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1. Introduction

Systems Biology [3] is an emerging discipline that aims to improve our
understanding of the dynamics of biological processes with the aid of mathe-
matical models. As our knowledge about the mechanics and the complexity
of biological phenomena increases, predictive models become necessary to
validate understanding and generate new hypotheses.

The level of detail at which biological processes are most commonly mod-
elled is biochemical reactions, using mathematical approaches such as or-
dinary differential equations (ODE) and stochastic processes [4]. Other ap-
proaches are employed to represent diffusion of molecules, using partial differ-
ential equations (PDE) [5], or higher order structures such as cells or tissue,
using cellular automata (CA) [6] or other agent based techniques. Descrip-
tive languages, e.g. SBML [7], and graphical notations, e.g. Kitano Map [8],
have been developed to help writing, maintaining and sharing models. In
addition, formalisms from the field of computer science have been proposed
not only to provide an unambiguous definition of biological phenomena, but
also to improve the overall modelling approach. Some of the most successful
formalisms are process algebras and other calculi [9, 10, 11, 12], rewriting
rules [13, 14] and programming languages [15, 16].

Process algebras are a family of calculi developed to represent and anal-
yse formally the behaviour of concurrent systems, such as programs on a
computer or computers in a network [17, 18]. They have been shown to
be one of the most promising approaches to the formalisation of biological
systems, because of the deep analogies that exist between concurrent agent
interactions and biochemical reactions [19].

The development and application of process algebra for biology has mostly
been aimed at modelling biochemical reactions and compartments [20, 10, 9,
11, 21]. More recently there has been a growing interest in combining dif-
ferent levels of detail of biological phenomena into single multi-scale models
that represent both biochemical details and higher order structures. This is
a necessary step to achieve a complete understanding of the emerging be-
haviour in a complex biological phenomenon. Model construction follows
mainly two approaches: bottom-up and top-down. The former begins from
identifying elementary parts, such as molecules, and aims at explaining more
complex phenomena as the emergent behaviour of its components. The latter
begins instead from reproducing observed phenomena and then adds internal
details, attempting to recreate governing mechanisms. Different mathemati-
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cal approaches are often considered for different scales and integrated into a
multi-scale model tailored to a specific biological problem [22, 23, 24]. As a
consequence, composition and comparison of two multi-scale models is often
very difficult.

It has been proposed [25] that new, more flexible modelling techniques
should allow for a middle-out approach. This means that one begins studying,
and so modelling, a biological phenomenon from any level of detail or spatial
scale and, in a second stage, extending its study and so its model either up
scale, integrating with other components, or down scale, adding more internal
details. To our knowledge, we were among the first to addresses the problem
of integrating multiple scales under the same mathematical framework with
the flexibility of treating different scales as the same formal objects [1, 26].

In this paper we propose that a process algebra framework is a perfect
candidate as a middle-out approach for multi-scale modelling. In particular,
its natural support of compositionality and its abstraction mechanisms can
provide the required flexibility that writing, composing and comparing
multi-scale models require.

In these paper we show the following advantages of using a process algebra
framework in place of traditional modelling approaches such us in [27, 28]:

• (writing) different biological scales are represented by the same math-
ematical objects under a unified framework. A modeller can begin
writing a multi-scale model from any scale and continue up-scale or
down-scale without changing the mathematical approach;

• (composing) composition of models is facilitated by operators for com-
position within scale (e.g. two tissues next to each other) or between
scales (e.g. cells that constitute a tissue);

• (comparing) most importantly, the unified framework allows for au-
tomated reasoning between entities in a way that is not accessible by
traditional modelling approaches. In particular, process algebra has
a well established theory of relations based on behaviour. Here we
show how we can aid model development by defining a relation between
scales such that the relation holds true only when two scales interact
correctly. Moreover, we provide a relation that allows the behaviour of
systems to be compared at a specified scale or part of a system to be
abstracted with other parts that are behaviourally equivalent.
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Figure 1: Interactions between scales. Only if the concentration of a certain molecule
(molecular scale) is high, then a cell can duplicate (cellular scale).

Biological scales. We focus on the definition of scales and of interac-
tions within and between scales. We illustrate the meaning of “interactions
between scales” with the following examples. The first example is illustrated
in Figure 1. A dependency is defined between the molecular scale (on the
left of the figure) and the cellular scale (on the right of the figure): cellular
duplication is possible if and only if the concentration of molecule A is above
a certain threshold. In other words, high concentration of molecule A acti-
vates the ability of the cell to duplicate. The second example is illustrated
in Figure 2. If a cell dies (top of figure) this implies the concentration of
the molecules inside it is dispersed. If a cell C duplicates (bottom of figure),
independent concentrations of molecules originally in C will be present in
both the resulting cells C’ and C”.

The main contributions of this paper are:

• the definition of process algebra with hooks, a process algebra designed
for multi-scale modelling of biological systems. Its main features are:
explicit modelling of scales and interactions within and between scales;
use of composed actions in a multi-way synchronisation setting; a verti-
cal cooperation operator in addition to the standard cooperation opera-
tor for composition of processes. The vertical cooperation is symmetric,
i.e. events at higher scales can influence the behaviour of lower scales
and vice versa;

• the definition of a functional rate semantics for process algebras based
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Figure 2: Dependencies between scales. Cellular events such as death and duplication
(cellular scale), imply changes in concentration of molecules (molecular scale) inside the
cells.

on biological principles, where actions can be rated only if closed, i.e.
only if all the expected participants to that action synchronise;

• the definition of a relation between scales that aims to aid model de-
velopment by detecting when two scales do not interact as intended.
This relation is the compatibility L-bisimulation (Section 5);

• the definition of a congruence relation to relate and substitute process
algebra with hooks processes. This relates processes by their temporal
behaviour at a specified scale (Markovian (T ,Γ)-bisimulation) (Sec-
tion 6). The proof of congruence for Markovian (T ,Γ)-bisimulation is
possible because of the concept of closed actions introduced with our
definition of functional rates;

• a detailed illustration of use of process algebra with hooks to model,
simulate and relate a multi-scale model of a well known problem of
pattern formation in a tissue (Section 8).

2. Key Concepts in Process Algebra

In this section we give an overview of key concepts in process algebra.
The fundamental elements in a process algebra model are autonomous agents
called processes. Each process is characterised by its behaviour, expressed in
terms of actions it can perform. For example, if a process P can perform a
sequence of three a actions, we denote it by:
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P , a.a.a.nil

where “.” is called the prefix operator and nil is defined as the terminated
process, i.e. the process that cannot perform any action. A labelled transition
provides semantics. For example, process P can perform action a and become
process P ′, where P ′ , a.a.nil. This is denoted by:

P
a−→ P ′

Process P ′ is called one step derivative of P , while if a process P ′′ can be
reach after one or more transitions then P ′′ is called simply a derivative of
P . The collection of process P , the set of derivatives of P and all possible
labelled transitions between the derivatives is called the derivation graph of
P .

A process may choose non-deterministically between multiple available
actions. This is denoted using the choice operator “+”, for example if

Q , a.nil + b.nil + c.d.nil

then there are three labelled transitions:

Q
a−→ nil Q

b−→ nil Q
c−→ d.nil

Most importantly, processes can synchronise on actions. Synchronisation
can be binary between two actions with complementary names, in the style
of calculus of communicating systems (CCS) [17], or multi-way between any
number of actions sharing the same name, in the style of communicating se-
quential processes (CSP) [18]. We follow the latter approach, as this allows
us to model biochemical reactions that involve any number of substrates and
products with a single transition (as presented in [9]). Multi-way synchroni-
sation is possible using the cooperation operator BC

L
, using the notation of

performance evaluation process algebra (PEPA [29]). The set of actions L,
or cooperation set, indicates which actions are used for synchronisation. For
example, given the processes:

R , a.nil + b.nil S , a.nil + b.nil + c.nil

and the overall model defined as R BC
a,c
S, the following transitions are possi-

ble:
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R BC
a,c
S

a−→ nil BC
a,c
nil R BC

a,c
S

b−→ nil BC
a,c
S R BC

a,c
S

b−→ R BC
a,c
nil

Because action a is in the cooperation set, R and S can synchronise
on a, but cannot perform a individually. On the contrary, b is not in the
cooperation set, soR and S cannot synchronise on b, though they can perform
b individually. Finally, c cannot be performed by S, because it is present in
the cooperation set, which would require that also R had the possibility of
performing c.

Another key feature of process algebra is the possibility for actions to
become hidden. This is usually expressed by replacing the name of an action
with the unknown action type τ . This substitution may happen in an implicit
way, as in CCS, or in an explicit way, as in CSP. In CCS, as a result of a
binary synchronisation, the name of the two complementary actions that
synchronise is replaced by τ . In contrast, in CSP it is the responsibility of
the modeller to place hiding (\) operators appropriately in the system. For
example, R BC

a,c
S \ {b} denotes that if R BC

a,c
S can perform action b, it will

be replaced with τ . This results in the following labelled transitions:

(R BC
a,c
S) \ {b} a−→ (nil BC

a,c
nil) \ {b} (R BC

a,c
S) \ {b} τ−→ (nil BC

a,c
S) \ {b}

(R BC
a,c
S) \ {b} τ−→ (R BC

a,c
nil) \ {b}

Finally, relations are defined between processes, to express similar be-
haviour. In particular, fundamental to every process algebra are notions of
equivalences, such as bisimulation, and whether such equivalences are also
congruences or not. In general, a congruence relation allows the substitution
of a process with a behaviourally equivalent, and possibly less complex, other
process.

3. Process Algebra with Hooks by Examples

In this section we introduce PAH by examples, such as modelling sim-
ple cell behaviour, biochemistry and interactions between scales. Rating of
actions and relations between processes are also discussed.

3.1. Simple Model of Cell Behaviour

Example 1. In PAH we represent biological entities as processes and bi-
ological events as actions. For example, assume we want to represent the
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behaviour of a cell, which we denote as Cell, that can either move or ab-
sorb nutrients, yet not both at the same time. Biological entity Cell can be
represented by the following two processes Cell0 and Cell1:

Cell0 , x.Cell1 + move.Cell0 Cell1 , y.Cell0 + absorb.Cell1

Processes Cell0 and Cell1 represent the two possible states of Cell, one in
which the cell can only move, represented by the action move, while the other
where the cell can only absorb nutrients, represented by the action absorb. In
general, the number of states a biological entity can assume is not restricted
to two and is determined by how many processes are associated with such
entity.

Transitions between the two states are denoted by the actions x and y,
which may represent biological events, either internal or external to the cell,
that influence the behaviour of the cell. In PAH the rate ra of an action a
is computed evaluating a functional rate fa that may depend on the state of
the biological entity involved in the biological event represented by a. The
rate ra is the parameter of the exponential distribution of the time required
to perform action a. Each process is associated with a variable, in this case
Cell, and with a value, here we chose arbitrarily zero or one depending on
the state. We use partial functions Var and Val to define this association:

Var(Cell0) = Cell Var(Cell1) = Cell Val(Cell0) = 0 Val(Cell1) = 1

In this basic example, the functional rates for all the actions are constants:

fmove = kmove fabsorb = kabsorb fx = kx fy = ky

In addition to a functional rate fa, an action is associated with a set of
participants pa, which we will discuss in the next section. In general, a set
of participants indicates which biological entities (and so which processes)
are expected to participate to a biological event (and so action). Assuming
a model defined by the single Cell0 process, a possible transition is given by:

Cell0
(move,kmove)−−−−−−−→ Cell0

In the next section we show how variables, values, functional rates and sets
of participants are used when modelling biochemical reactions in PAH.
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3.2. Modelling the Biochemical Scale

The concentration of each biochemical species can be modelled with dis-
crete levels of concentration, using the process as level of concentration ab-
straction [30]. In this approach, for each species, each level is represented by
a process, while biochemical reactions are represented by actions that pro-
duce discrete changes of concentration levels. Each level corresponds to a
discrete concentration, denoted by h, which is the ratio between a maximum
concentration M and the number of levels N , i.e. h = M/N . In this case the
variables associated to the processes correspond to species names, while the
values correspond to concentration levels. An action may be associated with
a functional rate and with a set of participants of the biological event. A set
of participants indicates which biological entities are expected to participate
to a biological event, and so which processes are expected to synchronise on
a given action. In the following example of biochemical reactions, reaction
velocities are used to formulate functional rates in the style of [30].
Example 2.

Ra :A+B→vaC, va = ka[A][B]

In this example we use PAH to model biochemical reaction Ra, which has
velocity va, measured in concentration per second. The above notation means
that in Ra, molecules A and B bind together to yield molecule C. Moreover,
the notation [·] means concentration.

AL , nil BL , nil CL , a.CH
AH , a.AL BH , a.BL CH , nil

Var(AL) = A Var(BL) = B Var(CL) = C
Var(AH) = A Var(BH) = B Var(CH) = C

Val(AL) = 0 Val(BL) = 0 Val(CL) = 0
Val(AH) = 1 Val(BH) = 1 Val(CH) = 1

pa = {A,B,C}, fa = (ka·A·h·B·h)/h

In this case, biochemical concentration is the biological entity we are mod-
elling. Process AL represents the concentration of species A at low level, that
is we use L for “low” and H for “high”. We use two states (high and low) to
represent the concentration just for illustration purposes. In general, any fi-
nite number of states, and so of concentration levels, can be used. Notice that
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the subscript is not strictly part of the syntax. We could have written AL
or Alow instead. What is important is that at any moment there is only one
process for each species, indicating its concentration level. We use functions
Var(·) and Val(·) to associate processes with variables and values. In the
above example, pa is the set of participants of reaction Ra, associated with
action a. Function fa is the functional rate of a, where A and B are species
names, that is the variables that at the evaluation of the functional rate will
be substituted by the appropriate value, here the concentration levels.

The model of Example 2 is defined by the following process1:

AH BC
{|a|}

(BH BC
{|a|}

CL)

Processes AH , BH and CL can perform a and synchronise via the cooperation
operator BC

{|a|}
. This results in the transition:

AH BC
{|a|}

(BH BC
{|a|}

CL)
(a,∆)−−−→ AL BC{|a|} (BL BC{|a|} CH)

This indicates that most of the concentration of A and B has been converted
into concentration of C. The partial function ∆ is constructed using vari-
ables and values associated with the processes AH and BH and it is used to
evaluate fa. In this case ∆ = {(Var(AH),Val(AH)), (Var(BH),Val(BH))} =
{(A, 1), (B, 1)}.

