
Theoretical Computer Science 404 (2008) 235–255

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

An automatic abstraction technique for verifying featured,
parameterised systems
M. Calder, A. Miller ∗

Department of Computing Science, University of Glasgow, Glasgow, Scotland, G12 8QQ, United Kingdom

a b s t r a c t

A general technique combining model checking and abstraction is presented that allows
property based analysis of systems consisting of an arbitrary number of featured
components. We show how parameterised systems can be specified in a guarded command
form with constraints placed on variables which occur in guards. We prove that results
that hold for a small number of components can be shown to scale up. We then show how
featured systems can be specified in a similar way, by relaxing constraints on guards. The
main result is a generalisation theorem for featured systems which we apply to two well
known examples.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Model-checking is a popular and effective technique for reasoning about distributed, concurrent systems, particularly
networks of communicating components. But, there is a limitation – only a single, tractable model can be checked. In this
paper we consider the problem of how to relate an individual model checking result about a system of fixed size and
configuration, to the general case. Namely, does a result for a given system scale to a system of any size – can we leverage
a general result from a specific one? This question cannot be answered by model-checking alone because it is an example
of the well known parameterised model checking problem (PMCP) which is, in general, undecidable [3]. But, for some classes,
we can find a model-checking solution. This paper introduces a model-checking solution for systems of communicating
components. The constraint is that the components fulfill criteria which allow them to be safely abstracted. We call this safe
with respect to abstraction.

An example follows. We can prove a property φ, say, holds for a model of a system with 3 concurrent components, p0, p1
p2 i.e. M(p0||p1||p2) |H φ.

Now consider the question, given another component p3, under what conditions does M(p0||p1||p2||p3) |H φ hold? More
generally, given a finite number of further components, under what conditions does the property still hold? How can we
leverage the proof of the property for the system of fixed size (i.e. for 3 components) to the proof of the more general case?
Moreover, when would the property not hold?

To answer these questions, there are a number of aspects to consider

• what is the form of φ? Can it refer to propositions about any local or global variable, or variables indexed by any
component?

• what is the communication topology of the system?Can the components communicate peer to peer, or in fixed a topology
such as a star or hypercube?

• what is the relationship between components? Must they be isomorphic? If not, what are the constraints on the
behaviour of the components?

∗ Corresponding author.
E-mail address: alice@dcs.gla.ac.uk (A. Miller).

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.03.034

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:alice@dcs.gla.ac.uk
http://dx.doi.org/10.1016/j.tcs.2008.03.034

236 M. Calder, A. Miller / Theoretical Computer Science 404 (2008) 235–255

Fig. 1. Example networks.

To illustrate all of these points, consider two paradigms: a network of peer to peer User components and a network of Client
components with a single Server component (see Fig. 1). Suppose we can show that, in the former paradigm with four User
components, if two User components have established each other as partner they will eventually become connected.Would
the result hold if there were five User components in the network?Would the result hold if the property referred to specific
Users, for example it stated thatUser 1 could eventually be connected toUser 5? Clearly the resultwould not hold for systems
of less than six components. Similarly, suppose we can show, in the second paradigm with three Client components, that a
message sent to the Server will eventually be delivered to its destination. Would the same be true if there were more Client
components? What if the Clients had different behaviour? For example, would the property still hold if some of the Clients
had a forwarding capability, or some of the Clients had the ability to invoke a forwarding capability on the destination Client?
We would expect the former to be true, but not necessarily the latter.

The aim of our approach is a technique which makes these aspects explicit. The approach relies on partitioning
components into two distinct subsets: concrete components and abstract components. The former are the components
involved in fixed systemanalysis, i.e. the components p0, p1, p2 above. Abstract components are the remaining components in
systems of larger or arbitrary size. For example, p3, or more generally, p3 . . . , pn−1 are the abstract components. The property
φ can only refer to global variables, or variables indexed by concrete components. Concrete and abstract components do not
need to be isomorphic, but abstract componentsmust be safewith respect to the abstraction in the sense that their presence
or otherwise does not affect the underlying behaviour of the overall system,with respect to a given property. The topology is
assumed to be either static and regular, or dynamic and peer to peer (fully connected). There is one communication channel
associated with each component.

The main contribution of this paper is to define an abstraction and prove that basic components and components with
certain categories of features which conform to syntactic criteria are safe with respect to our abstraction.

1.1. Overview of paper

In the next section we review background material, e.g. parameterised systems, features, Kripke structures, temporal
logics and model checking. In Section 3 we give an overview of our approach to solving PMCP by abstraction and introduce
the concept of a safe component. In Section 4 the approach is developed in more detail for basic parameterised systems. We
apply the techniques to two example systems: peer to peer telephony and client–server email and demonstrate that the
components in these systems are safe with respect to the abstraction. In Section 5 we extend the abstraction approach
to featured systems. We extend the two examples to more complex ones with features. We show that when features
conform to certain syntactic criteria, components are still safe, thus we can again solve PMCP. In Section 6 we discuss the
implications of our approach for failed formulae, i.e. what can we conclude when a property fails to be satisfied. Automation
and experimental results are discussed in Section 7, related work is discussed in Section 8 and conclusions are given in
Section 9.

2. Background

2.1. Parameterised systems and network invariants

The type of system we are interested in is parameterised, concurrent systems. A parameterised system has the form
Sn = p0||p1|| · · · ||pn−1 or Sn = C||p0||p1|| · · · ||pn−2 where p0, p1, . . . , pn−1 are instantiations of the same parameterised process
p, and C a distinguished context process (sometimes called an environment process) — for example a hub or server process.
|| is parallel composition. The verification of such systems — that is, the proof that properties hold for such systems for any

M. Calder, A. Miller / Theoretical Computer Science 404 (2008) 235–255 237

value of n greater than some lower bound n0, is both challenging and important. Parameterised systems occur frequently —
in distributed algorithms for example.

It is not possible to verify such systems (for any n) using model checking alone [3]. However, one approach that has
proved successful for verifying some parameterised systems involves the construction of a network invariant [6,29,15]. The
network invariant I represents an arbitrary member of the family F = {Sn : n ≥ n0} and proof of a given property φ for I can
be shown to imply that any member of the family F satisfies φ.

Some other techniques that have been used to verify parameterised systems include those based on theorem proving
[17], on abstraction [27], or on a combination of the two [28]. A further method is to use explicit inductive techniques
combined with model checking [23,20,32,35].

We introduce an invariant-based approach which combines abstraction and induction to verify parameterised systems.
Our invariant process is constructed by modifying a Promela specification for a network of fixed size, and using Spin to
construct the corresponding Kripke structure. Our approach is an example of how invariant processes can be constructed in
practice, to extend results proved for small, fixed sized models, and to results which hold for models of any size.

We show how our approach can be extended to systems in which components are still expressed in a well-defined way,
but individual components may be distinguished by way of features.

Like all network invariant approaches, this approach is limited to systemswith regular topology, which grow in a regular
way as the number of components increases. The example networks we consider have either a peer to peer topology (a
telephone system) or a client–server topology (email). We choose asynchronous communication to reflect realistic systems,
and allow dynamic communication (channels are passed on channels).

2.2. Features

Network components may have different functionality. Themechanism for structuring functionality additional to a basic
behaviour is commonly called a feature. The concept originated in telephony where features such as call forwarding, ring
back when free, etc. are added to basic call behaviour. Features fundamentally affect basic behaviour in different ways, and
so components with features are not, in general, isomorphic. Moreover, features associated with one component can affect
the behaviour of other (possibly featured) components.

