0);
16

17 brs
18 init s0;
19 rules = [{ block_in , leave_net }];
20 preds = { is_in_blocked };
21 endbrs

Fig. 2. Specification of a BRS in the BigraphER language.

0

M

ls w

In

0

I

0

M

l s w

InBlock

0

Fig. 3. Reaction rule block in for blocking a machine’s incoming traffic.

shared, e.g. machine M and router R. The second argument specifies how they
are shared: {0, 1} indicates that M is shared by the first and the second signals
(counting from left to right). The third argument specifies the entities containing
the shared entities, e.g. signals Ss0 and Ss1. The graphical representation of s0,
automatically generated by BigraphER is shown in Fig. 1 (right).

The code in lines 10-11 defines reaction rule block in. Operator --> is used
to separate the left-hand side from the right-hand side of the rule. Expression id

indicates the identity bigraph, i.e. the bigraph with one site inside one region.
This reaction rule models a firewall rule blocking a machine’s incoming traffic.
The corresponding graphical representation is in Fig. 3. Reaction rule leave net

defined in lines 13-15 models a machine leaving the network.

Finally, lines 17-21 contain the reactive system definition. A BRS is defined
by construct brs ... endbrs. Keyword init specifies the initial state of the
system. In the example, this is bigraph s0. Construct rules = [...] defines a

list of priority classes in descending order of priority. A priority class is specified
by construct {...} and may only contain reaction rules identifiers. Construct
preds = {...} defines a set of predicates. Predicate is_in_blocked (defined
in line 8) can be used to tag states in which there are machines with blocked
incoming traffic. In a more extensive model like in [5], this predicate can be used
to verify network invariants after network policies are enforced by users.

This simple example highlights the main features; more complex examples
including stochastic reaction rules, reducible priority classes and instantiation
maps can be accessed at http://www.dcs.gla.ac.uk/~michele/bigrapher.

html.

4 Components and Features

The BigraphER command-line tool is composed of three distinct modules: the
compiler, the matching engine and the rewriting engine. All are coded in OCaml.

Compiler. The compiler translates an input source file in the BigraphER lan-
guage into a run-time representation of the model. Each declaration specifies the
binding of an identifier to a data type representing either a control, a bigraph
or a (stochastic) reaction rule. Each bigraph is stored in memory as a pair of
specialised data structures: a sparse boolean matrix encoding the DAG’s adja-
cency matrix of the place graph, and a set of hyperedges (i.e. multisets with
nodes and names as elements) for the representation of the link graph. Although
the BigraphER language only defines abstract bigraphs, the compiler operates
on the corresponding concrete bigraphs by assigning arbitrary node labellings.
This is required to allow the enumeration of all distinct occurrences of a reaction
rule and thus to compute exit rates in stochastic BRSs. Additional features are:
type-checking of parameterised definitions, combinatorial generation of paramet-
ric reaction rules, graphical representation of all the bigraph defined in the input
model (useful for debugging).

Matching Engine. The bigraph matching problem determines whether a bi-
graph, called pattern, occurs in another bigraph, called target. The BigraphER
matching engine implements the algorithm introduced in [16]: a SAT encoding
of a specialisation of the sub-graph isomorphism problem. For each instance of
the problem, the matching engine generates a set of constraints (formulas in
Conjunctive Normal Form (CNF)) encoding the instance. Solutions are then ob-
tained by passing all the constraints through the OCaml bindings for the MiniSat
solver [7]. Solutions are expressed as total maps from the nodes of the pattern to
sub-sets of the nodes of target. Because the matching problem is NP-complete,
two techniques to optimise performance have been adopted in the implementa-
tion. The first is to reduce the size of the SAT instances by applying Tseitin
transformation [17] to constraints. The second is to minimise instances by ex-
ploiting the symmetries in the structure of the pattern: when enumerating all the
occurrences, the automorphisms of the pattern are used to generate all the sym-
metric solutions starting from a computed solution. The matching engine also
implements specialised constraints to support bigraph equality and predicate
checking.

http://www.dcs.gla.ac.uk/~michele/bigrapher.html
http://www.dcs.gla.ac.uk/~michele/bigrapher.html

Rewrite Engine. This component computes the dynamic evolution of the
(stochastic) BRS specified in the input file by iteratively applying all the reac-
tion rules to each bigraph (state) until either a fixpoint or a user-defined bound
on the number of states is reached.1 The transition system generated by a BRS
is represented internally by BigraphER as a directed graph; the Continuous Time
Markov Chain resulting from a stochastic BRS as a labelled directed graph. Rule
application consists of two steps: first the matching engine is queried for occur-
rences of the left-hand side of a reaction rule, then, for each distinct occurrence,
a new state is computed by replacing the occurrence with the right-hand side of
the rule (see Fig. 3). BigraphER also supports reaction rules with instantiation
maps2 allowing to easily duplicate or discard parts of a bigraph when a reac-
tion rule is applied. The rewriting engine incrementally builds the state space in
a breadth-first search (BFS). Support for simulation is obtained by computing
only one random path of the transition system. Simulation for stochastic BRSs
implements Gillespie’s Stochastic Simulation Algorithm (SSA) [10]. Besides stan-
dard rule priorities, BigraphER admits reducible classes3 i.e. priority classes in
which rules are treated like rewriting within an equivalence class. This means
that after applying all possible rules in an arbitrary order only a canonical form
is stored. This feature allows, for instance, to reduce the number of intermediate
states generated by the application of instantaneous stochastic reaction rules.
Predicates expressed as matches are checked during the generation of the tran-
sition system: every time a new state is discovered, all the predicates specified
in the input model are checked against it and the labelling function is updated.
The rewriting engine can return either a textual or a graphical representation
of the (labelled) transition system and its states. Graphical output is computed
by the open-source graph layout generator Graphviz [8]. Textual output is com-
patible with the PRISM probabilistic model checker, thus enabling quantitative
verification for BRSs.