Because the synchronisation involves all the participants in pa, the result-
ing transition is defined as closed and the reaction rate ra can be computed
using the functional rate fa.

AH BC
{|a|}

(BH BC
{|a|}

CL)
(a,ra)−−−→ AL BC{|a|} (BL BC{|a|} CH)

If the model consisted only of AH BC
{|a|}

BH , then a transition would produce

AL BC{|a|} BL, but the biochemical reaction associated with action a would be

missing a participant, that is C. We consider this an incomplete or open
transition because the effects on C are not included. We have chosen to
forbid rating of open transitions, to permit the definition of the congruence

1brackets {| and |} delimit multi-sets. Although multi-sets are not necessary in this
example, we use them for consistency with our language definition. See Example 6 in
Section 3.4 to see an example that motivates the use multi-sets.
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Figure 3: Illustration of Example 3. a) Only if the concentration of B in Cell is low, then
Cell can move. b) Only if the concentration of B in Cell is high, then Cell can absorb
nutrients. c) Biochemical scale of the system: straight lines are biochemical reactions,
while the segmented line labelled z represents the reduction of concentration of A caused
by the absorption of nutrients by Cell.

relation Markovian (T ,Γ)-bisimulation in PAH (Definition 36). Moreover,
we can consider AH BC

{|a|}
BH and CL as two parts that need each other to

express behaviour that is biologically meaningful, that is the execution of
reaction Ra.

3.3. Linking Scales with Hook Actions

We show now how two scales can be defined and merged into a single
multi-scale model. Communication between scales is achieved via hook ac-
tions. These are so-called because of their role in the algebra: they are
attached to other actions, written a[x], where x is a hook action. Action
a[x], a composed action, is almost equivalent to a, the difference is that the
additional x can be observed by another process, using the vertical coopera-

tion operator BC

L
. In analogy with the horizontal cooperation operator BC

L
(Section 2), composed actions that include actions in the cooperation set L
are not allowed to be executed asynchronously. The new operator explicitly
separates scales and it is symmetric: synchronisations are possible bottom-up
and top-down.
Example 3. In a cell Cell, there are two molecules A and B. Molecule A
can increase its concentration via biochemical reaction Ra, B can decrease
its concentration via Rb, while A can turn into B via Rc as follows:

Ra : → A Rb : B → Rc : A → B
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The cell Cell can be in one of two states, Cell0 and Cell1, which depend on
the concentration of B. When Cell is in Cell0, it moves, that is it performs
cell action move. When it is in Cell1 it absorbs nutrients, that is it performs
cell action absorb. As a bottom-up interaction, when the concentration of
B in the cell is high, then the cell is in state Cell1, Cell0 otherwise. As a
top-down interaction, when Cell absorbs nutrients the concentration of A is
lowered, reducing the production of B and in turn making Cell less likely to
stop again to absorb new nutrients (Figure 3). We can model this scenario
using PAH in the following way:

AL , a.AM + z.AL AM , a.AH + c.AL + z.AL AH , c.AM + z.AM
BL , c.BM BM , c[x].BH + b.BL BH , b[y].BM

Cell0 , x.Cell1 + move.Cell0 Cell1 , y.Cell0 + absorb[z].Cell1

The concentration of A and B is represented by three processes for each
molecule, indicating a concentration level, low (L), medium (M) and high
(H). The state of the cell is represented by two processes Cell0 and Cell1. We
use hook actions x and y to indicate that the concentration of B has passed
a threshold and that the state of Cell has to change at the same time. We
use hook action z to indicate that the concentration of A is lowered by the
absorption of nutrients. Consider the model defined by the following process:

(AH BC
{|c|}

BM) BC

{|x,y,z|}
Cell0

The vertical synchronisation operator BC

{|x,y,z|}
clearly separates the molecular

scale from the cellular scale, while indicating that actions x, y and z are
actions that operate between scales. Additionally, this operator prevents
x, y and z from being executed unless a synchronisation with a composed
action that presents either x, y or z as hook actions is possible. Assuming a
functional rate fc is defined and can be evaluated to rate rc, an example of
a valid transition is:

(AH BC
{|c|}

BM) BC

{|x,y,z|}
Cell0

({|c,x|},∅,rc)−−−−−−→ (AM BC
{|c|}

BH) BC

{|x,y,z|}
Cell1

On the label of the transition we have both c, which indicates that bio-
chemical reaction Rc took place, and x, which indicates that a threshold of
concentration of B has been crossed and that cell Cell changed its state from
Cell0 to Cell1. The empty set indicates that no hook has been left unused.
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If the model consisted only of AH BC
{|c|}

BM , and assuming pc = {A,B}, an

analogous transition would still be possible:

AH BC
{|c|}

BM
({|c|},{|x|},rc)−−−−−−−→ AM BC

{|c|}
BH

The facts that c and x are in different multi-sets and that x is in the second
multi-set indicates that hook x has been left unused.

Assuming functional rate fabsorb is defined and can be evaluated to rabsorb,
another example of a valid transition is:

(AM BC
{|c|}

BH) BC

{|x,y,z|}
Cell1

({|absorb,z|},∅,rabsorb)−−−−−−−−−−−−→ (AL BC{|c|} BH) BC

{|x,y,z|}
Cell1

In the above transition, an action at the cellular scale, the absorption
of nutrients, influences the biochemical scale, the concentration of A, in a
top-down way.

3.4. Examples of interactions between scales

In this section we focus on examples of interactions between scales and
we ignore for the moment the computation of rates. We also use a graphical
representation of processes, where if a process is defined as P , a.P ′ + b.P ′′

then there is a directed edge labelled a from node P to P ′ and a directed
edge labelled b from node P to P ′′.
Example 4. In this example, a change of behaviour of a cell is triggered
when the concentration of molecule A exceeds the concentration of molecule
B. Processes Pi, i ∈ {−2, . . . , 2}, can be used to count the difference between
the concentration levels of A and B. The graphical representation of the
processes is given by:

The initial state is:

((A1 BC{|s|} B2) BC

{|a,b|}
P−1) BC

{|x,y|}
Cell0
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Species A can degrade (dA), B can be produced (pB), while both A and B
can synchronise (on s) so that a level of B is converted into a level of A.
Processes Pi, i ∈ {−2, . . . , 2}, represent the difference between the current
level of A and of B, while a and b actions represent events that make this
difference increase by 2 and decrease by 1 respectively. An example transition
is:

((A1 BC{|s|} B2) BC

{|a,b|}
P−1) BC

{|x,y|}
Cell0

{|s,a,x|}[∅]−−−−−→ ((A2 BC{|s|} B1) BC

{|a,b|}
P1) BC

{|x,y|}
Cell1

Example 5. If a scale triggers more than one hook action, these hook actions
can be observed individually by multiple observers or together by a single
observer. Consider the following processes:

Processes A0 and B1 can produce the following transition:

A0 BC{|s|} B1
{|s|}[{|x,y|}]−−−−−−→ A1 BC{|s|} B0

In this case, two different instances of s synchronise, their set of hook actions
merge in the resulting activity. Now consider the addition of processes P0,
Q0 and R0. Two possible examples of transition are:

(A0 BC

{|x|}
P0) BC

{|s|}
(B1 BC

{|y|}
Q0)

{|s,x,y|}[∅]−−−−−→ (A1 BC

{|x|}
P1) BC

{|s|}
(B0 BC

{|y|}
Q1)

(A0 BC{|s|} B1) BC

{|x,y|}
R0

{|s,x,y|}[∅]−−−−−→ (A1 BC{|s|} B0) BC

{|x,y|}
R1

In the first transition, hook actions x and y are observed individually by
processes P0 and Q0. If only hook action x were present, it would still
be observed by P0 and the same for y with Q0. In the second transition,
hook actions x and y are observed at the same time by process R0. Most
importantly, we impose that R0 can synchronise only using the transition that
includes the largest number of hooks available. In other words, transition
{|x|}−−→ from R0 cannot synchronised with

{|s|}[{|x,y|}]−−−−−−→, because R0 can perform
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{|x,y|}−−−→. This mechanism allows the modeller to design specific responses to
events that trigger multiple multi-scale events at the same time.
Example 6. In some cases, a scale may trigger a multi-set of hook actions.
Consider the following example. A cell contains three biochemical species
A, B and C. The cell changes its behaviour if the biochemical scale reaches
a specific configuration, that is when the concentrations of A and B are
low and when the concentration of C is high. Species A, B and C are
produced (actions pA, pB and pC ) and degrade (actions dA, dB and dC ) in
the cell. Finally, species A, B and C are involved in the biochemical reaction
Rs : A + B→ C. The model is defined as:

The initial state is:

((A1 BC{|s|} B1 BC{|s|} C1) BC

{|p,p,p,q|}
P0) BC

{|x,y|}
Cell0

Again we use processes Pi, i ∈ {0, . . . , 3}, to count the concentration required
for change at the cellular scale. In this particular case, a single transition
can involve more than one identical hook action (i.e. p). The transition is
the following:

((A1 BC{|s|} B1 BC{|s|} C1) BC

{|p,p,p,q|}
P0) BC

{|x,y|}
Cell0

{|s,p,p,p,x|}[∅]−−−−−−−→

((A0 BC{|s|} B0 BC{|s|} C2) BC

{|p,p,p,q|}
P3) BC

{|x,y|}
Cell1

Another transition of the derivation graph generated by this model is:

((A2 BC{|s|} B1 BC{|s|} C1) BC

{|p,p,p,q|}
P1) BC

{|x,y|}
Cell0

{|s,p,p,x|}[∅]−−−−−−→

((A1 BC{|s|} B0 BC{|s|} C2) BC

{|p,p,p,q|}
P3) BC

{|x,y|}
Cell1
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The multiplicity of the vertical cooperation set {|p, p, p, q|} is necessary. In

the above transition, the biochemical scale performs transition
{|s|}[{|p,p|}]−−−−−−→,

while P1 can either perform transition
{|p|}−−→ or

{|p,p|}[x]−−−−→. In order to choose
the correct transition, as seen in Example 5, we require that the multi-set of
actions from P1 is included in both the multi-set of hooks and the cooperation
set, that is {|p, p|} ⊆ {|p, p|} ∩ {|p, p, p, q|}.

The use of multi-sets allows for a compact definition of this model, where
we use the same action p to indicate that either A, B or C have reached the
concentration required for a change in behaviour of the cell.

Without multi-sets, an alternative definition of the same model is as fol-
lows:

The above version of the model uses actions a, b and c in place of p creating
a combinatorial problem. As a result, the derivation graph of process P0

presents 19 transitions instead of nine.
Example 7. The positioning of hook actions on actions at the biochem-
ical scale is particularly useful when geometrical space is considered. Let
Aen denote the process representing a concentration level n of species A in
region Re. Concentration can migrate to and from region Re and many dif-
ferent transport actions will have the same effect of lowering or increasing the
concentration of A in one region, as shown in the following diagram (only
outgoing transport shown):
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The concentration of A is decreased, from Aen to Aen−1, through a transport
action of the form transp-es, s ∈ {b, d, f, h}. Correspondingly, at region Rs,
the concentration of A increases, from Asm to Asm+1. If we want to denote
that a threshold is crossed when passing from level n to n − 1 of A at Re,
we can add a hook action to the four transport actions, transp-es, obtaining
transp-es[y].
Example 8. In this example we show how to abstract multiple regions to
a single region, with respect to a specific property. Consider an area Rl of
3 × 3 regions, labelled from Ra to Ri. We ignore detail of the biochemical
reactions, but assume that at some point each of these locations can become
infected, exposing hook action a, or they can recover, exposing hook action
b. We are not interested in which region has changed its status, only the
number infected in Rl. A scale that represents the degree of infection of area
Rl is defined by three processes, Rlow, Rmed and Rhigh.

Processes Pi, i ∈ {0, . . . , 9} are used to count the number of infected regions.
If the number of infected regions is between 0 and 2, the degree of infection
is low; between 3 and 5 it is medium; larger than 5 it is high. Hooks x and
y identify transitions between stages of infection.

3.5. Examples of Equivalences

Example 9. Consider the following processes:
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Figure 4: Filtered transition graphs of the example in this section. If rd = ra + re = r the
transition systems are Markovian T -bisimilar.

A0 , a[b].A1 + e[b].A1 D0 , b[c].D1 A1 , nil D1 , nil

B0 , b[c].B1 E0 , d.E1 B1 , nil E1 , nil

C0 , d[b].C1 C1 , nil

Consider two PAH processes: A0 BC
{|b|}

B0 and (C0 BC

{|b|}
D0) BC

{|d|}
E0. The following

transitions are possible:

A0 BC

{|b|}
B0

({|a,b|}[c],∆)−−−−−−→ A1 BC
{|b|}

B1

A0 BC

{|b|}
B0

({|e,b|}[c],∆′′)−−−−−−−→ A1 BC
{|b|}

B1

(C0 BC

{|b|}
D0) BC

{|d|}
E0

({|d,b|}[c],∆′)−−−−−−−→ (C1 BC
{|b|}

D1) BC
{|d|}

E1

These are the only possible transitions. We cannot consider the two processes
equivalent in the sense that they generate isomorphic transition graphs, so

A0 BC

{|b|}
B0 6≡ (C0 BC

{|b|}
D0) BC

{|d|}
E0. However, if we decide to select only actions

in the multi-set T = {|b|}, and rating yields rates ra, re and rd, we obtain
transitions:

A0 BC

{|b|}
B0

({|b|},{|c|},ra)−−−−−−−→T A1 BC

{|b|}
B1

A0 BC

{|b|}
B0

({|b|},{|c|},re)−−−−−−−→T A1 BC

{|b|}
B1

(C0 BC

{|b|}
D0) BC

{|d|}
E0

({|b|},{|c|},rd)−−−−−−−→T (C1 BC

{|b|}
D1) BC

{|d|}
E1

We call filtering the operation of selecting actions on labels and filtered tran-

sitions the resulting transitions. If rd = ra + re = r, both A0 BC

b
B0 and

(C0 BC

{|b|}
D0) BC

{|d|}
E0 can move to a terminal state with filtered set of layer ac-

tions {|b|} and set of unused hook actions {|c|} with a total rate of r. In
other words, the pair ({|b|}, {|c|}) appears on an activity at the same time
with the same probability, implying the two model processes are Markovian

T -bisimilar, written A0 BC

{|b|}
B0 'T (C0 BC

{|b|}
D0) BC

{|d|}
E0 (Figure 4). We will

demonstrate 'T is a congruence for process algebra with hooks processes.
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4. Process Algebra with Hooks

A preliminary version of process algebra with hooks (PAH) has been
published in [31]. In this early work we followed a bottom-up approach where
the biochemical scale determines the rates and other scales are abstractions
of lower scales. The current syntax and almost identical semantics were first
introduced in [1], where we followed a middle-out [25] approach and where
one can begin modelling at any scale, and then relate to higher or lower
scales.