A parameterised component is said to subscribe to a feature f (belonging to a given set of features), and a parameterised
system Sn = p0||p1|| · · · ||pn−1 (or C||p0||p1|| · · · ||pn−2) is featuredwhen (at least one of) the components p0, p1, . . . , pn−1 (or C,
p0, p1, . . . , pn−2) subscribes to at least one feature.

2.3. Temporal logic

We provide a description of the syntax and semantics of the logics CTL∗ and LTL. We use LTL to define our particular
properties of simple telephone and email systems in Section 4.4.

Logic CTL∗ is defined as a set of state formulas, where the CTL∗ state and path formulas are defined inductively below.
Quantifiers A and E are used to denote for all paths, and for some path respectively (where Eφ = ¬A¬φ). In addition, X, ∪, 〈〉
and [] represent standard nexttime, strong until, eventually and always operators (where 〈〉φ = true ∪ φ and []φ = ¬〈〉¬φ
respectively). Let AP be a finite set of propositions. Then

• for all p ∈ AP, p is a state formula
• if φ and ψ are state formulas, then so are ¬φ, φ ∧ψ and φ ∨ψ
• if φ is a path formula, then Aφ and Eφ are state formulas
• any state formula φ is also a path formula
• if φ and ψ are path formulas, then so are ¬φ, φ ∧ψ and φ ∨ψ, Xφ, φ ∪ψ, 〈〉φ and []f .

Logic LTL is obtained by restricting the set of (CTL∗) formulas to those of the form Aφ, where φ does not contain A or E. When
referring to an LTL formula, one generally omits the A operator and instead interprets the formula φ as “for all paths φ”.

For a model M, if the CTL∗ formula φ holds at a state s ∈ S then we write M, s |H φ (or simply s |H φwhen the identity of
themodel is clear from the context). The relation |H is defined inductively below. Note that for a path π = s0, s1, . . ., starting
at s0, first(π) = s0 and, for all i ≥ 0, πi is the suffix of π starting from state si.

• s |H p, for p ∈ AP if and only if p ∈ L(s)
• s |H ¬φ if and only if not s |H φ s |H φ ∧ψ if and only if s |H φ and s |H ψ, and s |H φ ∨ψ if and only if s |H φ or s |H ψ
• s |H Aφ if and only if π |H φ for every path π starting at s
• π |H φ, for any state formula φ, if and only if first(π) |H φ
• π |H ¬φ if and only if not π |H φ π |H φ∧ψ if and only if π |H φ and φ |H ψ, and π |H φ∨ψ if and only if π |H φ or φ |H ψ
• π |H φ ∪ψ if and only if, for some i ≥ 0, πi |H ψ and π |H φ for all 0 ≤ j ≤ i
• π |H Xφ if and only if π1 |H φ
• π |H 〈〉φ if and only if πi |H φ, for some i ≥ 0
• π |H []φ if and only if πi |H φ, for all i ≥ 0 .

238 M. Calder, A. Miller / Theoretical Computer Science 404 (2008) 235–255

2.4. Kripke structures

Model checking involves checking Kripke structures [14] to verify given temporal properties.

Definition 1. Let AP be a set of atomic propositions. A Kripke structure over AP is a tuple M = (S, S0, R, L) where S ⊆ S is a
finite set of states, S0 is the set of initial states, R ⊆ S × S is a transition relation and L : S → 2AP is a function that labels each
state with the set of atomic propositions true in that state.

From here onwewill assume that all models have a single initial state s0. That is, we assume that S0 = {s0}. WewriteM |H φ
to represent s0 |H φ. We also assume that the transition is total, that is, for all s ∈ S there is some s′ ∈ S such that (s, s′) ∈ R.

Definition 2. Given two Kripke structures M and M′ with AP ⊇ AP′, a relation H ⊆ S× S′ is a simulation relation between M
and M′ if and only if for all s and s′, if H(s, s′) then

(1) L(s) ∩ AP′
= L′(s′)

(2) For every state s1 such that R(s, s1), there is a state s′1 with the property that R′(s′, s′1) and H(s1, s
′

1).

If H(s0, s
′

0), we say that M′ simulates M and write M � M′.
The following is derived from a well known result [14].

Lemma 3. Suppose that M � M′. Then for every LTL formula φ with atomic propositions in AP′, M′
|H φ implies M |H φ.

2.5. Symmetry groups

In this sectionwe summarise somedefinitions fromgroup theorywhichwewill use to define open symmetric components
in Section 4.

Definition 4. Let G be a non-empty set, and let ◦ : G×G → G be a binary operation.We say that (G, ◦) is a group if G is closed
under ◦; ◦ is associative; G has an identity element 1G; and for each element x ∈ G there is an inverse element x−1

∈ G such
that x ◦ x−1

= x−1
◦ x = 1G.

We call the operation ◦ multiplication in G. When it is clear what the binary operation is, we simply refer to a group as G
rather than (G, ◦), and use concatenation to denote multiplication.

Definition 5. Let X be a finite set. A permutation of X is a bijection from X to X. The set of all permutations of X, Sym(X), forms
a group under composition of mappings. For any x ∈ X, and any α ∈ Sym(X), we denote the image of x under α by α(x).

2.6. Promela and Spin

Promela is an imperative language with constructs for concurrency, nondeterminism, asynchronous and synchronous
communication, dynamic process creation, parameterised processes, and mobile connections, i.e. communication channels
can be passed along other communication channels. Spin is the bespoke model-checker for Promela and provides several
reasoningmechanisms: assertion checking, acceptance and progress states and cycle detection, and satisfaction of temporal
properties.

Given a Promela parameterised system system with form Sn = p0||p1|| · · · ||pn−1 (or C||p0||p1|| · · · ||pn−2), the associated
model, or Kripke structure, is denoted by Mn. In order to perform verification on a model, Spin translates each process
template into a finite automaton and then computes an asynchronous interleaving product of these automata to obtain the
global behaviour of the concurrent system. This interleaving product is referred to as the state-space.

As well as enabling a search of state-space to check for deadlock, assertion violations etc., Spin allows checking of the
satisfaction of an LTL formula over all execution paths. The mechanism for doing this is via never claims – processes which
describe undesirable behaviour, and Büchi automata – automata that accept a system execution if and only if that execution
forces it to pass through one ormore of its accepting states infinitely often [26,24]. Checking satisfaction of a formula involves
a depth-first search of the synchronous product of the automaton corresponding to the concurrent system (model) and the
Büchi automaton corresponding to the never-claim.

Note that in Promela, the symbol ‘!’ is used to denote negation. We use this form when referring to LTL properties, or
propositions in Promela.

2.7. Guarded command form

For reasoning purposes, we require to assume that components are defined in a given, well defined way. Namely,
we assume the guarded command, GC, form which consists of one, global loop over a choice of statements of the form
guard → command. Guards will be over-lapping when the system behaviour is non-deterministic. Precise definition of the
form depends upon the specification language; we have defined it for Promela. In fact, we assume that each component

M. Calder, A. Miller / Theoretical Computer Science 404 (2008) 235–255 239

Fig. 2. Peer to peer abstraction.

Fig. 3. Client-server abstraction.

type is defined within a process (specifically a proctype declaration) and (modulo initial variable set up) the proctype
definitions themselves have guarded command form. In the Promela form, we add additional program counter variables,
p_c, to represent local program control. We note that in some model checking tools (e.g. Murφ [18] and SMV [33]), models
are specified directly in this form.

Someexamples of programs expressed in thismodular guarded command formare given in Section 4.3. Note, the Promela
do . . . od construct provides a way of expressing a loop in which commands are repeatedly selected non-deterministically
until a break statement is executed (there are no break statements in our examples). Choices are denoted :: statement. In
addition, Promela allows us to group together statements that should be executed at the same time (i.e. before another
component executes a transition) using an atomic statement. We will henceforth therefore assume that statement choices
are expressed thus:

:: atomic{guard → command}.

