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Abstract 

Thomas, M. and P. Watson, Solving divergence in Knuth-Bendix completion by enriching signa- 

tures. Theoretical Computer Science 112 (1993) 145-185. 

The Knuth-Bendix completion algorithm is a procedure which generates confluent and terminating 

sets of rewrite rules. The algorithm has many applications: the resulting rules can be used as 

a decision procedure for equality or, in the case of program synthesis, as a program. We present an 

effective algorithm to solve some cases of divergence in the Knuth-Bendix completion algorithm, 

starting from a grammar characterising the infinite rule set. We replace an infinite set of rewrite rules 

by a finite complete set by enriching the original (order-sorted) signature with new sorts and new 

operator arities, while remaining within a conservative extension of the original system and within 

the original term set. The complexity of the new rewriting system is no worse than that of the original 

system. We characterise the class of examples for which this approach is applicable and give some 

sufficient conditions for the algorithm to succeed. 
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0. Introduction 

Algebraic specification of abstract data types is a methodology for specifying the 

behaviour of software systems. A specification consists of a signature and a set of 

axioms which generate a logical theory; a model of that specification is an algebra 

with the same signature which satisfies the theory. In equational specification, the 

axioms are (universally quantified) equations and the theory generated is an equa- 

tional theory. 

Equational reasoning is the process of deriving the consequences of a given system 

of equations. The simplest way to produce an equational proof that two terms are 

equal is to keep rewriting subterms of one, using the equations, until it is transformed 

into the other. The process is more efficient if the equations are considered as rewrite 

rules (rules which represent directed equality) and are used to rewrite both terms. This 

paradigm is very similar to functional programming; however, in general, rewriting is 

nondeterministic in the sense that no restrictions are placed on the selection of rules to 

be applied or on the selection of the subterm to be rewritten. Moreover, there is no 

restriction on overlapping rules. 

Two important properties of a rewriting system are confluence and termination. 

The conjluence property ensures that the order of application of rewrite rules is 

irrelevant, whereas the termination property ensures that all sequences of rewrites are 

well-founded (there are no infinite sequences). 

When a set of rewrite rules is confluent and terminating, then each term re- 

writes to a unique normal form: a term which cannot be rewritten. A set of rewrite 

rules which is confluent and terminating is called complete, or canonical, and 

makes equality between terms decidable since repeated application of the rules 

reduces any term to a unique normal form; in this case two terms are equal if and 
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only if they have the same normal form. The Knuth-Bendix completion algorithm [lS], 

given a termination ordering, not only tests for the confluence property but it also 

generates additional rules, in case the given set is not confluent. It is called a “comple- 

tion” algorithm because if it converges, it generates a complete set of rules which can 

then be used as a decision procedure for equality. Another application of the completion 

algorithm is in the synthesis of programs from specifications: the completion algorithm 

may be used as an “inference engine” to generate the program [7, 81. 

Unfortunately, the Knuth-Bendix completion algorithm is not guaranteed to 

converge, even when the word problem defined by the given system of equations is 

decidable. When the completion algorithm diverges and results in an infinite confluent 

sequence of rewrite rules, then we only have a semi-decision procedure for the word 

problem and in the case of program synthesis, an infinite program. There are several 

different approaches to solving the problem of divergence and we will discuss them in 

Section 8. 

We aim to replace such an infinite sequence of rules with a finite sequence, or set, 

which is equivalent in the following sense. First, the finite set should preserve the 

equational theory defined by the given equations, i.e. the finite set should at least be 

a conservative extension [29] of the infinite sequence. (This is more formally expressed 

by Theorem 6.11 in Section 6.) Note, however, that the finite set may be based on 

a larger signature than the infinite sequence; the rules in the former may use some 

sorts which do not occur in the latter. Second, the finite set should be canonical, i.e. 

confluent and terminating. 

Our approach is based on finding exact generalisations [29] of the varying parts of 

the infinite sequence of rules. Often, exact generalisations cannot be found with respect 

to the given signature, but they may exist if we enrich the signature. In [23, 241 the 

signature is enriched with new operators; here, we enrich the signature with new sorts, 

sort inclusions and operator arities: the result is an order-sorted signature. The new 

sorts allow us to capture exactly the varying parts of the rules; and since we avoid 

adding new operators, the (ground) term set is unchanged. Moreover, since our 

approach is more liberal than that of exact generalisations, we are able to solve the 

divergence problem in more cases. 

The paper is organised as follows. In Section 1 we review the basic definitions of 

term rewriting. In Section 2 we present an example of the kind of problem to be 

solved, and an informal solution. Sections 3 and 4 contain background material 

concerning tree languages and grammars. Section 5 contains our algorithm which 

takes as input a signature and a regular tree grammar G (with start symbol S) 

describing the language of the varying parts of the infinite canonical sequence of 

rewrite rules. It produces an order-sorted signature with a distinguished sort Y such 

that the term set of Y contains exactly all instances of words in the language of 

varying parts, and a rule generalising the sequence. The correctness of the algorithm is 

demonstrated in Section 6. In Section 7 we apply the algorithm to several examples. In 

Section 8 we compare other approaches with ours and in Section 9 we discuss 

directions for further research. 
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1. Order-sorted term rewriting 

A signature C is a triple (S, <, F ), where 

0 S is a set of sorts, 

l < is a partial order on S (the subsort ordering), 

l F is a set of operator arities of the formf: s1 . s,+t, where sl, . , s,, t are sorts in 

S and n20. 