The syntax of PAH is:

D ::= nil | A[E ].A | D +D

M ::= A |M BC
L
M |M BC

L
M

where:

• D is a definition process, D ∈ Pd, while M is a model process, M ∈ Pm.
Definition and model processes are disjoint and are both processes, i.e.
Pd ∪ Pm = P and Pd ∩ Pm = ∅, with P the set of processes;

• Agents are defined as A , D, that is we use definition processes to
define the behaviour of agents. This definition has to be unique for
each agent;

• a model is defined by a model process M , which in turn is either an
agent A, a horizontal cooperation between model processes M BC

L
M

or a vertical cooperation between model processes M BC

L
M ;

• action execution A[E ].A is always followed by an agent A. This ensures
that at any time the state of a model will be constituted of cooperations
of agents;

• functions Var(A) and Val(A) must be defined for each agent A, with
Var(A) ∈ Names, Val(A) ∈ R and Names the set of parameter names;

• L, A and E are multi-sets of actions, with L = (L′,mL), A = (A′,mA)
and E = (E ′,mE). Definitions of multi-sets and operations on multi-sets
are given in Appendix A. Moreover, L′ ⊆ Actions, A′ ⊆ Actions∧A 6=
∅, E ′ ⊆ Actions ∧ |E ′| ≤ 1, with Actions the set of actions;
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• A[E ] is a composed action. Actions in A are called layer actions, while
actions in E are called hook actions;

• nil is the terminated process;

• A[E ].A expresses the fact that the composed action A[E ] has to be
performed in order to change process A[E ].A into the new process A;

• D + D expresses the non deterministic choice between two processes.
Once one is chosen, the other is discarded;

• M BC
L
M expresses the horizontal cooperation between two indepen-

dent processes on the same scale via the cooperation multi-set L. It is
a symmetrical operator;

• M BC

L
M expresses the vertical cooperation between two independent

processes on different scales via the cooperation multi-set L. It is a
symmetrical operator;

Conventions for the notation of actions are as follows. Given a composed
action A[E ], if |A| = 1 or |E| = 1, then set delimiters can be omitted, e.g.
if A = {|a|}, then it can be written a. If E = ∅ then the hook part of the
composed action can be omitted completely, that is A[∅] can be written A.

The termination process nil is used in the definition of agents that cannot
perform any action. These agents are still associated with a variable and a
value. For example, a biological entity may represent the differentiation of
a cell and such differentiation may be uncertain until a final, irreversible
decision is made, represented by reaching an agent defined by nil.

The semantics of PAH is defined by the derivation rules in Figure 5. Rule
Prefix is an axiom that expresses that process A[E ].A can become agent
process A via the execution of composed action A[E ]. Although we restrict
the set E in the syntax to be either empty or a singleton, this set can merge
with others upon the application of rules Layer Synchronisation, Vertical
Synchronisation Left and Vertical Synchronisation Right, producing
a multi-set of hooks. We use multi-sets to allow a more general and flexible
composition both within and between scales. Example 6 in Section 3 provides
an example of these compositions.

Rules Choice Left and Choice Right express choice between the exe-
cution of composed actions.
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Prefix Agent

A[E ].A
A[E]−−→ A

D
A[E]−−→ A′

A
(A[E],∆)−−−−−→ A′

A , D
∧ ∆ = {(Var(A),Val(A))}

Choice Left Asynchronous Left

D1
A[E]−−→ A

D1 +D2
A[E]−−→ A

M1
(A[E],∆)−−−−−→M ′

1

M1 BCL M2
(A[E],∆)−−−−−→M ′

1
BC
L
M2

A ∩ L = ∅

Choice Right Asynchronous Right

D2
A[E]−−→ A

D1 +D2
A[E]−−→ A

M2
(A[E],∆)−−−−−→M ′

2

M1 BCL M2
(A[E],∆)−−−−−→M1 BCL M ′

2

A ∩ L = ∅

Layer Synchronisation

M1
(A[E],∆1)−−−−−→M ′

1 M2
(B[F ],∆2)−−−−−→M ′

2

M1 BCL M2
(A∪B[E]F ],∆1∪∆2)−−−−−−−−−−−→M ′

1
BC
L
M ′

2

A ∩ B ∩ L 6= ∅

Vertical Asynchronous Left

M1
(A[E],∆)−−−−−→M ′

1

M1 BC

L
M2

(A[E],∆)−−−−−→M ′
1 BC

L
M2

A ∩ L = ∅ ∧ E ∩ L = ∅

Vertical Asynchronous Right

M2
(B[F ],∆)−−−−−→M ′

2

M1 BC

L
M2

(B[F ],∆)−−−−−→M1 BC

L
M ′

2

B ∩ L = ∅ ∧ F ∩ L = ∅

Vertical Synchronisation Left

M1
(A[E],∆1)−−−−−→M ′

1 M2
(B[F ],∆2)−−−−−→M ′

2

M1 BC

L
M2

(A∪B[(E\B)]F ],∆1∪∆2)−−−−−−−−−−−−−−→M ′
1 BC

L
M ′

2

B ⊆ E ∩ L ∧ ¬(∃M2

(B′[F ′],∆′2)
−−−−−−→M ′′

2 .
(B′ ⊆ E ∩ L) ∧ (|B′| > |B|))

Vertical Synchronisation Right

M1
(A[E],∆1)−−−−−→M ′

1 M2
(B[F ],∆2)−−−−−→M ′

2

M1 BC

L
M2

(A∪B[(F\A)]E],∆1∪∆2)−−−−−−−−−−−−−−→M ′
1 BC

L
M ′

2

A ⊆ F ∩ L ∧ ¬(∃M1

(A′[E ′],∆′1)
−−−−−−→M ′′

1 .
(A′ ⊆ F ∩ L) ∧ (|A′| > |A|))

Figure 5: Stochastic semantics of process algebra with hooks. Union of multi-sets is
denoted by ∪, while sum of multi-sets is denoted by ].
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Rule Agent replaces definition processes with agent processes and con-
structs environment ∆ using variables and values associated with agents.

Rule Layer Synchronisation is a weaker version of typical multi-way
synchronisation in process algebra. In fact, this rule can be applied even
if the labels of the transitions from processes M1 and M2 are not identi-
cal: it is only required that multi-sets A and B share at least a name and
that this name is also in L. The resulting transition presents the multi-set
union of multi-sets of layer actions A and B, to represent the result of the
synchronisation. Conversely, multi-set sum of multi-sets of hooks E and F
is used to represent the collection of hooks summing the multiplicity of the
hook actions. Moreover, partial functions ∆1 and ∆2 are merged assuming
no clashing of variable names. In rules Asynchronous Left and Asyn-
chronous Right, processes in cooperation can proceed asynchronously only
if action set A does not share actions with cooperation set L.

The behaviour induced by the BC

L
operator is regulated by the rules Ver-

tical Synchronisation Left, Vertical Synchronisation Right, Vertical
Asynchronous Left and Vertical Asynchronous Right. Rules differing
in the name only by Left and Right are symmetric, so we explain only one of
them. In Vertical Synchronisation Left, the synchronisation is between
the multi-set of hook actions on the left hand side (E) and the multi-set
of layer actions on the right hand side (B), via actions in the cooperation
multi-set L. More specifically, some inter-scale actions in E are interpreted
by another scale via B. For this to happen we impose in the side rule that
B must be included in both E and L. The resulting transition presents the
multi-set union of multi-sets A and B, while B is subtracted from E to rep-
resent the fact that some of the hook actions of the left hand side have been
used. Multi-set sum is used between E \ B and F to collect the remaining
hook actions. It may be that more than one transition from M2 presents a
multi-set of suitable layer actions B. In this case, we consider the largest B
multi-sets, imposed by the side condition, which states that there is no other
transition from M2 which presents a multi-set of layer actions B′ included in
both E and L that is larger than B. This gives the possibility to the mod-
eller to choose how the model should behave when multiple hook actions are
offered in a single transition (see Examples 5 and 6 in Section 3). Finally, in
Vertical Synchronisation Left we collect environments ∆1 and ∆2.

Consider now the inference rule Vertical Asynchronous Left. In this
case, we allow a single process to transition asynchronously only if there are
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no actions in the multi-set A which are also contained in L and no actions
in the hook multi-set E contained in L. This is because the actions in the
vertical cooperation set L are hooks and if A ∩ L 6= ∅ (or E ∩ L 6= ∅)
then A (or E) contains hooks and the transition is not intended to be used
asynchronously, but only with a suitable transition from M2.

We introduce now definitions necessary to define the derivation graph for
PAH processes.

Definition 1. Activity. The pair (A[E ],∆) such that A, E ⊆ Actions and
∆ ⊆ Names× R, with ∆ a partial function, is called an activity.

Definition 2. One step derivative. Given P ∈ P, if P
a−→ P ′ then P ′ is a

one step derivative of P . We denote the set of one step derivatives of P as
osds(P ) = {P ′ | P a−→ P ′}.

Definition 3. Derivative. Given Mi ∈ Pm, If Mi
a−→ . . .

a′−→Mj then Mj is a
derivative of Mi.

Definition 4. Derivative Set. The derivative set of a model process M ∈ Pm
is denoted by ds(M) and is defined as the smallest set of model processes
such that:

• M ∈ ds(M);

• if Mi ∈ ds(M) and Mi
(A[E],∆)−−−−−→Mj then Mj ∈ ds(M).

Definition 5. Current moves of a process. The multi-set of moves that
P ∈ P can perform is denoted by Moves(P ) and is defined as:

• (a, P ′) ∈ Moves(P ) iff P
a−→ P ′, with the same multiplicity as the

number of derivation trees that can derive P
a−→ P ′ using the derivation

rules in Figure 5.

Definition 6. Current activities for model Processes. The multi-set of ac-
tivities that M ∈ Pm can perform is denoted by Activities(M) and is defined
as:

Activities(M) = {|(A[E ],∆) | ((A[E ],∆),M ′) ∈Moves(M)|}
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Definition 7. Activity set. The multi-set of activities that a model process
M ∈ Pm and its derivatives can perform is given by:

−−−−−−→
Activities(M) =

⊎
Mi∈ds(M)

Activities(Mi)

Definition 8. Derivation graph. Given a model component M ∈ Pm, the
derivation graph D(M) is the labelled directed graph with:

• set of nodes ds(M);

• multi-set of transition labels
−−−−−−→
Activities(M);

• multi-set of labelled transitions →⊆ ds(M)×
−−−−−−→
Activities(M)× ds(M).

Given M ′ ∈ ds(M), (M ′,A[E ],∆,M ′′) ∈→ with the same multiplicity
as ((A[E ],∆),M ′′) in Moves(M ′).

4.1. Functional Rates

Functional rates are arithmetical expressions used to define rates of bi-
ological events that are parametric with respect to the current state of the
system. In order to do so, functional rates contain parameter names, the
value of which depend on the environment ∆ in an activity (A[E ],∆) and
on an additional environment Γ of constant model parameters. Functional
rates are associated with actions. Because we use sets of actions, in Section
4.2 we introduce constraints that ensure that at most one functional rate is
associated with each transition. The syntax of functional rates is given by:

f ::= k | i | f binop f | unop(f)

binop ::= + | − | ∗ | / | ∧ unop ::= exp | log | sin | cos

• k ∈ R and i ∈ Names, i.e. i is a parameter name;

• f is a functional rate, f ∈ F;

• exp is the base e exponential operator;

• ∧ is the binary exponential operator.
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The set F contains the functional rates defined in a PAH model, indexed
by action names. For example, if fa ∈ F then fa is the functional rate associ-
ated with action a. The evaluation of functional rates follows the standard se-
mantics of arithmetical expressions. Given an environment ∆′ ⊆ Names×R,
and a functional rate f , f evaluates to k ∈ R iff ∆′ ` f → k is valid. In
practice, the environment ∆′ is the partial function obtained from the union
∆′ = ∆ ∪ Γ of the environment of constant model parameters Γ and the
environment ∆ in the activity to be rated.

4.2. PAH Model and Well-Formed PAH Model

We proceed now to the definition of a PAH model and well-formed PAH
model.

Definition 9. PAH model. A PAH model is a tuple:

(AgentDef ,M,Actions,Names,F,Γ, Part,Var ,Val)

where:

• AgentDef is the finite set of agent definitions {A1 , D1, A2 , D2, . . . };

• M is the initial state of the model, with M ∈ Pm;

• Actions is the finite set of actions;

• Names is the finite set of parameter names;

• F is the finite set of functional rates;

• Γ is a partial function that associates parameters names with their
values, with Γ ⊆ Names× R. This partial function contains constant
model parameters;

• Part is the finite set of sets of participants;

• Var and Val are the functions associating agents with variables (i.e.
parameter names) and values, with Var : Pm → Names and Val :
Pm → R.
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In order to ensure a correct and unambiguous rate evaluation (Section 4.3)
and to guarantee that congruence relations (Section 6.1) can be defined on
PAH processes, we consider only well-formed PAH models, which are char-
acterised as follows.