We assume that atomic statements can not block (strictly, they can block on the first statement). This means that if a
statement choice has a command which involves writing to (reading from) a channel (chan say), we must be sure that chan
is not full (empty). Thus the corresponding guard must include the proposition nfull(chan) (nempty(chan)).

3. The abstraction approach and safe components

3.1. Abstraction of parameterised systems

Given a parameterised system Sn of size n, with associated model Mn, and a fixed m (1 ≤ m ≤ n), we partition system
components intom concrete components and n-m abstract components.We encapsulate the observable behaviour of abstract
components, with respect to to a given property, by a new component called Abs and replace all abstract components by
Abs. Since the concrete components may communicate directly with abstract components, we may need to modify the
communication to/from concrete components. The new abstract system is p′

0|| · · · ||p
′

m−1||Abs (or, when there is a context
component, C′

||p′

0|| · · · ||p
′

m−2||Abs) where (C′ and) the p′

i denote suitably altered concrete components. The associated model
is denoted by Mm

abs.
We illustrate the abstraction approach for a peer to peer network, and a client–server network in Figs. 2 and 3

respectively.

240 M. Calder, A. Miller / Theoretical Computer Science 404 (2008) 235–255

3.2. Safe components

Before we describe our abstraction approach in detail, we define what is meant by a safe component with respect to our
abstraction. Assume that the abstract model is Mm

abs.
Definition 6. Given a parameterised system Sn, m (1 ≤ m ≤ n), and formula φ indexed by elements of {0, . . . ,m − 1}, the
components of Sn are safewith respect to Mm

abs if and only if
Mm

abs |H φ ⇒ ∀n. Mn |H φ.

In other words, components are safe with respect to abstraction if the abstraction of components indexed {m, . . . , n − 1}

does not alter the behaviour of the system, with respect to φ.
Note that the term safe here means the same as abstractable (i.e. our method is applicable). We prefer safe because it

captures the notion that, unless strict guidelines are followed, abstractability (safety) will be violated. In the remainder of
this paper we omit the condition with respect to the abstraction, when it is clear from the context.

In the next section we describe our assumptions on the way basic parameterised systems are specified, and show how
abstract models are constructed for such systems in such a way as to preserve given properties. Thus we demonstrate that
basic components are safe with respect to our abstraction approach.

In Section 5we extend the approach to featured systems and show that if features are restricted in someway, components
remain safe.

4. Abstraction of basic parameterised systems

We assume that all models are specified in modular GC form (see Section 2.7). Model descriptions consist of either n− 1
instantiations of a single module declaration, or a single instantiation of a context module declaration together with n − 2
instantiations of a further module declaration.

Local variables associated with each component are either: p-variables, the values of which are drawn from the set of
component indices V = {D, 0, 1, . . . ,m}; c-variables, the values ofwhich are channel names; and standard variables (variables
which are not p-variables or c-variables) of finite type. The value D is a default value which is chosen to take the value of the
smallest positive value not equal to any component index. (In the unabstracted case this is n.)

We restrict our attention to indexed components whose behaviour does not depend upon a given index value, we refer
to this as “open symmetry”, see Definition 7. Note that, if ψ is a statement choice, and α ∈ Sym(V) a permutation (see
Definition 5), then α(ψ) is a statement choice obtained from ψ by

(1) replacing all propositions x == val1, where x is a p_variable and val1 ∈ V , contained in the guard ofψ, with x == α(val1),
and

(2) replacing all assignments of the form y = val2 , where y is a p_variable and val2 ∈ V contained in the command ofψ, with
y == α(val2).

Definition 7. LetMn be themodel associatedwith a system of n components, expressed in GC form, and let V denote the set
of component indices. A set of parameterised components is called open symmetric if for any statement choiceψ contained
in a component specification, α(ψ) is also contained in the component specification, for all α ∈ Sym(V).
As an example, the single statement (x == 1) → y = 42, would violate open symmetry (unless there were also statements
(x == 0) → y = 0, (x == 0) → y = 1 etc., for every permutation), but the statement (x == y) → x = partner[z] would
preserve open symmetry.
Definition 8. Components of a system are said to be basic if they are open symmetric and satisfy the following conditions:

(1) The only global variables present in the system are channels or variables that are used for verification purposes only.
All channels are finite buffers, and there is one channel associated with each component. Variables that are used for
verification purposes only do not appear in guards.

(2) Each component has, amongst its local variables, the standard variable p_c, denoting its program counter. In addition,
all components (except possibly the context component, when one exists) have the p-variable selfid denoting the
component index. No operations on this variable are permitted. The value of any other p-variables (general p-variables)
can only be changedby reading froma channel, or via non-deterministic choice. Noother operations, apart from resetting
to D, are permitted. In addition, local variablesmay include c-variables which denote the channel names associatedwith
the component itself and the component with which the current component is communicating. Operations on these
variables are restricted as for selfid and general p-variables respectively.

(3) All statement choices within the model specification of basic parameterised systems are assumed to have the form:

:: atomic{((localprop)&&(varprop)) → command}

where localprop and varprop are conjunctions of propositions concerning local variables of a component, and global
variables (channels) respectively. We assume that in all cases varprop contains only propositions concerning the
component’s own channel and/or any other channel. These propositions may only take the form of a check on the status
of a channel (whether it is full, empty etc.), or a poll, which has the form chan_name?[const] and takes the value true if
the next message on the channel with name chan_name has a value equal to the constant const, and false otherwise.

M. Calder, A. Miller / Theoretical Computer Science 404 (2008) 235–255 241

4.1. Constructing the abstract model

In this section we show how concrete components are modified and how the abstract process Abs is constructed. In
Section 4.2 we show that due to the nature of our construction of the abstract system, basic components, as defined above,
are safe.

In all cases we have a fixed number of concrete components (m say). The total number of components is N = m + 1.
The abstract component is assumed to have an index Absidwhich is set tom, and associated channel abs_channel. The default
value D is set to Absid + 1. There is one channel for each concrete component.

We start with peer to peer networks. In this case, all concrete components have the same form and are modified in the
same way.

Recall, any statement choice in the component specification has the form

:: atomic{((localprop)&&(varprop)) → command}.

If a statement choice contains no propositions concerning global variables (i.e. varprop is empty) and the corresponding
command involves updating local standard variables or resetting p_variables to D only, the statement choice is unchanged in
the modified component.

Suppose that varprop is empty and command involves updating (not resetting) local p-variables to a value from V \ D or
updating a c-variable. We assume that a given command updates all p-variables to the same value, and any c-variables to
the same value. If a command contains updates to both p-variables and c-variables then the c-variables are updated to the
channel name associatedwith the value towhich the p-variables are updated. Since our components are assumed to be open
symmetric, the original component specification will contain n equivalent statements, one for each component index. For
example, suppose the component specification contains the statement choice:

:: atomic{(p_c == 4) → partnerid = 0; partner = zero}

where zero is the channel name associated with the component with index 0. Then the component specification will also
contain the statement choices:

:: atomic{(p_c == 4) → partnerid = 1; partner = one}

:: atomic{(p_c == 4) → partnerid = 2; partner = two}

etc. (Note that p_c is a standard variable, and so is not permuted.) This list of statements should be replaced with a list of m
statement choices, corresponding to selecting partnerid as 0, 1, up to m − 1 together with a final statement:

atomic{(p_c == 4) → partnerid = Absid; partner = abs_channel}.