By abuse of notation, < is identified with its own transitive closure. The reflexive 

closure of < is denoted 6. 

Operators of the form f: s1 . . .s,,+t, where n=O, are written f‘: t and are called 

constants (of sort t). 

Terms are constructed from operators in the following way. A constant of sort 

f is a term (of sort t). If ,f: s1 . ..s.-+t is an arity in F and ul, . . . . u,, are terms of 

sorts sl, . ,s,, respectively, then j”(tll, . . . . u,) is a term (of sort t). Nothing else is 

a term. 

The set of all terms in Z is denoted as T,; these are also referred to as ground terms. 

Each sort has an associated set of (infinitely many) tiariables, e.g. (x,xI,x2, . ..} and 

these sets are disjoint for different sorts. The set of all terms in C u X, where X is 

a sorted set of variables, is constructed by treating the variables like constants and is 

denoted as T,(X). CuX is also denoted by C(X). 

The set of all ground terms of sort t in the signature C is denoted (T,),. Ifs> t then 

(T,),z(T,),, and similarly for T,(X). 

The set of subterms of a term v = f(u 1, . . . , u,) is defined to be {u>u(w 1 w is a subterm 

Of Ui}, for iz 1, . . , fl. 

A substitution o is a mapping from variables to terms (usually with the restriction 

that all but finitely many variables map to themselves) such that if x is a variable of 

sort s, then x maps to a term of sort s. 

Two properties of signatures which are usually regarded as desirable are defined 

below. C is monotonic iff for every pair of operator aritiesf: s 1.. s, --f s,f: t 1.. t, -+ t, if 

Vi: 1 <i<n, si< ti, then s<t. C is regular iff every term has a least sort. We use the 

notation LS(u) to denote the least sort of u, when it exists. 

A term-rewriting system consists of a set of rules (R) over a signature. A (rewrite) rule 

is an ordered pair of terms of the form l+r. 

A term u may be reduced by a rule l+r in the following way. Let a subterm of u be 

lo, for some substitution CJ (written as u=u[Io]; otherwise u cannot be reduced by 

l-r). Then u can be reduced to u’ = u [ro], which we write u+u’. The slight ambiguity 

between rewrite rules and reductions will be resolved by context. Informally, rewriting 

with the rule I+r replaces la with ro. If u+ul -+u2 +. ‘41; (zero or more rewrite steps), 

we write u--t* U. A term which cannot be reduced by any rule in R is said to be 

a normal form (with respect to R). 

In practice, we use a term-rewriting system to implement an equational theory E. 

Our intention is to have a decision procedure for equality: terms u, zi are equal in the 

equational theory if there is some bv such that UP+* w and v--t* w. Note that, in 
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general, this is not an equivalence; it is an equivalence only when the set of rewrite 

rules is confluent. 

The Knuth-Bendix completion algorithm [18] is central to the theory of term 

rewriting. The algorithm takes a set of rules R and, within certain restrictions, 

generates new rules of the form l+r, where ! = E r. These rules are added to R and the 

process iterates. 

There are three possible outcomes of the algorithm: 

l The algorithm terminates with success, in which case a (finite) canonical set of rules 

is output. 

l The algorithm terminates with failure, due to the restrictions within which it must 

operate. 

l The algorithm diverges, i.e. fails to terminate, in which case the canonical set of rules 

derived is infinite. 

It is this last case which interests us. We would like to transform effectively 

a divergent case of KnuthhBendix completion into a case of termination with success. 

Unfortunately, it is, in general, undecidable whether the algorithm will diverge, 

although there are some classes of rule set where we can effectively recognise diver- 

gence [13]. We will return to this topic in Section 8. 

The above is a brief introduction or recap of those basic definitions in the field of 

term rewriting which will be needed for this paper. We have omitted as much detail as 

possible in order that this paper will be accessible to nonspecialists. For a more 

detailed description of order-sorted term rewriting, the reader is referred to [27]. 

Finally, we note that the notions of single-sorted (unsorted) rewriting (in which 

S= is}) and many-sorted rewriting (in which < = { }) can be naturally regarded as 

special cases of order-sorted term rewriting. 

2. An example [Z] 

Consider the set of rules generated by application of the Knuth-Bendix completion 

algorithm to the rule 

(R) fMf(x))bs(f‘(x)) 

where we assume a single-sorted signature with no operators apart from g: T -+ T, 

f: T -+ T and a constant symbol c:T. Then the complete set of rules generated is the 

infinite sequence 

(RI) f(df (4)) --f df (4) 

W-9 f Mdf(4))) --t ddf(x))) 

(R3) fMski(f(4)))) -s(s(s(f(x)))) 

etc. We use R” to denote this infinite sequence. 
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It can easily be seen that the rules in R” fall into a clear pattern: 

f(~“(f’(x))) --f g”(f(x)) for any n>O. 