Definition 10. Well formed PAH model. A PAH model is well formed if
and only if:

1. each functional rate fa ∈ F is associated with a set of participants
pa ⊆ Names:

∀a ∈ Actions, fa ∈ F⇔ pa ∈ Part

2. at any time only one agent can be associated with a certain variable.
Given a model process as a cooperation of agents of the form

A1 ◦ A2 ◦ · · · ◦ An

then ∀Ai, Aj if i 6= j then Var(Aj) 6= Var(Aj), where ◦ is either a
vertical or horizontal cooperation;

3. whenever an agent A performs an action (application of derivation rule
Agent), the resulting agent A′ will be associated with the same variable
A is associated with. Given a definition of an agent A as a choice of
prefix actions of the form

A ,
∑
i

ai.Ai

then ∀Ai Var(A) = Var(Ai);

4. if an agent A can perform activity (A[E ],∆) and A contains an action
a associated with a functional rate fa, then A = {|a|}. Moreover, if an
action is used as hook it cannot be associated with a functional rate.
∀A agents defined as

A ,
∑
i

Ai[Hi].Ai

∀a s.t. fa ∈ F, if a ∈ Ai then Ai = {|a|} and ∀a s.t. fa ∈ F, a 6∈ Hi.

5. an agent A or one of its derivatives can perform action a if and only if
A is associated with a variable in pa. ∀a s.t. fa ∈ F, ∀A agents

∃E ,∆ s.t. (a[E ],∆) ∈
−−−−−−→
Activities(A)⇔ Var(A) ∈ pa
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6. whenever M1 BCL M2 then M1 and M2 do not contain BC

L
.

A well-formed PAH model implies the following propositions.

Proposition 11. Given a well-formed PAH model, at any time only one
agent is associated with a certain variable name, i.e. given M ∈ Pm initial
state of the PAH model, ∀M ′ ∈ ds(M), point 2 of Definition 10 holds.

Proof. This is follows from points 2 and 3 in Definition 10 and by the syntax
and semantics of PAH that ensure that given an initial state, no transition
can increase or decrease the number of processes.

Proposition 12. Given a well-formed PAH model, environments ∆1 and ∆2

in L
¯

ayer Synchronisation, Vertical Synchronisation Left and Vertical
Synchronisation Right rules, always contain disjoint parameter names,
ensuring no clashes of names in the union ∆1 ∪∆2, i.e. ∀i, j ∈ Names, with
(i, k1) ∈ ∆1 and (j, k2) ∈ ∆2, then i 6= j.

Proof. This follows from Proposition 11.

Proposition 13. Given a well-formed PAH model with initial state M , in

each transition M ′ (A[E],∆)−−−−−→ M ′′ with M ′ ∈ ds(M), A contains at most one
action associated with a functional rate.

Proof. This follows from points 4 and 6 in Definition 10. Given a composed
action A[E ], Point 4 in Definition 10, ensures that before any synchronisation
is applied, if A contains a such that fa ∈ F, then A = {|a|}, while E cannot
contain actions associated with functional rates. The only way to add other
actions to A is via vertical synchronisation, because horizontal synchronisa-
tion can happen only with other {|a|} multi-sets. The application of a vertical
synchronisation can only add to A actions that were previously in a hook
multi-set, and, by point 4 in Definition 10, are not associated with func-
tional rates. After a vertical synchronisation, the only way to merge A with
a different multi-set containing an action associated with a functional rate,
would be to apply a horizontal synchronisation. However, this is impossible
because of point 6 in Definition 10.

Proposition 14. Given a well-formed PAH model, no more than |pa| agents
can synchronise via action a.

Proof. This follows from point 5 in Definition 10 and Proposition 11.
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4.3. Rating PAH Activities

In this section we formalise the concepts of open and closed activities that
we introduced in Section 3.2 as well as rating of PAH activities.

Formally, an activity (A[E ],∆) can be rated only if A contains exactly
one action name a such that fa ∈ F and ∆ contains the variables in pa. Such
activity is called closed. An activity that is not closed is called open.

Additionally, when multiple transitions from a certain state are associated
with the same functional rate we impose that the evaluated rate has to be
divided by the number of such transitions. This situation can arise as a result
of non-deterministic vertical synchronisations.

Definition 15. Current closed activities of a model process. Given a set of
functional rates F and a set of sets of participants Part, activity (A[E ],∆)
is closed iff the following points are both true:

• there exists unique a s.t. a ∈ A and fa ∈ F;

• the corresponding pa ∈ Part is included in the variables in ∆.

Given a model process M ∈ Pm, the set of closed activities of M is
denoted by ClosedAct(M) and is defines as:

ClosedAct(M) ={∣∣∣∣(A[E ],∆)

∣∣∣∣ (A[E ],∆) ∈ Activities(M) ∧ ∃!a s.t. (a ∈ A
∧fa ∈ F) ∧ (pa ∈ Part ∧ pa ⊆ {i|(i, k) ∈ ∆})

∣∣∣∣}
Definition 16. Current open activities of a model process. Given a model
process M ∈ Pm, the multi-set of closed activities that M can perform is
defined as:

OpenAct(M) = Activities(M) \ ClosedAct(M)

Definition 17. Closed and open activity sets. The multi-sets of all closed
and open activities that a model process M ∈ Pm can perform are defined
as: −−−−−−−→

ClosedAct(M) =
⊎

Mi∈ds(M)

ClosedAct(Mi)

−−−−−−→
OpenAct(M) =

⊎
Mi∈ds(M)

OpenAct(Mi)
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Definition 18. Open moves of a model process. Given a model process
M ∈ Pm, the multi-set of open moves of M , denoted OpenMoves(M), is
defined as:

OpenMoves(M) = {|(a,M ′) | (a,M ′) ∈Moves(M) ∧ a ∈ OpenAct(M))|}

Definition 19. Rated activity. The pair (A[E ], r) such that A, E ⊆ Actions
and r ∈ R>0 is called a rated activity.

Definition 20. Current rated activities of a model process. Given an envi-
ronment of constant model parameters Γ ⊆ Names×R and a model process
M ∈ Pm, the current set of rated activities of M is defined as:

RatedAct(M)Γ ={∣∣∣∣(A[E ], r)

∣∣∣∣ (A[E ],∆) ∈ ClosedAct(M) ∧ fa ∈ F ∧ a ∈ A
∧ Γ ∪∆ ` fa → k ∧ r = k/π(ClosedAct(M), a)

∣∣∣∣}
where π(A, a) returns the number of occurrences of (B[F ],∆′) in the multi-set
A such that a ∈ B.

Definition 21. Rated activity set. Given an environment of constant model
parameters Γ ⊆ Names× R, the multi-set of rated activities that a model
process M ∈ Pm and its derivatives can perform is given by:

−−−−−−→
RatedAct(M)Γ =

⊎
Mi∈ds(M)

RatedAct(Mi)

−−−−−−→
RatedAct(M)Γ can be written

−−−−−−→
RatedAct(M) if Γ is clear from the context.

Definition 22. Rated moves of a model process. Given a model process
M ∈ Pm and an environment of constant model parameters Γ ⊆ Names×R,
the multi-set of rated moves of M , denoted RatedMoves(M)Γ, is defined as:

RatedMoves(M)Γ =

{∣∣∣∣((A[E ], r),M ′)

∣∣∣∣ ((A[E ],∆),M ′) ∈Moves(M)
∧(A[E ], r) ∈ RatedAct(M)Γ

∣∣∣∣}
Definition 23. Rated derivation graph. Given a model process M ∈ Pm and
an environment of constant model parameters Γ ⊆ Names× R, the rated
derivation graph Dr(M)Γ is the labelled directed graph with:
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• set of nodes ds(M);

• multi-set of transition labels
−−−−−−→
RatedAct(M)Γ;

• multi-set of labelled transitions→Γ⊆ ds(M)×
−−−−−−→
RatedAct(M)Γ×ds(M).

Given M ′ ∈ ds(M), (M ′,A[E ], r,M ′′) ∈→Γ with the same multiplicity
as ((A[E ], r),M ′′) in RatedMoves(M ′)Γ.

• multi-set of labelled transitions →o⊆ ds(M)×
−−−−−−→
OpenAct(M)× ds(M).

Given M ′ ∈ ds(M), (M ′,A[E ],∆,M ′′) ∈→o with the same multiplicity
as ((A[E ],∆),M ′′) in OpenMoves(M ′).

Dr(M)Γ can be written Dr(M) if Γ is clear from the context.

5. Relating Biological Systems to Aid Model Development

The development of PAH models can become overwhelming when an
increasing number of interactions between scales is considered. Ensuring
consistency of interactions between scales is an issue that affects multi-scale
models in general, often requires manual checking and is specific to the model
at hand. But, in a process algebraic framework, there is an elegant solution
in the form of a relation that describes compatibility between scales and can
be applied to any PAH model.

In this section we introduce the compatibility L-bisimulation (�L), that
ensures that two model processes can interact correctly via a vertical synchro-

nisation with cooperation set L (i.e. BC

L
). Two processes interact correctly

when whenever one process can perform a composed action A[E ] with hooks
E that are present in the cooperation set L, then the other process is able to
synchronise with that action. If the condition is not satisfied, then the two
scales are not compatibility L-bisimilar. There is an error in the definition
of the interactions between scales that the modeller needs to rectify.

In order to define this relation as bisimulation, we need to ensure that
every transition the first process can perform is matched by transitions of
the second and vice versa.

Before we can give a formal definition of compatibility L-bisimulation, we
need to define:

• a new transition symbol⇒L, which stands for zero or more transitions
that do not contain any action in L. We use this to ignore transitions
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that are not involved with the vertical syncronisation we want to check.
This is analogous to the approach used in weak bisimulation to ignore
τ actions [17];

• a notion of transitions safely blocked, that cannot synchronise via ver-
tical cooperation and that can be ignored. When two model processes

M1 and M2 are put in parallel with BC

L
, some of the transitions

(A[E],∆)−−−−−→
that M1 or M2 alone can perform become blocked. There are two rea-
sons why this occurs. The former is that A∩L 6= ∅ and synchronisation
cannot take place because the other process cannot immediately pro-
duce the necessary hooks. These are the safely blocked transitions. The
latter is that E ∩L 6= ∅ and synchronisation cannot take place because
the other process cannot “respond” to the hooks present in E ∩ L. If
this is the case, then M1 6�L M2, so we exclude this case from the
definition of compatibility L-bisimulation.

Formal definitions are given below. Because in this section we are not

interested in environments and rates, we use M1
A[E]−−→ M2 to imply ∃∆.

M1
(A[E],∆)−−−−−→M2.

Definition 24. Transition ⇒L. Given M1,M2 ∈ Pm, M1 ⇒L M2 iff:

• M1 = M2 or

• M1
A1[E1]−−−→ ...

Ai[Ei]−−−→ ...
An[En]−−−−→ M2 and ∀i = 1, ..., n, Ai ∩ L = ∅ and

Ei ∩ L = ∅

Definition 25. Transition safely blocked by a model process via a cooper-
ation set. Given model processes M1,M2 ∈ Pm and a cooperation set

L ⊆ Actions, a transition M1
A[E]−−→ M ′

1 is safely blocked by M2 via L iff
A ∩ L 6= ∅ and:

• ¬(∃M ′
2. M2

B[F ]−−→M ′
2 with A ⊆ F ∩ L) or

• ∃M ′
2. M2

B[F ]−−→ M ′
2 with A ⊆ F ∩ L and ∃M ′′

1 . M1
A′[E ′]−−−→ M ′′

1 with
A′ ⊆ F ∩ L and |A′| ≥ |A|
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Definition 26. Compatibility L-bisimulation. A relation R ⊆ Pm × Pm
is a compatibility L-bisimulation iff whenever (M1,M2) ∈ R then for all

M1
A[E]−−→ M ′

1 that are not safely blocked by M2 via L we have one of the
following:

• if A ∩ L = ∅ ∧ E ∩ L = ∅ then ∃M ′
2. M2 ⇒L M ′

2 and (M ′
1,M

′
2) ∈ R;

• if A ∩ L 6= ∅ then ∃M ′
2. M2

B[F ]−−→ M ′
2 with A ⊆ F ∩ L) and ¬(∃M ′′

1 .

M1
A′[E ′]−−−→M ′′

1 with A′ ⊆ F ′ ∩ L and |A′| ≥ |A|) and (M ′
1,M

′
2) ∈ R;

• if E ∩ L 6= ∅ then ∃M ′
2. M2

B[F ]−−→ M ′
2 with B ⊆ E ∩ L and ¬(∃M ′′

2 .

M2
B′[F ′]−−−→M ′′

2 with |B′| ≥ |B|) and (M ′
1,M

′
2) ∈ R.

In addition, the same must be true for all M2
B[F ]−−→ M ′

2 that are not safely
blocked by M1 via L.

Model processesM1 andM2 are compatibility L-bisimilar, denotedM1 �L
M2, if (M1,M2) ∈ R for a compatibility L-bisimulation R.

5.1. Example of Use of Compatibility L-Bisimulation

In this section we propose a simple model of tissue growth. This model
is based on a more complex model of tissue growth that we presented in our
previous work [1].

At the tissue scale we consider an area divided into regions of the same
size and shape. Without loss of generality, we consider only two regions, R1
and R2 (Figure 6). Each region can be empty (agents beginning with E)
or contain tissue. There are two types of tissue: active and inactive. Active
tissue (agents beginning with Ton) is mitosis enabled (can perform actions
beginning with mito), that is its cells can duplicate and produce tissue that
will occupy a neighbouring empty region. Action mito12 represents, for
example, growth from region R1 to region R2 . If no adjacent region is
empty, mitosis is inhibited. Inactive tissue (agents beginning with Toff )
cannot replicate. Both types of tissue can become empty space through
apoptosis (actions beginning with apo), that is cell death.

The biochemical scale consists only of a biochemical species A, present
in the two regions. The concentration of A (agents beginning with A) can
assume three possible values: low, medium and high (agents with subscript
L, M and H). Concentration level can change because of transport between
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Figure 6: A theoretical multi-scale model of tissue growth.

regions (actions beginning with t, such as t12 for transport from region R1
to region R2 ).

The following constraints, which require communication between scales,
must hold:

• tissue is active in a region if and only if the concentration of A in the
same region is high. Hook actions beginning with mitoon and mitooff
should ensure this is the case;

• a region is empty if and only if there is no biochemistry. To represent
the absence of biochemistry we use processes beginning with NA. Hook
actions beginning with bioon and biooff should ensure this is the case.