Statement choices in which varprop is non-empty contains a proposition concerning the status of a channel (whether it
contains a given message, for example). We consider the case where varprop is non-empty and command does not involve
reading or writing from/to channels. Suppose a statement choice has associated varprop which only contains propositions
concerning self . The statement choice should be left unchanged if the value of partnerid (or partner) is currently set to
the default value (i.e. a communication has yet to be established). However, if communication has been established, the
statement choice should be replaced by a set of statement choices. The first choice is simply the original choice in which the
guard is enhancedwith the proposition (partner! = abs_channel) (or (partnerid! = Absid)). In the other choices the proposition
(partner == abs_channel) (or (partnerid == Absid)) is added to the guard and the proposition querying the status of self is
removed. Each choicewill have a different command depending on the assumed status of the channel. For example, consider
the statement choice:

:: atomic{((p_c == 2)&&(self?[eval(partner)])) →

MYSTATE = talk; p_c = 4}

whichwould block if channel self did not contain the current value of partner (in Promela, eval(partner) is a constant assigned
to the channel name currently assigned to the c-variable partner). This would be replaced by the statement choices:

:: atomic{((p_c == 2)&&(partner! = abs_channel)
&&(self?[eval(partner)])) → MYSTATE = talk; p_c = 4}

:: atomic{((p_c == 2)&&(partner == abs_channel)) →

MYSTATE = talk; p_c = 4}

:: atomic{((p_c == 2)&&(partner == abs_channel)) → p_c = 2}.

All statement choices in which the varprop contains a query of partner and command do not involve a read from, or write to,
a channel, are treated in the same way.

If command involves a read fromorwrite to partner after communicationhas been established then, sincewehave assumed
that (atomic) statement choices will not block, varpropwill be non-empty. Assume that varprop only contains the associated
proposition (nempty(partner)), or (nfull(partner)). The statement choice should be replaced by three choices. In the first

242 M. Calder, A. Miller / Theoretical Computer Science 404 (2008) 235–255

Fig. 4. Data abstraction.

choice, as before, the guard is enhanced with the proposition (partnerid! = Absid) (or equivalently, (partner! = abs_channel))
and the commandunchanged. In the other choices,we add theproposition (partnerid == Absid) (or (partner == abs_channel))
to the guard and remove the associated (nempty(partner)), or (nfull(partner)) proposition from the guard. In the second
statement choice we assume that read (from partner) or write (to partner) is enabled, and the command simply has the
read or write command removed (we refer to this as a virtual read or write.) In the third choice we assume that the read or
write statement is not enabled, and so the command is replaced with a simple command to keep p_c at its current value.

We have described how simple statement choices are replaced in the modified concrete components. Clearly statement
choices can be more complicated (the guard may contain a non-empty varprop and command an assignment of a value to a
p-variable, for example). However, by iteratively applying simple modifications, more complex statement choices can be
modified in a natural way.

In client–server networks, concrete client components require little modification, since they communicate only via the
server component. However, when selecting a destination for messages, for example, they must now choose from the set of
concrete client components together with the abstract component.

The server component however, requires more modification. Communication with concrete clients is unchanged, but
communication with the abstract component is modified as for concrete components in peer to peer networks (see Fig. 3).

Note that (in either network topology) an alternative solution to deciding whether or not a write (say) to an abstract
partner is blocked (other than choosing non-deterministically), is to include a global variable blocked say, which is non-
deterministically set to 0 or 1 by the abstract process. In our abstract email example (see Section 4.3) we use this alternative
approach.

Finally we show how the abstract process, Abs is constructed.
The role of the abstract process is to initiate messages. Therefore, Abs places messages on channels of any concrete

component with which it can directly communicate. In a peer to peer network this includes all concrete components, and in
a client–server network this only includes the server component (via the network channel). In our telephone example (see
Section 4.3) there is no more behaviour associated with Abs. In the email example, the Abs component also has the ability to
set the blocked variable (see above).

4.2. Proving that basic components are safe

We show that basic components, as defined in Definition 8 are safe.

Theorem 9. Given a parameterised system

Sn = p0||p1|| · · · ||pn−1 or C||p0||p1|| · · · ||pn−2

with model Mn, m (1 ≤ m ≤ n), abstract model Mm
abs constructed as described above, and formula φ indexed by elements of

{0, . . . ,m − 1}, if the components of Sn are basic, then they are safe.

Proof (sketch). Components are safe if Mn � Mm
abs. The simulation follows from construction of Mm

abs as described above:
each statement in the unabstracted specification can bematched (or replaced) by a statement in the abstracted specification.
At the model level, matching is best illustrated by Figs. 4–6. Fig. 4 illustrates data abstraction [16], where a choice over n
possibilities is matched bym+1 possibilities, andwhen appropriate, N represents the values {m, . . . , n−1}. Fig. 5 illustrates
behavioural abstraction: a choice over (sub) paths of arbitrary length is matched by a loop. Note that when this kind of loop
is required, for example in the email system to represent the possibility of blocking, then some liveness properties may not
hold in the abstracted model (see Section 6). Fig. 6 illustrates another form of behavioural abstraction: stuttering. States s1
and s2 are distinct states, but they are both matched by t1 because the transition from s1 to s2 results from an update to a
variable that does not change in the abstract model. For example, this could correspond to the case of empty commands in
the abstracted model, representing, say, virtual read or writes to communication channels. �

M. Calder, A. Miller / Theoretical Computer Science 404 (2008) 235–255 243

Fig. 5. Behavioural abstraction.

Fig. 6. Stuttering.

Fig. 7. Example telephone and email systems.

We now present some examples in detail.

4.3. Some examples

We illustrate our approach via a simple telephone system and a simple email system. We first describe the systems
informally togetherwith a property thatwewish to verify in each case.We then provide Promela descriptions of the systems
inmodular guarded command form and showhow these descriptions aremodified to create an abstract specification in each
case.

4.3.1. An informal description of simple telephone and email systems
The telephone system consists of four instantiations of a User process, there is no context process. Processes are

parameterised via process identifier (selfid) and designated channel name (self). The email system consists of four
instantiations of a Client process which communicate via a server process (the Network_Mailer process). The topologies are
illustrated in Fig. 7. Note that arrows indicate the direction of communication, not ownership of channels.

In the simple telephone system, User components change state (between idle, calling and talk) as a result of
communication with other processes (see Fig. 8). Suppose a User is in the idle state. It will first check to see if their own
channel is empty, and, if so, choose a partner whose channel is also empty. It then places its own channel name self on both
its own channel and that of their partner, and proceeds to the calling state towait for a “reply”. The User detects a replywhen
the contents of its channel have been replaced with the channel name of partner, and proceeds to the talk state. Once in the
talk state, as the initiator of the call, the User can end the call (hang up) by replacing the message on its partner’s channel

244 M. Calder, A. Miller / Theoretical Computer Science 404 (2008) 235–255

Fig. 8. State transition diagram for simple telephone system (user component).

Fig. 9. State transition diagram for simple email system.

with the partner’s channel name, and removing the contents of self. Alternatively, a User in the idle state that has a full
channel will replace the contents of its partner’s channel with self and proceed straight to the talk state. The User then waits
for its partner to hang up, removes the contents of self and returns to idle. An example property for the simple telephone
system is:

Property 1. If User[0] has User[1] as its partner, andUser[1] has User[0] as its partner, thenUser[0] andUser[1]will be connected
before one of them returns to the idle state.

In the email example, the Client components move between two states, namely initial and end_Client (see Fig. 9(a)). If a Client
component in the initial state receives a message, it reads the message, records the identity of the intended recipient, and
moves to the end_client state. In end_client the value of this record is reset and the Client returns to the idle state. From the
initial state the Network_Mailer process continuously loops around a single state to check if there are any messages on its
associated channel (network), and if so, whether the channel associated with the next message on the channel is not full. If
so, the message is passed on accordingly (see Fig. 9(b)). An example property for the simple email system is:

Property 2. All messages received by Client[0] are addressed to Client[0].