In fact, we might observe that all terms of the form 

t=g”(f(x)) for any n>O 

are qualitatively different from all others; these are exactly the terms for which 

Note that we cannot generalise R”’ by the rule 

where y is a variable of sort S. Such a rule is too powerful - it equates terms which 

have different normal forms under R”. If we add such a rule, then the new rule set is 

not a conservative extension of the original. 

If we were able to define a variable y which could only be instantiated by terms of 

the form y”(f(x)), II > 0, then we would be able to replace the infinite sequence by the 

single ruleJ‘(y) --+y. We can do this by defining a new sort V which contains exactly 

those terms of the form g”(f(x)), n>O, and modifying the arities of ,f and g 

appropriately: 

Sorts T, U, V with U < T and I/< T 

f: T+U 

g:T+T 

g:u+v 

g: v-v 

Now the single rule 

.f(.Y) -+ L‘ 

with variable y of sort V is 

(i) a complete rewrite set; 

(ii) a conservative extension of R”. 

Moreover, the order-sorted signature is monotonic and regular. 

We note that this new system allows the rewriting of terms of sort U to sort V, 

which are incomparable with respect to the sort (inclusion) ordering. In general, we 

are unable to guarantee the property of sort-decreasingness which is often taken to be 

a necessary condition for the confluence of a given set of rewrite rules (see, for 

example, [27]). Thus, our work depends on the use of a method of removing the 

requirement of sort-decreasingness and we rely on the idea of dynamic sorting [32] 
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(cf. critical pairs lemma in [33]). Alternatively, we could use the idea of completion 

with membership constraints [6]. 

We will formalise the procedure above in the algorithm presented in Section 5. In 

the next two sections we review some background material and preliminaries concern- 

ing the input grammar for our algorithm. 

3. Languages and grammars: preliminaries 

In Section 2 we introduced informally the idea of regarding an infinite set of rewrite 

rules as a language. The languages we are interested in can be characterised in various 

ways, for example, as regular tree languages: those languages accepted by regular tree 

automata [ 11,221. 

Definition (Kucherov [22]). A regular tree language is a set of terms over a signature 

derived from a regular tree grammar 

G = (V, L s, PI, 

where 

V is a finite set of variables or non-terminals, 

C is a finite signature, 

S is a special nonterminal called the start symbol, 

P is a finite set of productions each of which is of the form 

A -+ s, 

where s E T,( V) and A E V. 

The language of terms generated by G is the set of ground terms derivable from S in 

one or more steps and is denoted by L(G), or by L(S) if the grammar used is clear. 

In tree grammars, the terms constructed from C play the role of terminal symbols in 

(string) grammars. Since we may be concerned with signatures enriched with vari- 

ables, i.e. Z(X), we will refer to the constant operator symbols as constant-terminals 

and the variables as variable-terminals. 

In order to simplify our treatment of grammars in our algorithm, we assume that 

the grammars are weakly simple, as defined below. 

Definition. A tree grammar G is weakly simple iff for every nonterminal N, N cannot be 

derived from N in one or more steps and every production rule in G has one of the forms: 

N -t&l, . . . ,x,), 

or 

N-+f; 

or 

N-+N’. 
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where each Xi is either a constant-terminal, variable-terminal, or a nonterminal, ,fis an 

operator symbol, N and N’ are nonterminals. 

Lemma 3.1. Any regular tree grummar can be eflectively transformed into a weakly 

simple grammar generating the same lunguage. 

Proof. Trivial. C; 

See Section 8.2 for a further discussion of the relationship between grammars and 

signatures. 

4. Language of varying parts 

From a given rewriting system R, let R” be the infinite sequence of rules generated 

by the Knuth-Bendix completion algorithm. We partition R” into Q and Q”, where 

Q”’ is the infinite sequence we wish to generalise; i.e. we aim to replace Q” by a finite 

set of rules. In order to do so, we first identify the language which has to be 

generalised. 

Definition. The position of a subterm is that of its top function symbol. The top 

function symbol of a term has position 1. If a subterm t is the nth argument of 

a function symbol in position p, the position of t is p.n. 

Note. The _._ operator is intended to be associative, so no brackets are required. 

Definition. When p is a position in a term, then t [ p] is the subterm of t at position p, 

and t [ p/x] denotes the term arrived at by replacing the subterm at position p in t by X. 

Definition. Let Q” be the sequence 

1, -+ rl 

I, + rz 

1 3 --$ r3 

A description of the varying positions of Q”’ is a pair of sequences of positions 

C(pl, . . ..P.>, (ql, . . . q,,>l, m>O, n30, such that 

(i) Vi, j, k, j # k: lj[pi] # lk[pi] (terms appearing in varying positions 

between rules), 

(ii) Vi: li[pl] = li[pz] = ... = li[pm] = rj[ql] = ... = ri[qn] (all varying 

tions in a rule contain the same term), 

differ 

posi- 
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. ..) q,Jx], (all left (right)-hand sides are identical except at or below a varying 

position), 

(iv) no variable which occurs at or below a varying position can occur at a position 

disjoint from the varying positions and each variable may occur at most once at or 

below each varying position. 