Agent definitions are given below, with a graphical representation illus-
trated in Figure 7:

NA1 , bioon1 .A1L E1 , mito21 [bioon1 ].Toff1

A1L , biooff1 .NA1 + t21 .A1M Toff1 , apo1 [biooff1 ].E1

A1M , biooff1 .NA1 +mitoon1 .Ton1

+t21 [mitoon1 ].A1H + t12 .A1L Ton1 , apo1 [biooff1 ].E1

A1H , biooff1 .NA1 +mito12 .Ton1
+t12 [mitooff1 ].A1M +mitooff1 .Toff1

NA2 , bioon2 .A2L E2 , mito12 [bioon2 ].Toff2

A2L , biooff2 .NA2 + t12 .A2M Toff2 , apo2 [biooff2 ].E2

A2M , biooff2 .NA2 +mitoon2 .Ton2

+t12 [mitoon2 ].A2H + t21 .A2L Ton2 , apo2 [biooff2 ].E2

A2H , biooff2 .NA2 +mito21 .Ton2
+t21 [mitooff2 ].A2M +mitooff2 .Toff2
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Figure 7: Graphical representation of the processes defined in the tissue growth example.

The initial state of this model is (A1H BC
L

NA2 ) BC

L′
(Ton1 BC

L′′
E2 ), where

L = {t12, t21}, L′ = {bioon1 , bioon2 , biooff1 , biooff2 , mitoon1 , mitoon2 ,
mitooff1 , mitooff2} and L′′ = {mito12 , mito21}.

An example of transition is:

(A1H BC
L

NA2 ) BC

L′
(Ton1 BC

L′′
E2 )

{mito12 ,bioon2}[∅]−−−−−−−−−−→
(A1H BC

L
A2L) BC

L′
(Ton1 BC

L′′
Toff2 )

In the above transition, action mito12 represents growth of tissue from region
R1 to region R2 , while vertical synchronisation with action bioon2 ensures
that the biochemical scale in region R2 is enabled. It can be shown that

A1H BC
L

NA2 �L′ Ton1 BC
L′′

E2 .
An example of a safely blocked transition is:

Ton1 BC
L′′

E2
mitooff1−−−−→ Toff1 BC

L′′
E2

The above transition is safely blocked by A1H BC
L

NA2 via L′. This is be-
cause in this model the only way to reduce the concentration of A is by
transport from R1 to R2 , while such transport is not possible because NA2
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represents the absence of biochemistry and cannot produce any transition

that can synchronise with A1H
t12 [mitooff1 ]−−−−−−−→ A1M .

Detect incorrect model definitions. We give now an example of a mis-
take in the model definition that leads to non compatibility L-bisimilar pro-
cesses. We show that by replacing process definition E2 , mito12 [bioon2 ].Toff2
with E2 , mito12 .Toff2 , that is “forgetting” to place hook bioon2 , then

A1H BC
L

NA2 6�L′ Ton1 BC
L′′

E2 .
After the replacement, following the definition of compatibility L-bisimula-

tion, transition

Ton1 BC
L′′

E2
mito12−−−−→ Ton1 BC

L′′
Toff2

is matched by

A1H BC
L

NA2 ⇒L′ A1H BC
L

NA2

However, transition

Ton1 BC
L′′

Toff2
apo2 [biooff2 ]−−−−−−−→ Ton1 BC

L′′
E2

cannot be matched by any transition from A1H BC
L

NA2 . This implies

A1H BC
L

NA2 6�L Ton1 BC
L′′

Toff2 , which in turn implies A1H BC
L

NA2 6�L′
Ton1 BC

L′′
E2 .

6. Relating Biological Systems at Specified Scales

In this section we define a relation that will allow us to:

• compare the behaviour of two different process algebra models with
respect to a specified scale;

• substitute parts of a model with behaviourally equivalent and less com-
plex ones.

In particular, we define Markovian T -bisimulation ('T ), which ensures that
two processes produce the same rated and filtered activities at the same time
and with the same probability, while presenting identical open transitions.

We anticipate that such relation may be too strong for most biological
applications. Nonetheless, such a relation is a fundamental relation from
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which other relations can be defined. In particular, in biology one is often
interested in determining whether two systems are almost rather than exactly
the same, and possibly to which extent they are similar. We will discuss this
again in Section 10.1.

In order to relate models at a specified scale, we define a mechanism to
focus on a specified scale in PAH. This mechanism is called filtering and
consists of removing undesired action names from valid rated transitions
belonging to a rated derivation graph. The result will be a filtered derivation
graph. Because actions are associated with functional rates, removing actions
interferes with rating. As a consequence, rating of transitions should always
precede filtering.

In PAH actions from every scale are collected into a unique action multi-
set that labels valid transitions. If we want to focus on a specific scale, all
we need to do is to keep only the actions pertaining to a given scale. For
example, consider the following rated transition:

M
({|a,h,x|}[{|y,z|}],r)−−−−−−−−−−→Γ M

′

From this transition it is possible to infer that actions a, h and x have
been performed, that hook actions y and z have not been used in any syn-
chronisation and that the rate of the transition is r. Now assume that we
are interested in only the behaviour represented by the actions in T , with
T = {|x, y|}. The corresponding filtered transition should be:

M
({|x|},{|y,z|},r)−−−−−−−−→T ,Γ M ′

Notice that the rate and the multi-set of hook actions is untouched. More-
over, a filtered activity is a triple, to distinguish it from a rated activity,
which is a pair. We introduce now the formal definitions of filtered activities,
filtered transitions and filtered derivation graph.

Definition 27. Filtered activities. The triple (A, E , r) such that A and E
are multi-sets of actions and r ∈ R>0 is called a filtered activity.

Definition 28. Current filtered activities of a model process. Given a multi-
set of actions T and an environment Γ ⊆ Names × R, the multi-set of
filtered activities that a model process M ∈ Pm can perform is denoted by
FiltAct(M)T ,Γ and is defined as:

FiltAct(M)T ,Γ = {|(B, E , r) | (A[E ], r) ∈ RatedAct(M)Γ ∧ B = A ∩ T |}
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Definition 29. Filtered activity set. Given a multi-set of actions T and an
environment Γ ⊆ Names×R, the multi-set of filtered activities that a model

process M ∈ Pm and its derivatives can perform is denoted by
−−−−−→
FiltAct(M)T ,Γ

and is defined as:
−−−−−→
FiltAct(M)T ,Γ =

⊎
Mi∈ds(M)

FiltAct(Mi)T ,Γ

Definition 30. Filtered moves of a definition process. Given a multi-set
of actions T , the multi-set of moves that a definition process D ∈ Pd can
perform is denoted by FiltMovesDT and is defined as:

FiltMoves(D)T = {|((B, E), A) | (A[E ], A) ∈Moves(D) ∧ B = A ∩ T |}

Definition 31. Filtered moves of a model process. Given a multi-set of ac-
tions T and an environment Γ ⊆ Names × R, the multi-set of moves that
a model process M ∈ Pm can perform is denoted by FiltMovesMT ,Γ and is
defined as:

FiltMoves(M)T ,Γ =

{∣∣∣∣((B, E , r), A)

∣∣∣∣ ((A[E ], r), A) ∈ RatedMoves(M)Γ

∧B = A ∩ T

∣∣∣∣}
Definition 32. Filtered derivation graph. Given a model process M ∈ Pm,
a multi-set of actions T and an environment Γ ⊆ Names× R, the filtered
derivation graph Df (M)T ,Γ is the labelled directed graph with:

• set of nodes ds(M);

• multi-set of transition labels
−−−−−→
FiltAct(M)T ,Γ;

• multi-set of labelled transitions→T ,Γ⊆ ds(M)×
−−−−−→
FiltAct(M)T ,Γ×ds(M).

Given M ′ ∈ ds(M), (M ′,A, E , ra,M ′′) ∈→T ,Γ with the same multiplic-
ity as ((A, E , ra),M ′′) in FiltMoves(M ′)T ,Γ.

• multi-set of labelled transitions →o⊆ ds(M)×
−−−−−−→
OpenAct(M)× ds(M).

Given M ′ ∈ ds(M), (M ′,A[E ],Γ′,M ′′) ∈→o with the same multiplicity
as ((A[E ],Γ′),M ′′) in OpenMoves(M ′).

Df (M)T ,Γ can be written Df (M) if T and Γ are clear from the context.

With the notion of filtered derivation graph we can now define relations
between PAH processes based on filtering and relate PAH processes at spec-
ified scales.
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6.1. Markovian (T ,Γ)-bisimulation

In this section we define formally Markovian (T ,Γ)-bisimulation ('T ,Γ)
on PAH processes. The definition is based on strong equivalence in PEPA [29]
and integrated equivalence in EMPA [32]. Two PAH processes are considered
Markovian (T ,Γ)-bisimilar if it is possible to group the states of their filtered
derivation graphs into equivalence classes in such a way that states belonging
to the same equivalence class are characterised as follows:

• the sum of the rates of rated moves presenting the same action sets from
a state in an equivalence class toward the states of another equivalence
class is the same for all states in the same equivalence class;

• the set of open moves from a state in an equivalence class toward the
states of another equivalence class is the same for all states in the same
equivalence class.

In addition we prove that 'T ,Γ is an equivalence relation (Proposition 37)
and a congruence (Proposition 40).

Definition 33. Functions µT ,Γ and νT ,Γ. Function µT ,Γ returns the rate r
at which a model process M can become M ′ with filtered transitions labelled
with (A, E). Function νT ,Γ returns instead the rate at which M can move to
a set of model processes C with filtered transitions labelled with (A, E).

µT ,Γ(M,A, E ,M ′) =
∑
ri∈I

ri

where I = {|r | ((A, E , r),M ′) ∈ FiltMoves(M)T ,Γ|}. For each rate r, the
same multiplicity as ((A, E , r),M ′) in FiltMoves(M)T ,Γ is used.

νT ,Γ(M,A, E , C) =
∑
M ′∈C

µT ,Γ(M,A, E ,M ′)

Definition 34. Open Activities toward a set of model processes. The multi-
set of activities toward a set of model processes C ⊆ Pm of a model process
M ∈ Pm is defined as:

OpenAct(M, C) = {|(A[E ],∆) | ((A[E ],∆),M ′) ∈ OpenMoves(M)∧M ′ ∈ C|}
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Definition 35. Model process Markovian (T ,Γ)-bisimulation. Given an ac-
tion multi-set T and an environment Γ ⊆ Names×R, an equivalence relation
over model processes R ⊆ Pm × Pm is a model process Markovian (T ,Γ)-
bisimulation iff whenever (M1,M2) ∈ R then ∀ action multi-sets A and E
and ∀C ∈ Pm/R

νT ,Γ(M1,A, E , C) = νT ,Γ(M2,A, E , C)

and
OpenAct(M1, C) = OpenAct(M2, C)

Definition 36. Model process Markovian (T ,Γ)-bisimilarity. Model process
Markovian (T ,Γ)-bisimilarity, denoted 'T ,Γ, is the union of all model process
Markovian (T ,Γ)-bisimulations, i.e.

'T ,Γ=
⋃
{R | R is a model process Markovian (T ,Γ)-bisim.}

Two model processes M1,M2 ∈ Pm are Markovian (T ,Γ)-bisimilar, de-
notedM1 'T ,Γ M2, iff there is a model process (T ,Γ)-bisimulationR between
them such that (M1,M2) ∈ R.

If Γ is clear from the context, we write M1 'T M2 instead of M1 'T ,Γ M2

and we say M1 and M2 are Markovian T -bisimilar.

Proposition 37. Model process Markovian (T ,Γ)-bisimilarity ('T ,Γ) is an
equivalence relation and it is the largest model process Markovian (T ,Γ)-
bisimulation.

Proof. A model process Markovian (T ,Γ)-bisimilarity is an equivalence
relation iff it is symmetric, reflexive and transitive. The first two properties
are trivially true. We prove transitivity and at the same time we conclude
that 'T ,Γ is the largest model process Markovian (T ,Γ)-bisimulation. We
follow the same strategy as in [29].

We prove that given any number of bisimulationsRi, one can always find a
bisimulation that contains them all, which is given by the transitive closure
of their union R = (

⋃
iRi)

∗. Assume Ri is a model process Markovian
(T ,Γ)-bisimulation for all i ∈ I. By definition, each Ri is an equivalence
relation that partitions Pm into equivalence classes. By definition of transitive
closure, any equivalence class Sij ∈ Pm/Ri is included in some Tk ∈ Pm/R,
with Tk =

⋃
j S

i
j and j ∈ J ik. The set J ik indicates how the equivalence classes
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induced by Ri are merged into the equivalence class Tk. A bisimulation Ri′

might partition Tk in a different way, but because of the transitive closure
Tk =

⋃
j S

i
j =

⋃
j′ S

i′

j′ , j
′ ∈ J i′k . We now prove by induction on the definition of

transitive closure that R is a model process Markovian (T ,Γ)-bisimulation.
Base: we define Rn = (

⋃
iRi)

n, that is the n-th step in the expansion
of the transitive closure. Consider R0 =

⋃
iRi. If (M1,M2) ∈ R0 then

(M1,M2) ∈ Ri for some i ∈ I. This implies that for all action multi-sets A
and E and ∀Tk ∈ Pm/R:

νT ,Γ(M1,A, E , Tk) = νT ,Γ(M1,A, E ,
⋃
j∈Ji

k

Sij) =
∑
j∈Ji

k

νT ,Γ(M1,A, E , Sij)

=
∑
j∈Ji

k

νT ,Γ(M2,A, E , Sij) = νT ,Γ(M2,A, E , Tk)

and

OpenAct(M1, Tk) = OpenAct(M1,
⋃
j∈Ji

k

Sij) =
⊎
j∈Ji

k

OpenAct(M1, S
i
j)

=
⊎
j∈Ji

k

OpenAct(M2, S
i
j) = OpenAct(M2, Tk)

Induction: Given any (M1,M2) ∈ Rn−1 we assume that νT ,Γ(M1,A, E , Tk) =
νT ,Γ(M2,A, E , Tk) and OpenAct(M1, Tk) = OpenAct(M2, Tk). We then prove
that this is the case also for any (M ′

1,M
′
2) ∈ Rn. If (M ′

1,M
′
2) ∈ Rn then,

by definition of transitive closure, either (M ′
1,M

′
2) ∈ Rn−1 or (M ′

1,M
′
2) ∈

{(P,Q) | ∃R. (P,R) ∈ Rn−1 ∧ (R,Q) ∈ Rn−1}. This implies ∃R such that:

νT ,Γ(M ′
1,A, E , Tk) = νT ,Γ(R,A, E , Tk) = νT ,Γ(M ′

2,A, E , Tk)

and
OpenAct(M ′

1, Tk) = OpenAct(R, Tk) = OpenAct(M ′
2, Tk)

This proves that given any number of model process Markovian (T ,Γ)-
bisimulations, we can always find a bisimulation that contains them. Because
'T ,Γ includes all possible bisimulations, then 'T ,Γ is at least as large as the
largest model process Markovian (T ,Γ)-bisimulation.