4.4. Promela specifications for example systems

Promela specifications for simple telephone and email systems (expressed in modular guarded form) are given below.
Note that this is not themost naturalway to express Promela programs— it prevents us fromusing goto statements and labels
for example (thus in practice we transform a given Promela specification into this form). Assuming Kripke structures M4
associatedwith these specifications,we showhow these simple programs are be adapted to construct abstract specifications,
with associated models M2

abs in each case.

M. Calder, A. Miller / Theoretical Computer Science 404 (2008) 235–255 245

Fig. 10. Promela specification for telephone example with four User components.

The Promela specification for the simple four User telephone system is given in Fig. 10; Property 1 is given by:

[]((s ∧ t) →!((!r) ∪ (v ∨ w))).

Here r is (connected[0].to[1] == 1), s is (partner[0] == one), t is
(partner[1] == zero), v is (MYSTATE[0] == idle) and w is
(MYSTATE[1] == idle).
Here connected.to is an array, the elements of which are variables used for reasoning purposes only (and so do not appear

in guards). When a connection has been established between i and j, connected[i].[j] is set to 1 and is (re)set to 0 otherwise.
The partner variables are global here. This is to allow their values to be “visible” to the never-claim. In all other ways they are

246 M. Calder, A. Miller / Theoretical Computer Science 404 (2008) 235–255

Fig. 11. Promela specification for email example with four Client components and a Network_Mailer component.

treated the same as the local channel names partner described in Section 4. The global variable array MYSTATE is also used
for verification purposes only.

The Promela specification for the simple email system consisting of three Client components and the Network_Mailer
component is given in Fig. 11; Property 2 is given by:

[](p ∨ q)

where p is (last_del_to_to[1] == 1), and q is (last_del_to_to[1] == M). Here, last_del_to_to is for verification purposes only
and records the identity of the intended recipient; M is a default value.

4.4.1. The example abstract models
Abstract Promela specifications are given in full in Figs. 12 and 13. Note that in the email example, no abstract channel

is required because channel names are not passed between components, and all messages delivered to the abstract process
are virtual (see Section 4.1).

M. Calder, A. Miller / Theoretical Computer Science 404 (2008) 235–255 247

Fig. 12. Promela specification for telephone example with abstraction.

5. Adding features

Features are a mechanism for structuring functionality additional to a basic behaviour (see Section 2.2).

248 M. Calder, A. Miller / Theoretical Computer Science 404 (2008) 235–255

Fig. 13. Promela specification for email example with abstraction.

We have added features to a basic telephone system and email system [8,10]. Note that these specifications are far more
complex than those given in Section 4.3, which were provided merely to illustrate the basic approach. We therefore give

M. Calder, A. Miller / Theoretical Computer Science 404 (2008) 235–255 249

Table 1
Features (telephone system)

Feature Description
Call forwarding unconditionally (CFU) If CFU[i] == j, all calls for User[i] are forwarded to User[j]
Call forwarding on busy (CFB) If CFB[i] == j, if User[i] is busy then all calls for User[i] are

forwarded to User[j]
Outgoing dial screening (ODS) If ODS[i] == j, then User[i] may not dial User[j]’s number
Outgoing call screening (OCS) If OCS[i] == j, then a call from User[i] to User[j] is not possible
Terminating call screening (TCS) If TCS[i] == j, then a call from User[j] to User[i] is not possible
Ring back when free (RBWF) If RBWF[i]! = D, and User[i] requests a ringback to User[j] then

a ringback (fromUser[i]) will ensuewhenUser[j] becomes free
Outgoing calls only (OCO) If OCO[i]! = D then User[i] may not receive any calls
Terminating calls only (TCO) If TCO[i]! = D then User[i] may not initiate any calls
Return when free (RWF) If RBW[i]! = D, and User[j] requests a ringback to User[i] then a

ringback (from User[i]) will ensue when User[i] becomes free

Table 2
Features (email system)

Feature Description
Encryption (ENC) If ENC[i]! = D then all messages sent by Client[i] will be

encrypted
Decryption (DEC) If DEC[i]! = D then Client[i] can decrypt all messages delivered

to Client[i]

Filtering (FT) If FT[i] == j then all messages sent to Client[i] by Client[j] will
not be delivered

Forwarding (FW) If FW[i] == j then all messages sent to Client[i] will be
forwarded to Client[j]

Autorespond (AR) If AR[i]! = D then the first time Client[j] sends a message to
Client[i], an autoresponse message will be sent to Client[j]

Mailhost (MH) If Client[i] is not on the mailhost list, it can not receive
messages

Remail (RM) If RM[i]! = D then all messages sent by Client[i] will
be delivered under Client[i]’s pseudonym, and all messages
addressed to Client[i]’s pseudonymwill be delivered to Client[i]

only an overview here of relevant aspects and assumptions. Lists of features for each of these systems are given in Tables 1
and 2; D is a default value and we assume i 6= j.

We add features to components via feature arrays which determine which features are subscribed to by which
components. Thus additional global variables are now allowed to appear in guards. This is the major difference between
basic components and featured components.

Suppose then that all global variables are channels or have the form glob_var[i], for some i ∈ V . For any global variable
glob_var[i] we assume that there exist global variables glob_var[j] for all j ∈ V . We assume that all global variables glob_var
are feature related (either concerning the elements of a feature array, or a feature-flag array, see Section 5.1) or are used for
verification purposes only (and so do not appear in guards, as before).

Now we assume that all statement choices have the form:

:: atomic{((feature_prop)&&(localprop)&&(varprop)) → command}

where feature_prop is either empty, or refers to feature-related global variables. If feature_prop is not empty, we refer to the
statement choice as a feature statement choice, otherwise it is a basic statement choice.

No component with index i can carry out any operation on a global variable glob_var[j], for any j ∈ V, j 6= i, unless glob_var
is a feature-flag array and the operation occurs within a feature statement choice.

Definition 10. Components are said to be safely featured if they satisfy the assumptions detailed above.

5.1. Categorising features

Recall feature statement choices have the form

:: atomic{((feature_prop)&&(localprop)&&(varprop)) → command}.

Depending on the form of feature_prop it is possible to develop a feature categorisation. We will subsequently use our
categorisation to determine which features can be considered safewith respect to our abstraction technique.

250 M. Calder, A. Miller / Theoretical Computer Science 404 (2008) 235–255

Fig. 14. Featured peer to peer abstraction.

Fig. 15. Featured client server abstraction.

Let us first consider feature_prop. This has one of the following forms:

feature_name[myvar1] == myvar2 or
feature_name[myvar1] ! = D

where feature_name is a feature array, myvar1 and myvar2 are p-variables, and either:

(1) myvar1 is one of the p-variables selfid or partnerid, andmyvar2 is partnerid ifmyvar1 is selfid, and selfid ifmyvar1 is partnerid,
or

(2) neither myvar1 or myvar2 belong to {selfid, partnerid}.

Many features can be divided into three broad categories according to whether they are managed by the feature host, the
partner of the feature host, or by a third party. They are therefore described as: host owned, partner owned or third party
owned. These classes directly correspond to whether, in all feature statement choices, within all f eature_prop guards,myvar1
is selfid, partnerid, or some other p-variable. Examples of the first category are ODS (telephone) and ENC (email). An example
of a partner owned feature is CFU. In our email model, many of the features are handled by the Network_Mailer process, and
so none of our email features are partner owned. Examples of third party owned features include FT and FWwhich are owned
by a Client process, but managed by the Network_Mailer process.