As an example, the pair [(l.l.l), (l.l)] describes the varying positions of the 

sequence (Rl), (R2), . . . given in Section 2. Note that the varying positions are not 

necessarily unique. For example, the pair [( l.l), (l)] is also a description. Conven- 

tionally, we will choose the varying positions furthest from the root, unless otherwise 

stated. 

We are interested in the language consisting of the terms at the varying positions. 

Definition. Let [(pl,..., p,), (ql, . . . , q,,)], m>O, n>O, be the varying positions of 

an infinite sequence Q” of rewrite rules. The language of the varying parts of Q” is 

defined by 

Note. We need only consider the subterms at one of the varying positions in each 

rule. 

With reference to the example above, the pair [( l.l.l), (l.l)] generates the 

language (f(x),g(f(x)),g(g(f(x))), . ..} and the pair [(l.l), (l)] generates the lan- 

guage (&/Ix)), g(g(f(x))), . . . >. 

4.1. Language of varying parts with leading variables 

We intend to characterise the language of varying parts by a grammar. However, 

we do not require a grammar which exactly generates the language of varying parts 

because that language may contain variables. The importance of these variables is not 

that they mark the position of any particular subterm relative to other subterms, but 

that they indicate the sort of the subterm which must occur in that position in order 

for the rule to be applicable. Thus, the language we will work with does not 

distinguish between variables of the same sort. 

Definition. Let LVP(Q”) be the language of varying parts for an infinite sequence Q=, 

over signature C(X), and let each sort Tin Z have in its variable set a distinguished 

variable called the leading variable of that sort. For a given term t E T,(X), we define 

Iv(t) to be the term derived from t be replacing every variable in t with the leading 

variable of the appropriate sort. 

Now, two further languages are defined: LVP*(Q”) and LVP+(Q”). 
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Definition. Let LVP(Q”) be the language of varying parts for an infinite sequence 

Q”, over signature C(X). The languages LVP*(Q”) and LVP+(Q”) are defined by 

LVP*(Q”)={~~~~ELVP(Q”) and a:X-+Tz(X)), 

LVP+(Q”)={lv(t)l &LVP(Q”)} 

We note that LVP’(Q”) and LVP(Q”) are contained in LVP*(Q”), and if there are 

no variables in the signature, then the languages LVP(Q”), LVP+(Q”) and 

LVP* (Q J ) are identical. 

5. Two presentations of the algorithm 

Provided the language LVP+ (Q”) can be described by a (weakly simple) regular tree 

grammar, our approach enriches the signature in the appropriate way, so that Q” can 

be generalised. We do not concern ourselves here with the generation of the grammar 

from the finite subset of the infinite sequence Q” which we can see up to any one time, 

but we proceed by inspection. We will return to the question of how the grammar is 

obtained in Section 9.1. 

We define new sorts and function arities to form an enriched, regular and mono- 

tonic signature based on the grammar defining the language LVP+(Q”). (We have 

assumed that the properties of regularity and monotonicity are desirable, thus the 

resulting signature has these properties, regardless of whether or not they hold for the 

original signature.) 

Our aim is to produce an enriched signature with a distinguished sort ,4p such that 

a term JET: has sort ,4v iff t is a term in the language LVP*(Q”). Then, the single 

rule I1[pl/x,...,p,ix]~r,[q,/x,...,q,/x], where x is a variable of sort Y, under 

dynamically sorted rewriting, generalises Q”. 

We present our approach both by a set of inference rules, and by an explicit 

algorithm. In both cases, we begin with the following assumptions. 

Let R” be a rewriting system over signature I(X) and let QZ be the infinite 

sequence of rewrite rules which we wish to generalise. Let LVP(Q”) be the chosen 

language of varying parts. Note, in general, R” may contain more than one sequence 

to be generalised, in which case the algorithm/rules may be applied in turn to each 

sequence (cf. Example 7.6 in Section 7). 

Recall that by an abuse of notation, we identify the sort ordering < with its 

transitive closure. Thus, when we add new pairs to the relation, we do not explicitly 

add the transitive consequences. 

Let G be a weakly simple tree grammar over signature C(X), with nonterminals 

V and start symbol S such that 

l G generates the language LVP’(Q”), 

l there is a sort Y in Z such that every term in L(G) has sort Y and Y is minimal 

among such sorts. 
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5.1. Inference rules 

The inference rules are grouped into three sets: the first set converts productions 

into signature enrichments; the second set performs further enrichments, or tidies up 

the signature, assuming that all productions have been converted; the final set replaces 

the infinite set of rewrite rules by a finite set. The starting position for the inference is 

(S, < , F ); P; R”, where C= (S, < , F ), P is the set of productions in G, and R” is the 

set of rewrite rules including Qa. We note that symbols S, < and F are also used as 

metavariables in the inference rules. The signature 1’ is defined when no more 

inference rules from the first two sets can be applied. 