Definition 38. Filtered composed actions toward a set of model processes.
Given a multi-set of actions T , the multi-set of composed actions toward a
set of model processes C ⊆ Pm of a definition process D ∈ Pd is defined as:

FiltCompAct(D, C)T = {|(A, E) | ((A, E), D′) ∈ FiltMoves(D)T ∧D′ ∈ C|}
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Definition 39. Markovian (T ,Γ)-bisimilar definition processes. Given an
action multi-set T and an environment Γ ⊆ Names×R, two definition pro-
cessesD1, D2 ∈ Pd are definition process Markovian (T ,Γ)-bisimilar (D1 'T ,Γ
D2) iff ∀C ∈ Pm/ 'T ,Γ

FiltCompAct(D1, C)T = FiltCompAct(D2, C)T
Proposition 40. Markovian (T ,Γ)-bisimulation as a Congruence. If P1, P2 ∈
P such that P1 'T ,Γ P2, then

1. A[E ].P1 'T ,Γ A[E ].P2, with P1, P2 agents
2. P1 +Q 'T ,Γ P2 +Q, with P1, P2, Q ∈ Pd
3. P1 BCL Q 'T ,Γ P2 BCL Q, with P1, P2, Q ∈ Pm
4. P1 BC

L
Q 'T ,Γ P2 BC

L
Q, with P1, P2, Q ∈ Pm

Proof. See Appendix B.

7. Parametric Stochastic Process Algebra with Hooks

In analogy with our previous work [1], in this section we introduce the
syntax of a parametric version of PAH. This version is equivalent to PAH as
introduced in the previous sections while it makes models easier to write and
comprehend because we can, in fact, index processes.

In general, we expect the modeller to develop his own scripts, for example
in a BASH environment, to produce automatically models that include hun-
dreds of processes. The definition of these scripts goes beyond the scope of
this paper and, in any case, the scripts would be tailored around the specific
problem modelled. For example, a script for a model of tissue growth would
produce automatically a grid of processes representing discrete portions of
tissue. To check that the produced model is as intended, one can define re-
lations such as our compatibility L-bisimulation (Section 5) and implement
algorithms to check whether these relations hold.

Here we limit ourselves to augmenting PAH as defined in Section 4 with
parametrised processes and actions and we obtain a parametric stochastic
process algebra with hooks (psPAH). The syntax of psPAH is as follows:

D ::= nil | A[E ].A(exp, . . . , exp) | D +D | if bexp then D else D

M ::= A(k, . . . , k) |M BC
L
M |M BC

L
M

exp ::= k | i | exp+ exp | exp− exp | exp/exp | exp ∗ exp
bexp ::= exp = exp | exp < exp | bexp ∧ bexp |

bexp ∨ bexp | ¬bexp | true | false
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The main differences between this and the non parametric version are:

• k ∈ R and i is a parameter name, i.e. i ∈ Names;

• actions have the form a(exp, . . . , exp), where exp, . . . , exp is a list of
expressions. In particular, multi-sets L = (L′,mL), A = (A′,mA)
and E = (E ′,mE), where A′, E ′ ⊆ Actions and L′ ⊆ ConstActions .
Actions = {a(expa1, . . . , expan), b(expb1, . . . , expbn), . . . } and
ConstActions ⊂ Actions, ConstActions = {a(ka1, . . . , kan), b(kb1, . . . , kbn),
. . . };

• a definition process can also be an if-then-else construct: if bexp then
D else D;

• agent definitions have now the form A(i1, . . . , in) , D, where i1, . . . , in
is a list of parameter names;

• the evaluation of the expressions is performed when inference rule
Agent is applied;

• the definitions of functional rates and the variables associated with
agents are also parametric.

The semantics is given in Figure 8. Given an environment ∆, the evalu-
ation of an expression exp into a real number k is denoted by ∆ ` exp→ k,
the evaluation of a boolean expression bexp into b ∈ {true, false} is denoted
by ∆ ` bexp → b, while the evaluation of the list of expressions of all the
actions in a set A is denoted by ∆ ` A → A′, where A′ contains only actions
with evaluated expressions.

An interpreter for psPAH has been implemented in the functional pro-
gramming language OCaml. The interpreter reads as input the description
of a psPAH model along with a model time threshold for the simulations.
Simulations are performed on a model, producing traces of states and time
delays using a standard sampling method for continuous time Markov chains.

Simulations have been performed on a laptop computer with Ubuntu
Linux, two Intel Core 2 Duo 2.20 GHz CPUs and 2 GB of RAM.

The simulations given in the next section, were all computed in within at
most 48 hours.
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Prefix

A[E ].A(exp1, . . . , expn)
A[E],true−−−−−→ A(exp1, . . . , expn)

Choice Left Choice Right

D1
A[E],b−−−→ A(exp1, . . . , expn)

D1 +D2
A[E],b−−−→ A(exp1, . . . , expn)

D2
A[E],b−−−→ A(exp1, . . . , expn)

D1 +D2
A[E],b−−−→ A(exp1, . . . , expn)

If Then Else True

D1
A[E],b−−−→ A(exp1, . . . , expn)

if bexp then D1 else D2
A[E],b∧bexp−−−−−−→ A(exp1, . . . , expn)

If Then Else False

D2
A[E],b−−−→ A(exp1, . . . , expn)

if bexp then D1 else D2
A[E],b∧¬bexp−−−−−−−→ A(exp1, . . . , expn)

Agent

D
A[E],b−−−→ A′(exp1, . . . , expn)

A(k1, . . . , kn)
(A′[E ′],∆′)−−−−−−→ A′(k′1, . . . , k

′
n)

*

*
if A(i1, . . . , in) , D ∧∆ = {(i1, k1), . . . , (in, kn)} ∧∆ ` b→ true
∆ ` exp1 → k′1 ∧ · · · ∧∆ ` expn → k′n ∧∆ ` A → A′ ∧∆ ` E → E ′
∧ ∆′ = {(Var(A(k1, . . . , kn)), V al(A(k1, . . . , kn)))}

Figure 8: Semantics of parametric stochastic process algebra with hooks. Other inference
rules are as in Figure 5.

8. Multi-Scale Model of Pattern Formation

We now give an example specification and analysis of a well-known prob-
lem from Systems Biology: the French Flag problem [33]. In this well-known
system, a group of identical cells in a tissue are differentiated into subgroups,
according to the diffusion of a morphogen.

A morphogen M diffuses from a source into a tissue. In the long run,
the region close to the source presents a high concentration of M, while the
further a region is from the source, the lower the concentration of M is in
that region. The concentration of M in a region indicates the positional
information, i.e. the position with respect to the source. Different specialisa-
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Figure 9: The French Flag Model implemented with partial differential equations. In the
picture, two concentration thresholds divide the space into three regions.

tions are assigned to a region depending on the concentration of M in that
region. Of great importance are concentration thresholds that delimit the
concentration ranges associated with different specialisations.

One of the simplest models of this scenario is the following partial differ-
ential equation (PDE) [34]:

∂M(t, x)

∂t
= D

∂2M(t, x)

∂x2
− αM(t, x)

The above equation models the concentration of M in time and space in

one-dimensional coordinates. The element D
∂2M(t, x)

∂x2
is the diffusion of

M, while αM(t, x) is its degradation. Constant D is the diffusion constant
and α is the degradation constant; we assume these two constants to be equal
to 1. Boundary conditions are:

1. M(t, 0) = 1 with 0 ≤ t <∞, i.e. a constant source of M at position 0;
2. M(t,∞) = 0 with 0 ≤ t < ∞, i.e. concentration of M is lost in the

surroundings.

Steady state solution of the PDE model is shown in Figure 9. In the figure,
the steady state solution is shown (continuous line). Two concentration

44



Figure 10: Discretisation of the space of the French Flag Model into 20 regions. The
variable M(i) indicates the concentration of M in region i.

thresholds (at 0.2 and 0.5, dotted lines) divide the area in three regions
(R1, R2 and R3). Each of these regions are characterised by a different
specialisation.

We propose now a representation of the PDE model in psPAH. Because
the PDE model is continuous in the concentration of M and in space, while
psPAH uses a discrete representation of these quantities, we provide a dis-
cretisation. We assume 20 levels for the concentration of M (parameter
maxLevels = 20), with maximum concentration equal to 1 and concentra-
tion of each level equal to h = 1/20 = 0.05, and we assume 20 regions of
space (parameter regions = 20), with total length equal to 3 and length of
each region equal to deltaX = 3/20 = 0, 15. The spatial discretisation is
illustrated in Figure 10.

In order to represent the two boundary conditions we have:

• the left most region presents a constant concentration level of 20, which
guarantees that concentration flows continuously from the left;

• the right most region presents a constant concentration level equal to
0, which implies that this region absorbs concentration levels.

We define agentM(i, w) (Figure 11) to indicate that morphogen M in region i
presents concentration level w. Actions t(i, j) represent transport of M from
region i to region j, while actions deg(i) represent degradation of M in region
i.

We model specialisation of regions explicitly as follows. Two thresholds
are considered: one between 4 and 5 concentration levels and the other be-
tween 10 and 11. Whenever a concentration threshold is crossed in a region,
the specialisation of the region changes. The presence of two thresholds im-
plies that three specialisations are possible, corresponding to high, medium
and low concentration ranges of M. In addition, we consider that regions of
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M(i, w) ,
if i == 1 then //first region, the source of M

t(1, 2).M(1, w)
else

if i == regions then //last region, absorbing
t(regions− 1, regions).M(regions, w)

else //any other region
if w > 0 then //degradation of M

if w == (thr1 + 1) ∨ w == (thr2 + 1) then
deg(i)[y(i)].M(i, w − 1)

else
deg(i).M(i, w − 1)

else
nil

+ //transport of M to next region
if i < regions ∧ w > 0 then

if w == (thr1 + 1) ∨ w == (thr2 + 1) then
t(i, i + 1)[y(i)].M(i, w − 1)

else
t(i, i + 1).M(i, w − 1)

else
nil

+ //transport of M from next region
if i < (regions− 1) ∧ w < maxLevels then

if w == (thr1) ∨ w == (thr2) then
t(i + 1, i)[x(i)].M(i, w + 1)

else
t(i + 1, i).M(i, w + 1)

else
nil

+ //transport of M to previous region
if i > 2 ∧ w > 0 then

if w == (thr1 + 1) ∨ w == (thr2 + 1) then
t(i, i− 1)[y(i)].M(i, w − 1)

else
t(i, i− 1).M(i, w − 1)

else
nil

+ //transport of M from previous region
if i > 1 ∧ w < maxLevels then

if w == (thr1) ∨ w == (thr2) then
t(i− 1, i)[x(i)].M(i, w + 1)

else
t(i− 1, i).M(i, w + 1)

else
nil

T (i, z, w) ,
if w < 2 then

x(i).T (i, 0, w + 1)
else

nil
+
if w > 0 then

(y(i).T (i, 0, w − 1)+
if z < 1 then

mem(i).T (i, z + 1, w)
else

if w == 2 then
mem(i).TA(i)

else
mem(i).TB(i)

else
nil

TA(i) , nil

TB(i) , nil

Figure 11: Agent definitions of processes M(i, w), T (i, z, w), TA(i) and TB(i), from the
multi-scale model of pattern formation.
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tissue can commit permanently to a specialisation, if the concentration of
M in those regions stays at a certain concentration range long enough. A
commitment means that the cells in the committed region have memorised
their positional information and further changes to the concentration of M
will not affect the chosen specialisation. We use agent T (i, z, w) (Figure 11)
to represent tissue region i with specialisation w, while parameter z is part
of the implementation of the commitment procedure. Parameter w is equal
to 2 when the concentration of M is high, 1 when it is medium and 0 when
it is low. Inter-scale hook actions x(i) and y(i) are used to synchronise pro-
cesses M(i, w) and T (i, z, w). To obtain a commitment of a region we define
a two-step memorisation:

1. when w is 1 or 2, T (i, 0, w) can perform action mem(i) and become
T (i, 1, w);

2. if T (i, 1, w) performs mem(i) then it becomes TA(i) or TB(i), depend-
ing on whether w is 2 or 1 respectively. Agents TA(i) and TB(i) are
terminated processes that represent the commitment of tissue region i
to specialisations A and B, respectively.

In addition, if T (i, 1, w) changes specialisation from w to w′ then the process
becomes T (i, 0, w′). This implies that the attempt at memorising specialisa-
tion w is forgotten and a new attempt at memorising specialisation w′ can
begin. The agent definitions of the French Flag Model are shown in Figure
11.

The initial state of the model is given by the following model component:

(TA(1) BC
∅
T (2, 0, 0) · · · BC

∅
T (19, 0, 0) BC

∅
T (20, 0, 0))

BC

{|x(1),y(1),··· ,x(20),y(20)|}

(M(1, 20) BC
{|t(1,2)|}

M(2, 0) · · · BC
{|t(18,19),t(19,18)|}

M(19, 0) BC
{|t(19,20)|}

M(20, 0))

Functional rates for actions t(i, j) and deg(i) are obtained from approxima-
tion of the diffusion and degradation elements in the PDE. In addition, we
define the functional rate for action mem(i) as the constant value 10. In
particular:

ft(i,j) = D ∗M(i) ∗ h/(deltaX ∗ deltaX ∗ h)
fdeg(i) = alpha ∗M(i) ∗ h/h
fmem(i) = 10
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Table 1: In this table we illustrate the commitments of the 20 regions of the French Flag
Model over 100 simulations and at different time points. For each region, counts over the
simulations of commitments (A, B or none, i.e. not committed) are given.