Note that the only one of our example features that cannot be described in these terms is RWF. This feature sometimes
triggers a change in behaviour because the host component has the feature (if the component has the feature and another
component has requested a ringback by setting a feature-flag array element associated with the host component), and
sometimes because the partner component has the feature (when a request is made by the host component for a ringback
by the partner component by setting a feature-flag array element associated with the partner element). As such, we describe
RWF asmulti-owned.

Definition 11. A feature is said to be multi-owned if it is not host, partner or third party owned.

5.2. Constructing the abstract model for featured systems

In this sectionwe provide a sketch of our abstraction approach in the presence of features.We extend themodifications of
statement choices in concrete components (see Section 4.1) to feature statement choices. We then show for which features
our abstraction approach is still safe. Figs. 14 and 15 illustrate the approach; different shapes indicate that components may
not be isomorphic (because of the presence of features).

M. Calder, A. Miller / Theoretical Computer Science 404 (2008) 235–255 251

In earlier work [34] we have shown how feature statement choices should be treated for host owned, partner owned and
third party features. We do not provide full details here, but give an overview.

In all cases, statement choice must be split (in the same way as the treatment of basic statement choices described in
Section 4.1) according to whether the current partner is abstract or not. In the former case, if the feature is partner owned,
two possibilities must be considered: whether the partner has the feature or not. If so, different possible results of applying
the feature must be considered.

For example, the following statement choice is for CFU:

:: atomic{((state == st_diall)&&(CFU[partnerid]! = default1)
&&(position_prop)) →

partnerid = CFU[partnerid];

partner[selfid] = chan_name[partnerid]}.

Note that state is a local variable, and position_prop a local variable containing a disjunction of propositions regarding the
current value of p_c (associated with points in the specification at which features are implemented). When position_prop is
true but all guards of feature statement choices are false, p_c is incremented (via another statement choice, not given here).

Assuming two concrete components, this choice is replaced in the modified component specification with the following
choices:

:: atomic{((state == st_diall)&&(partnerid! = Absid)

&&(CFU[partnerid]! = default1)&&(position_prop)) →

partnerid = CFU[partnerid];

partner[selfid] = chan_name[partnerid]}

:: atomic{((state == st_diall)&&(partnerid == Absid)

&&(forwarding_feature == on)&&(position_prop)) →

partnerid = 0; partner[selfid] = zero;

forwarding_feature = off }
:: atomic{((state == st_diall)&&(partnerid == Absid)

&&(forwarding_feature == on)&&(position_prop)) →

partnerid = 1; partner[selfid] = one;

forwarding_feature = off }
:: atomic{((state == st_diall)&&(partnerid == Absid)

&&(forwarding_feature == on)&&(position_prop)) →

forwarding_feature = off }.

Here forwarding_feature is a local variable that is non-deterministically set to on or off in the preceding statement (when the
partner is abstract). The first choice corresponds to the case when the current partner is not abstract and subscribes to CFU.
The remaining choices correspond to the case when the current partner is abstract and forwards to a concrete component
or to another abstract component. The forwarding_feature variable is reset after the feature has been applied. One reason
for this is that a chain of forwarding within abstract components is observably equivalent to a single forward, so the feature
need not be repeatedly applied.

5.3. Proving that featured components are safe

Our main result is a theorem which shows that the abstraction approach is sound for safely featured components (see
Definition 10) that are not multi-owned (see Definition 11).

Theorem 12. Given a featured, parameterised system

Sn = p0||p1|| · · · ||pn−1 or C||p0||p1|| · · · ||pn−2

with model Mn, m (1 ≤ m ≤ n), abstract model Mm
abs constructed as described above, and formula φ indexed by elements of

{0, . . . ,m − 1}, if the components of Sn are safely featured and none of the features are multi-owned, then the components are
safe.

Proof. The proof is similar to that for basic components (see Section 4.2). For all feature statement choices that are notmulti-
owned, transitions arising from executing the associated statement can be matched by transitions arising from modified
statement choices in the abstract model. However, this is not true for feature statement choices pertaining to features that
are multi-owned.

252 M. Calder, A. Miller / Theoretical Computer Science 404 (2008) 235–255

Multi-owned features sometimes trigger a change in behaviour because the host component has the feature, and
sometimes because the partner component has the feature. The feature is implemented when either the host or partner
component has set a feature_flag. As the feature_flag could have been reset by an abstract component, we cannot simulate
the possibility of an abstract component resetting this variable at any time. We cannot simply use non-deterministic choice
to decide whether the feature_flag has been set (presumably to Absid) because to do so would assume that at some point an
existing, non-default value of the flag may have been overridden. This would imply an earlier transition which would not
have been reflected in our simulated model. �

6. Interpreting results

From Theorem 12 we can see that if a formula φ indexed by elements of {0, 1, . . . ,m − 1} holds for abstract model
Mm

abs (with concrete components p0, p1, . . . , pm−1), then φ holds for any model Mn, (1 ≤ m ≤ n), consisting of components
p0, p1, . . . , pm−1 and n − m other components, subscribing only to safe features.

However, what can we conclude if, for some φ, Mm
abs 6|H φ?

If we can show that for the small finite model Mm = M(p0||p1|| · · · ||pm−1), Mm 6|H φ, then the counterexample generated
for Mm will extend to Mn, for all 1 ≤ m ≤ n. So we can conclude that Mn 6|H φ.

However, it is possible that Mm |H φ but Mm
abs 6|H φ (possibly due to additional non-determinism introduced via the

abstraction process. This is likely to be the case if φ is a liveness property). In some instances it might be possible to improve
our abstraction via a method of refinement [13,30,5]. This would involve making the abstract model more concrete, thereby
allowing φ to become true. This is the subject of future work.

7. Applying the approach

In this section we consider how models are constructed automatically, and we also give some experimental results.

7.1. Constructing an abstract model

Given a Promela specification of a parameterised component (and a context component, as required), and a fixed m,
the abstract specification is constructed as follows. First, transform the parameterised component(s) into modular GC form.
Second, modify the component(s) to become the (parameterised) concrete component (or modify the context component),
and construct the component Abs, as described in Sections 4.1 and 5.2. Third, define a process which runs m instantiations
of the concrete component, along with Abs. Finally, model check the resulting specification.

Each of these steps can be automated, for example, we have implemented them via Perl scripts.
Note that, if Promela components are expressed in GC form it is possible to perform a syntactic check to ensure that they

are indeed safe with respect to the abstraction approach. For example, a tool similar to SymmExtractor [19] can be used to
check that local variables selfid and partnerid are used appropriately and that components are open symmetric. We have not
used such a tool here (the component descriptions were constructed in such a way as to ensure safety). However, we intend
to exploit this method in future work to investigate the applicability of our abstraction approach to pre-existing Promela
specifications of other parameterised systems.

7.2. Experimental results

Our approach holds for arbitrary verification, but primarily we are interested in feature interaction analysis: For a given
pair of features f1 and f2 check whether a property φ defining feature f1 is violated in the presence of feature f2.

Below we give experimental results for feature interaction analysis using our approach. All of our experiments were
performed on a PC with a 2.4 GHz Intel Xenon processor, 3 Gb of available main memory, running Linux (2.4.18), with Spin
version 4.2.3.

In Tables 3 and 4 we give results for analysing example pairs of telephone features, f1 and f2, using Spin. The examples
chosen are ones which do not interact (that is, the property being checked is true in all cases) and therefore can not be fully
analysed except for small, finite sized systems, without using our abstraction approach. The first feature, f1, in all cases is
TCS[0] = 1 (see Table 1) and φ is [](connected[1].to[0] == 0) (no connection from User[1] to User[0] is possible).