OCaml Library. This component provides programming interfaces for the data
structures used internally by the BigraphER command-line tool. For instance, it
allows manipulation of bigraphs and their constituents by providing implementa-
tion for the following operations: composition, tensor product, parallel product,
merge product and nesting. The library also provides APIs to check predicates,
construct reaction rules and apply them to rewrite bigraphs. The full library doc-
umentation can be accessed at http://www.dcs.gla.ac.uk/~michele/docs/

bigraph/index.html.

Technical Details and Availability. BigraphER is free and open source (BSD)
and runs on all major operating systems. It is available for download from http:

//www.dcs.gla.ac.uk/~michele/bigrapher.html.

1 Note that a model may have an infinite state space.
2 An instantiation map is a function associating each site in the right-hand side to

sites in the left-hand side.
3 The reaction rules belonging to a reducible class are assumed confluent i.e. they

yield the same result regardless of the order in which they are applied.

http://www.dcs.gla.ac.uk/~michele/docs/bigraph/index.html
http://www.dcs.gla.ac.uk/~michele/docs/bigraph/index.html
http://www.dcs.gla.ac.uk/~michele/bigrapher.html
http://www.dcs.gla.ac.uk/~michele/bigrapher.html

Acknowledgments. This work was supported by EPSRC project Homework
(EP/F064225/1) and an EPSRC Doctoral Prize Research Fellowship.

References

1. Bacci, G., Grohmann, D., Miculan, M.: DBtk: A toolkit for directed bigraphs.
LNCS 5728, 413–422 (2009)

2. Benford, S., Rodden, T., Calder, M., Sevegnani, M.: On lions, impala, and bigraphs:
modelling interactions in physical/virtual spaces. ACM Transactions on Computer-
Human Interaction (2016), in press

3. Birkedal, L., Damgaard, T.C., Glenstrup, A.J., Milner, R.: Matching of bigraphs.
ENTCS 175(4), 3 – 19 (2007)

4. Boucebsi, R., Belala, F.: Towards a channels allocation scheme model for WMNs
based on SBRS with sharing. In: Proceedings of MeMo 2015. p. 5 (2015)

5. Calder, M., Koliousis, A., Sevegnani, M., Sventek, J.: Real-time verification of
wireless home networks using bigraphs with sharing. Science of Computer Pro-
gramming 80, Part B, 288–310 (2014)

6. Calder, M., Sevegnani, M.: Modelling IEEE 802.11 CSMA/CA RTS/CTS with
stochastic bigraphs with sharing. Formal Aspects of Computer Science 26, 537–
561 (2014)

7. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Theory and applications of
satisfiability testing. pp. 502–518. Springer (2004)

8. Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz– open
source graph drawing tools. LNCS 2265, 483–484 (2002)

9. Faithfull, A., Perrone, G., Hildebrandt, T.T.: Big Red: A development environment
for bigraphs. In: Proceedings of GCM 2012. vol. 61 (2013)

10. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The
Journal of Physical Chemistry 81(25), 2340–2361 (1977)

11. Krivine, J., Milner, R., Troina, A.: Stochastic bigraphs. ENTCS 218, 73–96 (2008)
12. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic

real-time systems. LNCS 6806, 585–591 (2011)
13. Milner, R.: The space and motion of communicating agents. Cambridge University

Press (2009)
14. Pereira, E., Kirsch, C., Sengupta, R., Sousa, J.: BigActors - a model for structure-

aware computation. In: 4th International Conference on Cyber-Physical Systems.
pp. 199–208. ACM/IEEE (2013)

15. Perrone, G., Debois, S., Hildebrandt, T.T.: A model checker for bigraphs. In: Pro-
ceedings of SAC ’12. pp. 1320–1325. ACM (2012)

16. Sevegnani, M., Calder, M.: Bigraphs with sharing. Theoretical Computer Science
577, 43 – 73 (2015)

17. Tseitin, G.S.: On the complexity of derivation in propositional calculus. Studies in
Constructive Mathematics and Mathematical Logic 2(115-125), 10–13 (1968)

18. Tsigkanos, C., Pasquale, L., Ghezzi, C., Nuseibeh, B.: Ariadne: Topology aware
adaptive security for cyber-physical systems. In: ICSE 2015. vol. 2, pp. 729–732
(2015)

19. Yu, L., Tsai, W.T., Wei, X., Gao, J., Hildebrandt, T., Guo, X.Q.: Modeling and
analysis of mobile cloud computing based on bigraph theory. In: MobileCloud 2014.
pp. 67–76 (2014)

	BigraphER: rewriting and analysis engine for bigraphs