Rules for signature enrichment 

Sort I (nonterminals become sorts): 

(S, <, F>:P:R” 

(SUM, <,F);P;R” 

if N is a nonterminal in G. 

Sort 2 (orders start symbol sort): 

(S,<, F);P;R” 

(S,<u{(X Y)},F);P;R” 

Sort 3 (constant operands get their own sorts): 

(S,<, F);P;R” 

(Su{t},<u{(t, U)},Fu{t:t});P;R” 

if t:UEF and N+f( . . . . t ,... )EP. 

Order (converts productions between nonterminals): 

(S,<, F);Pu{N+N’);R” 

(S, <u{(.A?’ ,_/V)},F);P;R”’ 

Convert I (converts constant-terminals to sorts): 

(S,<, F);Pu{N+f( . . . . t ,... )};R” 

(S,<,F);Pu(N+f( . . . . t ,... ));R” 

if t:UF F and teS. 

Convert 2 (converts variable-terminals to sorts): 

(S,<,F);Pu{N+f( . . . . x ,... )};R” 

(S,<, F);Pu{N+f( . . . . T ,... )j;R” 

if TES and x: TEX. 
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Convert 3 (converts non terminals to sorts): 

(S,<,F);Pu{N+f( . ..) A4 ,... )};R” 

(S,<,F);PujN+f( . . . . A%! )... )j;R” 

if ME V and &ES. 

Prod 1 (converts productions to operator arities): 

(S,<,F);Pu(N-tf(M,,...,M,));R” 

(S,<, Fu{f:M1 . ..M.,+A-});P;R” 

if M I, . . . . M,, A‘ES and n30. 

Prod 2 (converts productions to subsort ordering): 

(S, <, F);Pu{N+x};R” 

(S, <u((T,A*)}, F);P;R” 

if ,~“ES and x: TEX. 

Rules for signature properties 

Reg (ensures regularity): 

(S-C, F);@;R” 

(Su (GLB(t, t’)), < u {(GLB(t,t’), t), (GLB(t, t’),t’)}, 

Fu{f:u l...u,-GLB(t,t’)});@;R” 

iff:sl...s,~t,f:s;...S:,~t’EF, n30, 
for all i<n, Uifsi, u~<.s:, and 

the Ui are maximal among such sorts and -(t< t’) and -(t’<t). 

Note. The new sorts are intended to be greatest lower bounds, thus GLB(x, y) = 

GLB(y,x), GLB(x, GLB(y,z))=GLB(x,y,z), etc. 

Mono (ensures monotonicity): 

(S,<,Fu(f:sl...s,~t));8;R” 

(S,<,F);@;R” 

iffor some~‘~...s~,t’,f:s;...s~-tt’EF,n30, t’ct, 
and for all i<n, S:3Si. 

Remove (removes redundant sorts): 

(Su{s},<, F >; ‘$;R” 

(S,<,F);@;R” 

if -(s=9 or 3f~F s.t. s occurs in an arity off). 
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Rule for synthesising rewrite rule 

Generalisation (replaces infinite sequence of rules by one rule): 

if [<PI , . . ..Prn)1<41>...~ qn)] are the varying positions 

and x is a variable of sort 9. 

5.2. Algorithm 

Now we present an explicit algorithm which synthesises the enriched signature and 

generalising rewrite rule for the infinite set of rewrite rules. It is this presentation of the 

algorithm which we will use in the proof of correctness. 

The algorithm consists of 7 steps. The first 3 steps correspond to the first set of 

inference rules, Steps 4-6 correspond to the second set of inference rules, and Step 

7 corresponds to the last inference rule. We note that steps l-6 of our algorithm 

effectively construct a tree automaton for the language LVP+(Q”). 

In addition to the assumptions given above, let Z =( { Y, 9}, { (9, Y)}, { }) be a triple 

consisting of sorts, a relation < on sorts and operator arities. Note, Z may only be 

a fragment of a signature. We now proceed to enrich Z and combine it with C as follows: 

Step I (add sorts): 

For every nonterminal N in V, add the sort Jlr to Z (nonterminals are sorts). 

For every constant-terminal t in T, if t occurs as an operand in the right-hand side 

of a rule then define a new sort, t, say. Add sort G and operator t:t to Z. If t is a term of 

sort U in z, then add the pair (t, U) to < in Z, i.e. order k< U. 

Define the partial function sort: Vu T-+ Sorts of ZuVarSorts, where VarSorts is 

the set of sorts of the variable-terminals in G, by 

sort(t) = T if t is a variable-terminal of sort T, 

sort(t) = G if t:t was defined in the previous substep, 

sort(N)=M if N is a nonterminal. 

Step 2 (add operator arities and sort orderings): 

For every production of the form N-J where f is a constant-terminal, 

operator arity 

f:N 
to z. 

add the 

For every production of the form N-f; wherefis a variable-terminal of sort T, add 

the pair (T, JV) to < in Z, i.e. order T<Jlr. 