Time Comm. 1 2 3 4 5 6 7 8 9 10

0s
A 100 0 0 0 0 0 0 0 0 0
B 0 0 0 0 0 0 0 0 0 0
none 0 100 100 100 100 100 100 100 100 100

1.5s
A 100 100 99 98 93 81 66 35 17 8
B 0 0 1 2 7 15 17 30 35 51
none 0 0 0 0 0 4 17 35 48 41

3s
A 100 100 99 98 93 85 81 62 42 12
B 0 0 1 2 7 15 17 33 42 72
none 0 0 0 0 0 0 2 5 16 16

4.5s
A 100 100 99 98 93 85 83 65 47 17
B 0 0 1 2 7 15 17 33 46 78
none 0 0 0 0 0 0 0 2 7 5

6s
A 100 100 99 98 93 85 83 66 53 18
B 0 0 1 2 7 15 17 33 46 79
none 0 0 0 0 0 0 0 1 1 3

Time Comm. 11 12 13 14 15 16 17 18 19 20

0s
A 0 0 0 0 0 0 0 0 0 0
B 0 0 0 0 0 0 0 0 0 0
none 100 100 100 100 100 100 100 100 100 100

1.5s
A 6 1 0 0 0 0 0 0 0 0
B 34 38 28 16 10 5 0 0 0 0
none 60 61 72 84 90 95 100 100 100 100

3s
A 12 3 0 0 0 0 0 0 0 0
B 73 76 69 48 28 13 2 2 0 0
none 15 21 31 52 72 87 98 98 100 100

4.5s
A 13 4 0 0 0 0 0 0 0 0
B 82 88 84 67 48 23 8 2 0 0
none 5 8 16 33 52 77 92 98 100 100

6s
A 14 4 0 0 0 0 0 0 0 0
B 83 95 96 79 61 31 12 3 0 0
none 3 1 4 21 39 69 88 97 100 100
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commitments concentrations

0s

6s

6s

6s

position position

Figure 12: Example of simulations of the process algebra with hooks French Flag Model.
On the left: commitments of regions to cell specialisations after 6 seconds. On the right:
concentration levels after 6 seconds of the same simulation runs. Top row is the initial
condition.

8.1. Analysis

100 simulations were performed on the model, recording the concentration
level of M in the three regions, up to 6 seconds. Commitments of regions
was also recorded. Figure 12 illustrates the initial condition and the typical
results from single simulations at time 6 seconds. Although some variability
between the runs is visible, a pattern of three distinct commitments is always
visible. The images in the figure are constructed from the model component
representing the current state at time 6 seconds. Each picture represents a
one-dimensional space divided into 20 regions with source of morphogen M
in the left most region. On the left, commitments to cell differentiation are
shown: regions committed to A are represented by the colour black, regions
committed to B by grey, while non-committed regions by white. On the right,
the corresponding concentration levels are shown: each concentration level is
represented by a different shade of grey, from black (maximum concentration)
to white (absence of concentration). The top row shows the initial condition
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Figure 13: Two extensions of the psPAH French Flag Model. In the first extension, top,
two species A and B are added. In the second extension, bottom, species C is added.

(time 0s), while the other three rows show three different simulations at time
6s.

Additional data is illustrated in Table 1. In this table commitments of
regions are shown. At time 0, only region 1, the source, is committed to
specialisation A, while all the other regions are not committed. As the time
approaches 6 seconds, we can see the proportion of the 100 simulations in
which the regions commit to a certain specialisation. For example, regions 2
to 5 present a clear preference for specialisation A, while regions 12 and 13
have a marked preference for specialisation B. Although some variability is
present, a change in preference from left to right is evident.

8.2. Example of Use of Congruence

We illustrate now how the concepts of compositionality and congruence
in process algebra can be used to reason about the behaviour of the French
Flag Model. In particular, we prove two different extensions of the French
Flag model to be Markovian (T ,Γ)-bisimilar by extending the equality of
part of the system to the equality of the whole system. The two extensions
consist of the addition of biochemical species A and B in the first case and
C in the second. These new species do not interact with morphogen M and
do not diffuse, but nevertheless produce their own behaviour becoming part
of the system. The two extensions are illustrated in Figure 13.

Consider the following two molecular models:

1. the concentration of two molecules A and B are modelled by agent
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Figure 14: Rated derivation graphs of model processes A0(n) BC
∅

B0(n) and C0(n), with
n ∈ R. Parameter n is omitted.

processes representing their concentration as either high or low. Species
A and B are produced or degraded independently according to the mass
action kinetic law. Process definitions are as follows:

A0(i) , pA(i).A1(i) A1(i) , dA(i).A0(i)

B0(i) , pB(i).B1(i) B1(i) , dB(i).B0(i)

Reactions, functional rates and set of participants are as follows (pa-
rameters k = 1 and h = 1):

RpA : → A fpA(i) = k/h ppA(i) = {A(i)}
RdA : A→ fdA(i) = k ∗ A(i) ∗ h/h pdA(i) = {A(i)}
RpB : → B fpB(i) = k/h ppB(i) = {B(i)}
RdB : B→ fdB(i) = k ∗B(i) ∗ h/h pdB(i) = {B(i)}

The rated derivation graph Dr(A0(n) BC
∅
B0(n)), where n ∈ R, is shown

in Figure 14, on the left.

2. concentration of molecule C is modelled with three agents, represent-
ing high, medium and low concentration. Species C inhibits its own
production, so the functional rate associated to the production of C is
inversely proportional to its concentration. Species C can also degrade
according to mass action. Process definitions are as follows:

C0(i) , pC(i).C1(i) C1(i) , pC(i).C2(i) + dC(i).C0(i)

C2(i) , dC(i).C1(i)

Reactions, functional rates and set of participants are as follows (pa-
rameters k = 1, k′ = 0.5 and h = 1):

RpC : → C fpC(i) = 1/(k′ ∗ h ∗ (1 + C(i) ∗ h)) ppC(i) = {C(i)}
RdC : C→ fdC(i) = k ∗ C(i) ∗ h/h pdC(i) = {C(i)}
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The rated derivation graph Dr(C0(n)), where n ∈ R, is shown in Figure
14, on the right.

Notice that for all n ∈ R, A0(n) BC
∅
B0(n) 'T ,Γ C0(n) for any T such that

T ∩ {|pA, pB, pC, dA, dB, dC|} = ∅ and with the appropriate environment
Γ. In other words, the two psPAH model components are equivalent if we
abstract away from the specific actions they can perform, retaining only the
timing and likelihood of those actions. Recall that set T indicates on which
actions rated derivation graphs Dr(A0(n) BC

∅
B0(n)) and Dr(C0(n)) should

be compared. Moreover, a suitable environment Γ is a set of parameters
where constant parameters of the two models are merged without conflict of
names.

Assume now that the French Flag Model is updated with the addition
of chemicals A and B, which do not interact with morphogen M, but that
are nevertheless present in the system. Assume also that we are interested
in comparing the behaviour of the resulting model with the behaviour of the
French Flag Model updated with the addition of C instead. Without the
need for looking at the actual behaviour of the two new systems, we can
prove that their overall behaviour is identical. We prove this simply using
the fact that A0(n) BC

∅
B0(n) and C0(n) are Markovian (T ,Γ)-bisimilar and

the fact that Markovian (T ,Γ)-bisimulation is a congruence (Proposition 40)
and it is transitive (Proposition 37).

Because of Proposition 40 we have that:

(A0(1) BC
∅
B0(1)) BC

∅
M(1, 20) 'T ,Γ C0(1) BC

∅
M(1, 20) (1)

In the same way we have:

(A0(2) BC
∅
B0(2)) BC

∅
M(2, 0) 'T ,Γ C0(2) BC

∅
M(2, 0) (2)

At this point, notice that wheneverX 'T ,Γ Y andW 'T ,Γ Z, thenX BC
L
W 'T ,Γ

X BC
L
Z 'T ,Γ Y BC

L
Z. By the transitivity of 'T ,Γ (Proposition 37), we have

X BC
L
W 'T ,Γ Y BC

L
Z. Using this result and Equations (1) and (2) we have:
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(A0(1) BC
∅
B0(1)) BC

∅
M(1, 20) BC

{|t(1,2)|}

(A0(2) BC
∅
B0(2)) BC

∅
M(2, 0)

'T ,Γ
C0(1) BC

∅
M(1, 20) BC

{|t(1,2)|}

C0(2) BC
∅
M(2, 0)

Continuing this demonstration with the composition of the processes repre-
senting the remaining spatial regions we obtain:

(A0(1) BC
∅
B0(1)) BC

∅
M(1, 20) BC

{|t(1,2)|}

(A0(2) BC
∅
B0(2)) BC

∅
M(2, 0) BC

{|t(2,3),t(3,2)|}

· · · (A0(20) BC
∅
B0(20)) BC

∅
M(20, 0)

'T ,Γ
C0(1) BC

∅
M(1, 20) BC

{|t(1,2)|}

C0(2) BC
∅
M(2, 0) BC

{|t(2,3),t(3,2)|}

· · ·C0(20) BC
∅
M(20, 0)

And finally:

(TA(1) BC
∅
T (2, 0, 0) · · · BC

∅
T (19, 0, 0) BC

∅
T (20, 0, 0))

BC

{|x(1),y(1),··· ,x(20),y(20)|}

((A0(1) BC
∅
B0(1)) BC

∅
M(1, 20) BC

{|t(1,2)|}

(A0(2) BC
∅
B0(2)) BC

∅
M(2, 0) BC

{|t(2,3),t(3,2)|}

· · · (A0(20) BC
∅
B0(20)) BC

∅
M(20, 0))

'T ,Γ
(TA(1) BC

∅
T (2, 0, 0) · · · BC

∅
T (19, 0, 0) BC

∅
T (20, 0, 0))

BC

{|x(1),y(1),··· ,x(20),y(20)|}

(C0(1) BC
∅
M(1, 20) BC

{|t(1,2)|}

C0(2) BC
∅
M(2, 0) BC

{|t(2,3),t(3,2)|}

· · ·C0(20) BC
∅
M(20, 0))

(3)

Equation (3) finally proves that the addition of molecules A and B and
the addition of molecule C to the French Flag Model have the same effect on
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its spatio-temporal behaviour. The two extended versions of the French Flag
Model are Markovian (T ,Γ)-bisimilar for any action set T as long as T does
not contain actions of molecules A, B or C and Γ is the union of all constant
parameters of the different parts composing the model, without conflicts of
names. If this is the case we can assert that, for example, the commitment of
the regions to a specialisation (T = {|mem(1), . . . ,mem(20)|}) happens with
the same timing and with the same probability in both models.

9. Related Work

PAH bears much similarity to other stochastic process algebras, in partic-
ular the syntax and horizontal, multi-way synchronisation operator is similar
to PEPA [29]. Our introduction of hook actions to represent communication
between scales and a vertical operator to represent synchronisation appears
to be novel. We compare our approach with other process algebras that have
prioritised or preemptive actions and the use of probes.

One alternative way to implement hook synchronisation might be to use
a process algebra with priority such as EMPA [32]. In this setting, one could
replace composed actions a[h] with two consecutive actions a and h, where
h has higher priority than a. Actions representing events happening within
a scale would have the lowest priority, while higher priority could be used
to represent events happening between scales. There are two disadvantages
with this approach. First, actions with a certain priority would interleave
with actions with different priorities generating additional intermediate states
that could be avoided a priori using hook synchronisation. Second, when
multiple high priority actions are available, multiple, non-deterministic paths
of execution are possible. In PAH more control is given to the modeller
concerning how to model the response of a scale to events generating multiple
inter-scale effects at the same time. A detailed comparison of PAH with a
simple process algebra and a process algebra with priority is given in [2].

Another alternative involves preemptive actions, as provided by the only
process algebra we are aware of that aims specifically to model multi-scale
biological systems in process algebra (PAPC) [26]. PAPC is an extension
of CCS that introduces a distinction between preemptive and conservative
actions and a new summation operation. These extensions allow the rep-
resentation of actions that are running and have not yet terminated. This
means that a set of actions might be running at the same time and interfere
with each other, mimicking interactions between biological scales.
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The concept of using processes to “observe” actions in a process algebra
model was first introduced in [35] for testing whether a process can perform
given computations, i.e. sequences of actions. In this work an example is
given in the context of CCS. More recently, a similar approach was intro-
duced with Probes [36, 37] in PEPA. In this setting, processes (probes) are
constructed by regular expressions and are used to query a model. Special
start and stop labels are added to certain actions to indicate entering and
leaving states that satisfy the query. Although there are analogies, our ap-
proach does not aim to query the system, but to formalise and characterise
the way we can observe its behaviour from different scales. Moreover, regu-
lar expressions might in some cases not be powerful enough to construct the
processes that we need to observe biochemical actions.

Finally, our work bears similarities to logical modelling approaches such
as René Thomas framework [38] and the Process Hitting formalism [39]. In
analogy with our framework, in these approaches a fixed number of variables
is modelled by a finite number of levels. Additionally, a threshold system
is used to determine the nature of the interactions between variables, such
as activator or inhibitor, while we use thresholds to determine interactions
between biological scales.

10. Conclusions

PAH has been designed for multi-scale modelling of biological systems,
using processes to represent biological scales, actions to represent biological
events and functional rates to determine the timing of events. The introduc-
tion of composed actions and vertical synchronisation allows for the explicit
representation of scales and interactions within and between scales. More-
over, features such as composition and relation of PAH processes are particu-
larly amenable to the multi-scale modelling of biological systems, where they
can be used to manipulate different scales in the same formal framework.

We introduced PAH through a series of examples, then we proceeded to
the definition of the syntax and semantics of PAH, before providing defi-
nitions of compatibility L-bisimulation and Markovian (T ,Γ)-bisimulation
between PAH processes. We illustrated how the former relation can be used
to aid model development for a model of tissue growth by checking that two
scales have been defined correctly and can interact as intended by the mod-
eller. We demonstrated how the latter can be used for reasoning about a
known biological example: the french flag problem. In this system a group
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of identical cells in a tissue are differentiated into subgroups according to
the diffusion of a morphogen from a source. Differentiation depends upon
the concentration in various regions and the standard model is a PDE. Here,
we showed how to represent the problem in PAH, discretising both concen-
trations and spatial regions. We gave simulation analysis results computed
using our bespoke interpreter. We then considered two possible extensions to
the model: the addition of species A and B that are produced and degraded
independently of the rest of the system, and the addition of species C that is
also independent of the rest of the system and inhibits its own production.
We used our Markovian (T ,Γ)-bisimulation to show that the two additions
have the same behaviour, thus demonstrating an advantage of an algebraic
framework over (partial) differential equations. Finally, we compared our
approach with alternatives based on prioritised or preemptive events.