In Table 3, all of the feature pairs are subscribed to by the same User (User[0] in this case) and are therefore referred to
single user (SU) pairs. Indices of the second feature are chosen so that the size of the set indexed by φ and the pair of features
(i.e. m) is 3. For example, when f2 is CFU, the pair of features under consideration is TCS[0] = 1 and CFU[0] = 2. The index
set is {0, 1, 2} and m = 3.

In Table 4 feature pairs are subscribed to by different Users (known as multi user (MU) pairs); indices are chosen so that
m = 4.

In all cases we check φ for a model with m components, a model with m + 1 components and an abstract model
representing n components, where n is at least m + 1. Note that in some cases we were unable to check the MU model
for m + 1 components, due to insufficient memory.

M. Calder, A. Miller / Theoretical Computer Science 404 (2008) 235–255 253

Table 3
SU results, telephone (m = 3)

m m + 1 n

f2 states mem time states mem time states mem time
CFU 3.2 0.4 0.1 198.1 8.5 5.8 12.7 0.8 0.4
CFB 5.3 0.5 0.1 409.0 17.1 11.9 17.3 1.0 0.5
ODS 4.4 0.4 0.2 359.7 15.2 10.0 15.1 0.9 0.5
OCS 4.7 0.5 0.9 376.2 15.9 10.7 15.8 0.9 0.5

Table 4
MU results, telephone (m = 4)

m m + 1 n

f2 states mem time states mem time states mem time
CFU 162.9 7.2 4.7 15185.6 689.0 1297.7 720.0 32.9 33.3
CFB 400.7 16.6 15.3 – – – 1363.2 59.5 60.7
ODS 376.9 16.0 15.1 – – – 1278.8 56.6 58.5
OCS 396.2 16.9 15.6 – – – 1303.6 57.9 58.2

States is the number of states (×103) stored during a search,mem thememory (inMb) required for state storage and time
the the total (user + system) time (in seconds) taken for complete verification. All measurements are given to one decimal
place. We use Spin’s inbuilt compression algorithm to minimise the memory requirements.

In all cases the cost of model checking the abstract specification (in terms of number of states, memory and time) is less
than that for checking a system of fixed size m + 1 (and greater than that for a system of fixed size m). Similar results hold
for the email example.

8. Related work

Our induction approach involves constructing a process Mm
abs, which encapsulates the behaviour of any number of

processes. As such, our approach is similar to other induction approaches which involve the construction of an invariant
process. Kurshan et al [29] prove a structural induction theorem for processes using simulation pre-order (see Section 2) to
generate an invariant when there is no context process. Similar results are achieved [7,38] by establishing a bisimulation
equivalence between global state graphs of systems of different sizes. Extensions to these early results, when a (non-trivial)
context process is involved, include [25,4,29,1]. In some cases [36,15] network grammar is used to generate both suitable
families and an invariant.

A fully automated approach for verifying parameterized networks with synchronous communication is proposed in [21,
22], and a tool based on the network grammar approach [31] is designed to help in the construction of invariants.

In [9] we introduced our generalisation technique for feature interaction analysis of a telephone system with any
number of components. In [10,11] we applied a similar approach to an email system, allowing limited sets of features in
abstract components. In [12] we began to investigate a more systematic way to relax the constraint on features in abstract
components and to formalise our approach.We introduced the GC (guarded command) form as a uniformway of expressing
basic components and features. In [34] we introduced the concept of safe features and developed a categorisation of safe
features. We applied our abstraction approach in the context of feature interaction analysis, giving a detailed analysis of a
realistic, featured telephony network.

Here we bring together all results in one comprehensive treatment and illustrate our approach via a set of simple and
complex examples.

9. Conclusions

A general technique combining model checking and abstraction is presented, that allows property based analysis of
communicating, concurrent systems consisting of an arbitrary number of components. The technique is based on leverage of
amodel checking result about a system of fixed size, to results about systems of arbitrary size. Components do not need to be
isomorphic, but their individual behaviour must fulfill criteria which we call safe. We present a theorem that expresses how
component safety can be ensured by inspection of the formof guards, when components are expressed in guarded command
form. The approach is further extended to allow featured components, where features define additional functionality. We
extend the notion of safe components to include features, and present a theorem that expresses how component safety can
be ensured by inspection of the form of feature guards, when features are expressed in guarded command form.

The main contribution of this paper is to define safe components, which ensure that the parameterised model checking
problem is solvable, and to prove that basic components and components with certain categories of features which conform
to syntactic criteria are safe.

254 M. Calder, A. Miller / Theoretical Computer Science 404 (2008) 235–255

Acknowledgements

The authors would like to thank the anonymous referees for their valuable comments on this paper.

References

[1] Parosh Aziz Abdulla, Bengt Jonsson, On the existence of network invariants for verifying parameterized systems, in: Ernst-Rüdiger Olderog,
Bernhard Steffen (Eds.), Correct System Design, Recent Insight and Advances, in: Lecture Notes in Computer Science, vol. 1710, Springer-Verlag,
1999, pp. 180–197.

[2] Rajeev Alur, Thomas A. Henzinger (Eds.), Proceedings of the Eighth International Conference on Computer Aided Verification, CAV ‘96, in: Lecture
Notes in Computer Science, New Brunswick, NJ, USA, vol. 1102, Springer-Verlag, July–August 1996.

[3] Krzysztof R. Apt, Dexter C. Kozen, Limits for automatic verification of finite-state concurrent systems, Information Processing Letters 22 (1986)
307–309.

[4] Paul C. Attie, E. Allen Emerson, Synthesis of concurrent systems with many similar processes, ACM Transactions on Programming Languages and
Systems 20 (1) (1998) 51–115.

[5] F. Balarin, A. Sangiovanni-Vincentelli, An iterative approach to language containment, in: Costas Courcoubetis (Ed.), Proceedings of the Fifth
International Conference on Computer Aided Verification, CAV ‘93, in: Lecture Notes in Computer Science, vol. 697, Springer-Verlag, Elounda,Greece,
June–July 1993, pp. 29–40.

[6] M. Browne, E. Clarke, O. Grumberg, Characterizing finite Kripke structures in propositional temporal logic, Theoretical Computer Science 59 (1988)
115–131.

[7] M.C. Browne, E.M. Clarke, O. Grumberg, Reasoning about networkswithmany identical finite state processes, Information and Computation 81 (1989)
13–31.

[8] M. Calder, A.Miller, Using SPIN for feature interaction analysis—a case study, in:M.B. Dwyer (Ed.), Proceedings of the 8th International SPINWorkshop,
SPIN 2001, in: Lecture Notes in Computer Science, vol. 2057, Springer-Verlag, Toronto, Canada, May 2001, pp. 143–162.

[9] Muffy Calder, Alice Miller, Automatic verification of any number of concurrent, communicating processes, in: Proceedings of the 17th IEEE
International Conference on Automated Software Engineering, ASE 2002, IEEE Computer Society Press, Edinburgh, UK, September 2002, pp. 227–230.

[10] Muffy Calder, Alice Miller, Generalising feature interactions in email, in: D. Amyot, L. Logrippo (Eds.), Feature Interactions in Telecommunications and
Software Systems VII, Ottawa, Canada, June 2003, IOS Press, Amsterdam, 2003, pp. 187–205.

[11] Muffy Calder, Alice Miller, Detecting feature interactions: Howmany components do we need? in: Mark Ryan, Dieter Ehrich, John-Jules Meyer (Eds.),
Objects, Agents and Features, in: Lecture Notes in Computing Science, Springer-Verlag, 2004, pp. 45–66.