For every production of the form N -f(xl, . . . ,x,), n > 0, add the operator arity 

f:sort(xl) . . . sort(x,)+Jlr 

to z. 
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For every production of the form N -+ N’, where N’ is a nonterminal, add the pair 

(.l“‘,,l”) 

to the relation < in Z, i.e. order ,V’ < ,1,‘ 

Step 3 (combine Z and C): 

Let C’ be the union of Z and C. 

Step 4 (ensure regularity): 

For each n-ary operatorf, n30, in C’, for each pair of arities 

f:s\ . . . . s:, . . . tl, 

with -(t’< t v t <t’), for each sequence of sorts (ur, . . , u,) such that for all 

i= 1, . . . , n, Ui d St and ui < s;, and Ui is maximal among such sorts, 

do: 

add the new sort GLB(t, t’) to C’, 

add the pairs (GLB(t, t’), t) and (GLB(t, t’), t’) to the relation < in C’, 

if for any r we have r-et and r-et’, 

then add (r, GLB(t, t’)) to the relation < in C’, 

add a new arityf:u, . . . u,-+GLB(t,t’) to I’. 

(Note. Any of these substeps must be omitted if done already. As before, we have 

GLB(x,y)=GLB(y,x), GLB(x, GLB(y,z))=GLB(x,y,z), etc.) 

Step 5 (ensure monotonicity): 

For each n-ary operator5 n>O, in C’, for each ordered pair of arities 

.f: s 1 . . . s,-+t, 

f:s’1 . . . s:,+t’ 

if for all i = 1, . . , n Si >, si, then: 

if t’ > t then delete the arity f: s; . . sk -+ t’ from C’. 

Step 6 (remove redundant sorts): 

For every sort s in Z, excepting sort Y, ifs does not occur in an operator arity, then 

delete s from C’. 

(Note. Weaker redundancy conditions are possible.) 

Step 7 (deduce generalising rule): 

Let l+r be a rule in Q”. Replace Q” by the single rule 

XPIl-% . . ..PmlXI+~lqllx. . . ..qn/xl. 

where C(P,, ...,~~),<q~, . . . . q,,)] are the varying positions and x is a variable of 

sort 9. 

End of Algorithm. 
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6. Correctness of algorithm 

In [29], it is shown that if a rewrite rule p is an exact (normal) generalisation of Q”, 

then Qup is a conservative extension of R”, where R30=QuQ”. We will show in 

Theorem 6.7 that we, in fact, achieve a slightly stronger property than conservative 

extension. First, however, we show that we have captured exactly the right terms in 

each sort, which is proved by Theorem 6.1 below. 

Let G = ( V, Z, S, P) be a weakly simple tree grammar generating LVP+ (Q”). Let 

C and C’ be the signature before and after application of the algorithm, respectively, 

and let X be the sorted set of variables occurring in R”. Let N be any nonterminal in 

the grammar G such that ,+p is a sort in Z’. L(N) is the (regular tree) language defined 

by the grammar (V,Z,N,P); L(S)=LVP*(Q”). (TX,),, is the set of all terms t in 

C’ with least sort LS(t) < ,Y. We may call any such t a term of sort ,4?. Recall that Iv(t) 

is the term arrived at by replacing every variable in f by the leading variable of the 

same sort. 

Theorem 6.1 (Term set theorem). Let t be a term in TX(X). 

Then 

(38,~: cru=t A lv(u)~L(N)) o tE(T,,(X)),, 

Corollary 6.2 (All instances of varying parts captured by the term set of a sort). 

LVP*(Q”)=(T,,(X)),Y. 

Proof of Corollary 6.2. 

tELVP*(Q”) 0 (3u,a: ou=t A lv(u)~L(S)) (by Definition) 

* MTxs(X)):, (by Theorem 6.1). 0 

Lemma 6.3. If at some point in the algorithm we introduce an arity 

f:S, . . . S,+S 

then in C’ there is an arity 

f:s; . ..S.,+S’, 

wherefor i=l,..., n Si>Si and S’<S. 

Proof of Lemma 6.3. We only delete arities at Step 5. Proof is immediate from 

Step 5. 0 

Lemma 6.4. If N-+N’, where N and N’ are nonterminals, is a production then Jlr’ < JY 
in the sort ordering. If Jlr’< .M in the sort ordering and M, &“’ are introduced at Step 1, 

then there is a derivation N-, ... +N’. 



160 M. Thomas, P. Watson 

Proof of Lemma 6.4. Immediate from Step 2. 0 

Lemma 6.5. 

Proof of Lemma 6.5. =>: Trivial because substitutions are sort-preserving. 

c=: Obvious because the leading variable substitution replaces variables with 

variables of the same sort; so, the same operator arities apply to u as those which apply 

to IV(G). 0 

Note. Lemma 6.5 simplifies the proof of Theorem 6.1 (*) by allowing us to consider 

only terms of the form Iv(v). 

Proof of Theorem 6.1. *: Let t=g~ and lv(v)~L(N). We show that lv(u)~(T,,(X)),,.. 

Then by Lemma 6.5 and well-sortedness of substitution, tE(T,.(X)),, . Proof is by 

induction on the height of the tree which represents IV(G). 

Buse step: Iv(c) is a constant in C’ or a variable in X. 