10.1. Future Work

Possible extensions of PAH include:

• implementation of compatibility L-bisimulation checker. In Section 5,
we have defined a relation between PAH processes. In order to use
this in practice we need to define and implement an algorithm to check
whether this relation holds for any pair of given processes. A possible
direction is to follow an approach analogous to the algorithm for weak
bisimulation discussed in [40];

• approximate equivalence relations. Markovian (T ,Γ)-bisimulation is a
fundamental equivalence relations for PAH. However, biological appli-
cations require a more qualitative interpretation of behaviour, where
two systems can be considered similar, though not identical. Approxi-
mate equivalence relations and distance measures between models [41]
may prove an interesting direction to explore. If we associate locations
with explicit coordinates and compute distances between processes in
space, these metrics could be useful in the computation of approximate
equivalence relations;

• efficient stochastic simulations. At the moment, the simulator that
samples trajectories of transitions is not optimised. At each step the
complete set of rated transitions is computed, while it could be the
case that only a few processes are affected by the last step and that
only a few transitions need to be updated. Improvements will depend
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upon determining which processes are affected by a transition. With
this information, known improvements to stochastic simulations of bio-
chemical reactions and their diffusion, e.g. [42, 43], can be adapted and
integrated in our approach;

• Development of a high level representation for non-experts. The pro-
cess algebra framework may be difficult to use by non-experts. An
important step toward the dissemination of our work in the systems
biology community is the development of a higher level language or a
graphical representation that would make this work more accessible to
non-experts.
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Appendix A. Multi-Sets

We use {| and |} to delimit a multi-set. For example, A = {|5, 6, 6, 7, 7, 7|}
is a multi-set.

We define a multi-set M as the pair (M ′,mM), where M ′ is a set contain-
ing the same elements of M with no repetitions and mM is the associated
multiplicity function, such that for all x ∈M ′, mM(x) is equal to the number
of times x appears in M . For all x ∈ M ′, mM(x) is equal to zero if x does
not appear in M . For example, multi-set A is defined as the pair (A′,mA),
where A′ ⊂ N, A′ = {5, 6, 7}, and mA : N→ N, mA(5) = 1, mA(6) = 2 and
mA(7) = 3.

Given two multi-sets A and B, defined as (A′,mA) and (B′,mB), the
following operations are defined:

• multi-set union: A ∪ B = (A′ ∪ B′,mA∪B), where for all x ∈ A′ ∪ B′,
mA∪B(x) = max(mA(x),mB(x));

• multi-set sum: A ] B = (A′ ∪ B′,mA]B), where for all x ∈ A′ ∪ B′,
mA]B(x) = mA(x) +mB(x);

• multi-set intersection: A∩B = (A′∩B′,mA∩B), where for all x ∈ A′∩B′,
mA∩B(x) = min(mA(x),mB(x));

• multi-set difference: A\B = (A′,mA\B), where for all x ∈ A′, mA\B(x) =
min(0,mA(x)−mB(x)).
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Moreover we define:

• A ⊆ B ⇔ for all x ∈ A′ ∪B′, mA(x) ≤ mB(x);

• |A| =
∑
x∈A′

mA(x).

Appendix B. Proofs

Proof of Proposition 40. Proof of each case:

1. We know by assumption that P1 'T ,Γ P2. This implies P1, P2 ∈ C,
with C ∈ Pm/ 'T ,Γ. Now, FiltMoves(A[E ].P1)T = {|(((A\T ), E), P1)|}
and FiltMoves(A[E ].P2)T = {|(((A \ T ), E), P2)|}. This implies ∀C ∈
Pm/ 'T ,Γ

FiltCompAct(A[E ].P1, C)T = FiltCompAct(A[E ].P2, C)T

2. P1 + Q and P2 + Q are definition processes. Because P1 'T ,Γ P2 we
have that ∀C ∈ Pm/ 'T ,Γ

FiltCompAct(P1 +Q, C)T =
FiltCompAct(P1, C)T ] FiltCompAct(Q, C)T =
FiltCompAct(P2, C)T ] FiltCompAct(Q, C)T =

FiltCompAct(P2 +Q, C)T

3. We prove that the relation R = {(P1 BCL Q,P2 BCL Q) | P1 'T ,Γ P2} is
a Markovian (T ,Γ)-bisimulation. We consider four cases:

(a) ∀r ∈ R, (A, E , r) 6∈ FiltAct(P1 BCL Q)T ,Γ. This implies that ∀r ∈
R, (A, E , r) 6∈ FiltAct(P2 BCL Q)T ,Γ, because a filtered activity for

P BC
L
Q is either a filtered activity of P , a filtered activity of Q or

it is derived from a closed activity which is the synchronisation of
an open activity from P and one from Q and P1 'T ,Γ P2 implies

• ∀r ∈ R, (A, E , r) 6∈ FiltAct(P1)T ,Γ ⇔ ∀r ∈ R, (A, E , r) 6∈
FiltAct(P2)T ,Γ;

• ∀C ∈ Pm/ 'T ,Γ OpenAct(P1, C) = OpenAct(P2, C).
It follows that ∀C ∈ Pm/ 'T ,Γ

νT ,Γ(P1 BCL Q,A, E , C) = νT ,Γ(P2 BCL Q,A, E , C) = 0
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(b) ∃r ∈ R, ((A, E , r), P ′1 BCL Q) ∈ FiltMoves(P1 BCL Q)T ,Γ. Recall
that P1 'T ,Γ P2 implies

∃r ∈ R, ((A, E , r), P ′1) ∈ FiltMoves(P1)T ,Γ ⇔
∃r′ ∈ R, ((A, E , r′), P ′2) ∈ FiltMoves(P2)T ,Γ

with P ′1 'T ,Γ P ′2, because νT ,Γ(P1,A, E , [P ′1]'T ,Γ
) = νT ,Γ(P2,A, E , [P ′1]'T ,Γ

).
It follows that

νT ,Γ(P1 BCL Q,A, E , [P ′1 BCL Q]R) = νT ,Γ(P1,A, E , [P ′1]'T ,Γ
) =

νT ,Γ(P2,A, E , [P ′1]'T ,Γ
) = νT ,Γ(P2 BCL Q,A, E , [P ′2 BCL Q]R)

It is also important to recall that if an activity is filtered then
it is derived from a closed activity, which in turn means that no
further synchronisation is possible via BC

L
. This is ensured by

Proposition 14 and Definition 15.
(c) ∃r ∈ R, ((A, E , r), P1 BCL Q′) ∈ FiltMoves(P1 BCL Q)T ,Γ. It fol-

lows that

νT ,Γ(P1 BCL Q,A, E , [P1 BCL Q′]R) = νT ,Γ(Q,A, E , [Q′]'T ,Γ
) =

= νT ,Γ(P2 BCL Q,A, E , [P1 BCL Q′]R)

Because P1 'T ,Γ P2 and so P2 BCL Q′ ∈ [P1 BCL Q′]R.
(d) ∃r ∈ R, ((A, E , r), P ′1 BCL Q′) ∈ FiltMoves(P1 BCL Q)T ,Γ. The fil-

tered move ((A, E , r), P ′1 BCL Q′) must be the result of a synchro-
nisation between an open move from P1 and an open move from Q.
In particular, it must be that ∃(A1[E1],∆1) ∈ OpenAct(P1, [P

′
1]'T ,Γ

)
and ∃(A2[E2],∆2) ∈ OpenAct(Q, [Q′]'T ,Γ

) such that:

• B = A1 ∪ A2, E = E1 ] E2 and ∆ = ∆1 ∪∆2;

• (B[E ],∆) ∈ ClosedAct(P1 BCL Q);

• b ∈ B and fb ∈ F and Γ ∪∆ ` fb → k and A = B ∩ T ;

• r = k/π(ClosedAct(P1 BCL Q), b).

Moreover, from P1 'T ,Γ P2 we have that

((A1[E1],∆1), P ′1) ∈ OpenMoves(P1)⇔
((A1[E1],∆1), P ′2) ∈ OpenMoves(P2)

with P ′1 'T ,Γ P ′2, becauseOpenAct(P1, [P
′
1]'T ,Γ

) = OpenAct(P2, [P
′
1]'T ,Γ

).
It follows that

νT ,Γ(P1 BCL Q,A, E , [P ′1 BCL Q′]R) = νT ,Γ(P2 BCL Q,A, E , [P ′1 BCL Q′]R)

where P ′2 BCL Q′ ∈ [P ′1 BCL Q′]R.
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4. We prove that the relation R = {(P1 BC

L
Q,P2 BC

L
Q) | P1 'T ,Γ P2} is a

Markovian (T ,Γ)-bisimulation. We consider four cases:

(a) ∀r ∈ R, (A, E , r) 6∈ FiltAct(P1 BC

L
Q)T ,Γ. This implies that ∀r ∈

R, (A, E , r) 6∈ FiltAct(P2 BC

L
Q)T ,Γ, because a filtered activity for

P BC
L
Q is either a filtered activity of P , a filtered activity of Q or

it is derived from a synchronisation of a filtered activity from P
and an open activity from Q or a filtered activity from Q and an
open activity from P and P1 'T ,Γ P2 implies

• ∀r ∈ R, (A, E , r) 6∈ FiltAct(P1)T ,Γ ⇔ ∀r ∈ R, (A, E , r) 6∈
FiltAct(P2)T ,Γ;

• ∀C ∈ Pm/ 'T ,Γ OpenAct(P1, C) = OpenAct(P2, C).
It follows that ∀C ∈ Pm/ 'T ,Γ

νT ,Γ(P1 BC

L
Q,A, E , C) = νT ,Γ(P2 BC

L
Q,A, E , C) = 0

(b) ∃r ∈ R, ((A, E , r), P ′1 BC

L
Q) ∈ FiltMoves(P1 BC

L
Q)T ,Γ. This im-

plies that ((A, E , r), P ′1) ∈ FiltMoves(P1)T ,Γ and that E ∩ L = ∅.
Moreover,

∃r ∈ R, ((A, E , r), P ′1) ∈ FiltMoves(P1)T ,Γ ⇔
∃r′ ∈ R, ((A, E , r′), P ′2) ∈ FiltMoves(P2)T ,Γ

with P ′1 'T ,Γ P ′2, because νT ,Γ(P1,A, E , [P ′1]'T ,Γ
) = νT ,Γ(P2,A, E , [P ′1]'T ,Γ

).
It follows that

νT ,Γ(P1 BC

L
Q,A, E , [P ′1 BC

L
Q]R) = νT ,Γ(P1,A, E , [P ′1]'T ,Γ

) =

νT ,Γ(P2,A, E , [P ′1]'T ,Γ
) = νT ,Γ(P2 BC

L
Q,A, E , [P ′1 BC

L
Q]R)

(c) ∃r ∈ R, ((A, E , r), P1 BC

L
Q′) ∈ FiltMoves(P1 BC

L
Q)T ,Γ. This im-

plies that ((A, E , r), Q′) ∈ FiltMoves(Q)T ,Γ and that E ∩ L = ∅.
Because ∀C ∈ Pm/ 'T ,Γ, OpenAct(P1, C) = OpenAct(P2, C) then

νT ,Γ(P1 BC

L
Q,A, E , [P1 BC

L
Q′]R) = νT ,Γ(Q,A, E , [Q′]'T ,Γ

) =

νT ,Γ(P2 BC

L
Q,A, E , [P1 BC

L
Q′]R)

(d) ∃r ∈ R, ((A, E , r), P ′1 BC

L
Q′) ∈ FiltMoves(P1 BC

L
Q)T ,Γ. This im-

plies that filtered move ((A, E , r), P ′1 BC

L
Q′) is the result of the
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synchronisation of a filtered move of P1 and an open move of Q or
the synchronisation of a filtered move from Q and an open move
from P1.
In this case we have

νT ,Γ(P1 BC

L
Q,A, E , [P ′1 BC

L
Q′]R) =∑

i∈I

νT ,Γ(P1,Ai, Ei, [P ′1]'T ,Γ
) +

∑
j∈J

νT ,Γ(Q,Aj, Ej, [Q′]'T ,Γ
) =∑

i∈I

νT ,Γ(P2,Ai, Ei, [P ′1]'T ,Γ
) +

∑
j∈J

νT ,Γ(Q,Aj, Ej, [Q′]'T ,Γ
) =

νT ,Γ(P2 BC
L
Q,A, E , [P ′1 BC

L
Q′]R)

Once again because

∃r ∈ R, ((A, E , r), P ′1) ∈ FiltMoves(P1)T ,Γ ⇔
∃r′ ∈ R, ((A, E , r′), P ′2) ∈ FiltMoves(P2)T ,Γ

with P ′1 'T ,Γ P ′2, because νT ,Γ(P1,A, E , [P ′1]'T ,Γ
) = νT ,Γ(P2,A, E , [P ′1]'T ,Γ

).
Moreover

• i ∈ I if and only if ∃B,F ,∆, Q′ s.t. ((B[F ],∆), Q′) ∈Moves(Q)
and B ⊆ Ei ∩ L and A = Ai ∪ (B ∩ T ) and E = (Ei \ B) ] F
and ¬(∃B′,F ′,∆′, Q′′ s.t. ((B′[F ′],∆′), Q′′) ∈ Moves(Q) and
B′ ⊆ Ei ∩ L and |B′| > |B|);
• j ∈ J if and only if ∃B,F ,∆, P ′1 s.t. ((B[F ],∆), P ′1) ∈Moves(P )

and B ⊆ Ej ∩ L and A = Aj ∪ (B ∩ T ) and E = (Ej \ B) ] F
and ¬(∃B′,F ′,∆′, Q′′ s.t. ((B′[F ′],∆′), P ′′1 ) ∈Moves(P1) and
B′ ⊆ Ej ∩ L and |B′| > |B|).

We also use the fact that ∀C ∈ Pm/ 'T ,Γ, OpenAct(P1, C) =
OpenAct(P2, C).

Since we proved all four cases, the result holds.
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