[12] Muffy Calder, Alice Miller, Verifiying parameterised, featured networks by abstraction, in: T. Margaria, B. Steffan, A. Philippou, M. Reitenspiess (Eds.),
Proceedings of the first International Symposium on Leveraging Applications of Formal Methods, ISOLA’04, October–November 2004, pp. 227–234.

[13] E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, Counterexample-guided abstraction refinement for symbolic model checking, Journal of the ACM 50 (5)
(2003) 752–794.

[14] Edmund M. Clarke, Orna Grumberg, Doron Peled, Model Checking, The MIT Press, Cambridge, Masachusetts, 1999.
[15] E.M. Clarke, O. Grumberg, S. Jha, Verifying parameterized networks using abstraction and regular languages, in: Insup Lee, Scott A. Smolka (Eds.),

Proceedings of the 6th International Conference on Concurrency Theory, CONCUR ‘95, in: Lecture Notes in Computer Science, vol. 962, Springer-
Verlag, Philadelphia, PA, August 1995, pp. 395–407.

[16] E.M. Clarke, O. Grumberg, D Long, Model checking and abstraction, ACM Transactions on Programming Languages and Systems 16 (5) (1994)
1512–1542.

[17] S.J. Creese, A.W. Roscoe, Formal verification of arbitrary network topologies, in: H.R. Arabnia (Ed.), PDPTA’99, in: Proceedings of the International
Conference on Parallel and Distributed Processing Techniques and Applications, vol. II, CSREA Press, Las Vegas, Nevada, USA, June–July 1999.

[18] D.L. Dill, The Murφ verification system, in: Alur and Henzinger [2], 390–393.
[19] A.F. Donaldson, A. Miller, Automatic symmetry detection for model checking using computational group theory. in: Proceedings of the 13th

International Symposium on Formal Methods Europe, FME 2005, in: Lecture Notes in Computer Science, Springer-Verlag, Newcastle, UK, July 2005
(in press).

[20] E. Allen Emerson, Vineet Kahlon, Reducingmodel checking of themany to the few, in: DavidA.McAllester (Ed.), AutomatedDeduction—Proceedings of
the 17th International Conference on AutomatedDeduction, CADE 2000, in: Lecture Notes in Computer Science, vol. 1831, Springer-Verlag, Pittsburgh,
PA, USA, June 2000, pp. 236–254.

[21] E. Allen Emerson, Kedar S. Namjoshi, Automatic verification of parameterized synchronous systems (extended abstract), in: Alur and Henzinger [2],
87–98.

[22] E. Allen Emerson, Kedar S. Namjoshi, Verification of a paramaterized bus arbitration protocol, in: Alan J. Hu, Moshe Y. Vardi (Eds.), Proceedings of
the Tenth International Conference on Computer-aided Verification, CAV ‘98, in: Lecture Notes in Computer Science, vol. 1427, Springer-Verlag,
Vancouver, BC, Canada, June–July 1998, pp. 452–463.

[23] Steven M. German, A. Prasad Sistla, Reasoning about systems with many processes, Journal of the ACM 39 (3) (1992) 675–735.
[24] R. Gerth, D. Peled, M.Y. Vardi, P. Wolper, Simple on-the-fly automatic verification of linear temporal logic, in: Proceedings of the 15th international

Conference on Protocol Specification Testing and Verification, PSTV ‘95, Chapman & Hall, Warsaw, Poland, 1995, pp. 3–18.
[25] Mahesh Girkar, Robert Moll, New results on the analysis of concurrent systems with an indefinite number of processes, in: Bengt Jonsson,

Joachim Parrow (Eds.), Proceedings of the 5th International Conference on Concurrency Theory, CONCUR ‘94, in: Lecture Notes in Computer Science,
vol. 836, Springer-Verlag, Uppsala, Sweden, August 1994, pp. 65–80.

[26] Gerard J. Holzmann, The model checker Spin, IEEE Transactions on Software Engineering 23 (5) (1997) 279–295.
[27] C. Norris Ip, David L. Dill, Verifying systems with replicated components in Murφ, Formal Methods in System Design 14 (1999) 273–310.
[28] Y. Keston, A. Pnueli, E. Shahar, L. Zuck, Network invariants in action, in: Lubos Brim, Petr Jancar, Mojmír Kretínský, Antonín Kucera (Eds.), Proceedings

of the 13th International Conference on Concurrency Theory, CONCUR 2002, in: Lecture Notes in Computer Science, vol. 2421, Springer-Verlag, Brno,
Czech Republic, August 2002, pp. 101–115.

[29] R.P. Kurshan, K.L. McMillan, A structural induction theorem for processes, in: Proceedings of the Eighth Annual ACM Symposium on Principles of
Distrubuted Computing, ACM Press, 1989, pp. 239–247.

[30] R.P. Kurshan, Computer-aided Verification of Coordinating Processes: The automata-theoretic approach, in: Princeton Series in Computer Science,
Princeton University Press, Princeton, NJ, 1995.

[31] David Lesens, Nicolas Halbwachs, Pascal Raymond, Automatic verification of parameterized networks of processes, Theoretical Computer Science 256
(1–2) (2001) 113–144.

[32] Kenneth L. McMillan, Shaz Qadeer, James B. Saxe, Induction in compositional model checking, in: E. Allen Emerson, A. Prasad Sistla (Eds.), Proceedings
of the twelth International Conference on Computer-aided Verification, CAV 2000, in: Lecture Notes in Computer Science, vol. 1855, Springer-Verlag,
Chicago, IL, USA, July 2000, pp. 312–327.

[33] K.L. McMillan, Symbolic Model Checking, Kluwer Academic Publishers, Boston, 1993.
[34] Alice Miller, Muffy Calder, A generic approach for the automatic verification of featured, parameterised systems, in: M. Reiff-Marganiec, M. Ryan

(Eds.), Feature Interactions in Telecommunications and Software Systems VIII, Leicester, UK, June 2005, IOS Press, Amsterdam, 2005, pp. 217–235.

M. Calder, A. Miller / Theoretical Computer Science 404 (2008) 235–255 255

[35] A. Roychoudhury, I.V. Ramakrishnan, Inductively verifying invariant properties of parameterized systems, Automated Software Engineering 11 (2)
(2004) 101–139 (extended version of rora1).

[36] Z. Shtadler, O. Grumberg, Network grammars, communication behaviors and automatic verification, in: Sifakis [37], 151–165.
[37] J. Sifakis (Ed.), Proceedings of the International Workshop in Automatic Verification Methods for Finite State Systems, in: Lecture Notes in Computer

Science, vol. 407, Springer-Verlag, Grenoble, France, June 1989.
[38] Pierre Wolper, Vinciane Lovinfosse, Properties of large sets of processes with network invariants (extended abstract), in: Sifakis [37], 68–80.

	An automatic abstraction technique for verifying featured, parameterised systems
	Introduction
	Overview of paper

	Background
	Parameterised systems and network invariants
	Features
	Temporal logic
	Kripke structures
	Symmetry groups
	Promela and Spin
	Guarded command form

	The abstraction approach and safe components
	Abstraction of parameterised systems
	Safe components

	Abstraction of basic parameterised systems
	Constructing the abstract model
	Proving that basic components are safe
	Some examples
	An informal description of simple telephone and email systems

	Promela specifications for example systems
	The example abstract models

	Adding features
	Categorising features
	Constructing the abstract model for featured systems
	Proving that featured components are safe

	Interpreting results
	Applying the approach
	Constructing an abstract model
	Experimental results

	Related work
	Conclusions
	Acknowledgements
	References