The shortest derivation of Iv(c) from N has the form 

NAM,+ ... +A4+lv(~) 

for some p 20. 

Case (a): Iv(u) is a constant terminal. 

Then at Step 2 the production gives us lv(~):A’~ so by Lemma 6.3 lv(u)~(T~.(X)),~, 

and by Lemma 6.4 A?‘~<J~~_~< ... <A?‘~<~~$‘. So, lv(v)~(T,,(X)),,-. 

Case (h): lv(z;)=x, a variable terminal of sort T in T,(X). 
Then the second substep of Step 2 and Lemma 6.4 give us TdA’,<Mp- 1 d 

... <Ail<_~l‘. So, zx~(T~s(X)), 

Induction step: Let IV(D) =f(uI, . , u,,), n>O, and Iv(v) has tree height k + 1, i.e. some 

ui, 1 <i < n, has height k and all uj, i <j < n, have height <k. 

We derive 

N + ... -N’+f(U,, . . . . U,,)-+ ... +f(ul, . . . . u,), 

where for i= 1, . . ..n either Ui=ui or Ui-t..’ +ui, in which case, by induction, Ui is 

a term of (TX. (X)),, since tree height of Ui is <k. 

Then by Step 2 and Lemma 6.3, IV(U) is of some sort VGJV’ and by repeated 

application of Lemma 6.4,1v(u)@Tz,(X)) , . So by Lemma 6.5 and well-sortedness of 

substitution, t~(T,,(x)) , . 

Lemma 6.6. [f J is introduced as a new sort at Step 1 to allow the declaration t : 5 then 

no term other than t is ec;er of sort 3. 
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Proof of Lemma 6.6. T occurs in no productions; so, it has no subsorts. Thus, we need 

only be concerned with terms of the forms: 

(i) t’:iT, 

(ii) f(tl, . . . , t,), where f: Fl . . . F,, -+ F is an arity and ti is of sort pi for i = 1, . . . , n. 

But note that during the algorithm we only introduce an arity like (i) or (ii) if T is 

a nonterminal, and, by assumption, T is not a nonterminal. So, we are done. q 

Lemma 6.7. Lets be any sort in C’. GLB(Fi, . . ..F”)<s @for some i: 1 <iQn F;<s. 

Proof of Lemma 6.7. -G=: Suppose m(GLB( Fi, . . ..F.,)<s). We have 

GLB(Fi, ...) ~~)<~i for all i= 1, . . . . n, 

so we cannot have Fi<s for any i or we contradict our assumption. 

a: The sort GLB(F1, . . . . F”) is introduced at Step 4; so, the only sort inclusions we 

have involving GLB( Fi, . . . , F,,) are of the form 

GLB(~~ )..., ~~)<~i for all i=l,..., n. 

Thus, GLB(Fr , . . , F,) < s implies either: 

(i) s=Fi for some i, or 

(ii) s > Fi for some i. 

In each case we are done. q 

Proof of Theorem 6.1 (continued). -Z : Let t be a term of ( Tz,( X)), , . 
Case (a): Suppose t e T, I (X), for some M < Jlr, where M is a sort in C. We can only 

have M <Jf if there is a production 

where JV’ < N (so by Lemma 6.4 N + . ---f N’) and y is a variable of sort M’ in C, 

M’>, M. 

Then yeL( N) and we can find c st. t=oy as required. 

Case (b): Otherwise we can prove the result by induction on the height of the tree 

representing t. 

Base step: t is a constant-terminal. There are two cases: 

(i) In Step 2 there is a production A -+t, where d d ,Ir. But then by Lemma 6.4 

N-+ ... +A; so, &L(N). 
(ii) t occurs as an operand in a production N’+f( . . ., t, . . ), for some N:f: 

Then k is created as a new sort at Step 1 and t:t. Then t cannot be a term of sort 

M because “(G d JV) by Lemma 6.4. So -(t~( T,(X)),, ) unless case (i) holds. 

induction step: Let t =f(tl , . . . , t,)E(TZ,(X)),, be of tree height k+l. Then by 

definition of(T,.(X)),, there is in C’an arityf:Fi . . . F,,+Y’, where Y’<Jf and for 

i= 1, . . . . n, tiE(T~~(X)),i. The arityf:F1 . . . 9” -+Y” can have been introduced either 

at Step 4 or Step 2. 
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Suppose it was introduced at Step 4. Then 9” = GLB( Y, Z), for some Y, 2. But by 

Lemma 6.7 Y’dM iff Yd~t” or Zdyl’. Suppose w.1.o.g. Y,<M. Also at step 4 there 

was already in existence an arity f: T/r . . . V, + Y, where for i=l, . . . . n Vi>,Fi. By 

assumption, Y is not a sort in C (or t~(T,(x)), and Y<_.Y, which is case (a)). So, an 

arity of form f: VI.. . V, --f Y must have been introduced at Step 2. So, we may as well 

assume that the arity f: Tl . Fn + Y’ was introduced at Step 2. 

At Step 2 we introduced the arity 

because there was a production of the form S’-~(U~, . . , u,) 

and for all i= 1, . . ..n either 

(i) Ui=ti, a constant, or 

(ii) Ui= Ti, or 

(iii) Ui:Fi, where Fi is introduced specifically as the sort of Ui at step 1. 

If (iii) then ti = Ui or else ti is not a term of sort 9-i as no term other than Ui is ever in 

Fi by Lemma 6.6. So, we are reduced to cases (i) and (ii). 

If(i) then 

S’~S( . . ..ti....). 

Ifi<nthenwegotoi+l,andifi=nthenY’<, 

a derivation 

N-t “‘-S’-,f( ...,Ui,...,tn)-, “’ -f( 

and we are done. 

Y; so, by Lemma 6.4, there must be 

. . . > t,) 

If (ii) then S’+f( . . . . ri, . ..) and by the induction hypothesis 3si3ai: Iv(si)EL(Ti) 

and ti = (Tisi because ti~(T, ,( X)),, and t has tree height < k. GO to i + 1 unless i = n, in 

which case we have 

N-+ “’ -S’-t,f( ...,Ui,...,T,)-t”’ -,f( . . ..lV(S.)). 

Now by condition (iv), Section 4, no variable terminal occurs more than once in each 

word in L(N); so, the pi have disjoint domains and there is no difficulty in composing 

the pi into o such that t = ~f( . , s,) and lv(f(sI, . . , s,))EL( N), as required. 0 

Theorem 6.8 (Property of signature). C’ is regular. 

Proof (by induction on the length of terms). 

Base case (terms of length 1 - constants): 

Suppose t=a and a:~&, i=l,...,n, are all the minimal arities of a in C’. By 

Step 4, there exists a sort GLB(A 1, . . , A,)andaritya:GLB(A,,...,A,)suchthatnone 

of the other arities of a is minimal (contradiction), unless n = 1 and AI is the least sort 

of a. 
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Znduction step: (terms of length k + 1) 

Suppose t =f (sl, . . . , s,,), where for all i= 1, . . . . n, si has (unique) least sort Bi (each si 

has length< k). Let 

f:C,j...C,j-tAj, j=l,..., m, 

be the arities off such that for all j= 1, . . . , m, for all i= 1, . .., n, 

C’ij 3 Bi 

and each Aj is minimal among the Aj, j= 1, . . . , m. 

By Step 4, there exists a sort GLB(Ar, . .., A,) and a new arity 

f:D1...D,+GLB(A, ,..., A,,,), 

withCij3Di3B,,fori=1 ,..., nandj=l,.,., m. Di 3 Bi because of Lemma 6.7 and the 

maximality of the Ui in Step 4. So, none of the Ai are minimal (contradiction) unless 

m = 1 and AI is the least sort of t. 0 

Theorem 6.9 (Property of signature). C’ is monotonic. 

Proof. Let f be any n-ary operator and 

f:s1...s,--tt, 

be arities. Then we cannot have si 2 si for i = 1, . ., n, with t’ > t, or, by Step 5, we would 

delete the arityf: s’, . . s: -+ t’ (w.1.o.g.). This suffices to prove monotonicity because the 

case where -(t d t’ v t’ < t) is prevented by regularity: for all such arities, there exists 

an arity 

f:s; . ..sh-Pt”. 

where t”<t and t”<t’. 0 

Theorem 6.10 (Term set is unchanged). TX = Tr I and G(X) = T,,(X) for any sorted 

variable set X. 

Proof. The proof is trivial. 0 

Theorem 6.11 (Equational theory is preserved). Ifs, t are terms in T,(X), then 

where R’ is the rule set containing the generalised rule synthesised in Step 7, i.e. the 

equational theory of R” is preserved in QuR’. 
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Proof. 3: Suppose s+~’ t (case s -+Qt is trivial) and the varying positions of Q” are 

C(Pl, . . ..Pm).<41, ..‘2 qn)]. Let l-rr be a rule in Q” such that s--tQzt by l-tr. R’ 
contains a rule of form I[ p1 /x, . . , pm /xl -+ r[ql /x, . , q,,/x], where x is a variable of 

sort Y. Then, by Corollary 6.2 (q), the more general rule in R’ applies whenever I + r 

applies. Thus, s dR, t. 

=: Suppose s +R’t (case s +Q t is trivial) by the rule l[p,/x, . . ..p./x] --f 

r [ql /x, . , q,,,/x], where x is a variable of sort 9’. Let s’ and t’ be the subterms of s and 

t, respectively, at the position where rewriting occurs. Then s’ is of the form 

lo[p,/u, . . . . p,/u] and t’ is of the form ra[q,/u, . . . . q,,Ju], where u is a I’-term of 

sort Y. 

(Note. It is here that we use the requirement (iv, Section 4) that no variable which 

occurs in the language of varying parts can occur at a position disjoint from the 

varying positions. This ensures that the substitution g does not depend on u.) 

By Corollary 6.2 (e), if u is a term of sort Y then ueLVP*(Q”), i.e. 3u,a: 

OU=U A u~LVP(Q”).Thus,theruleI[p,/u,...,p,/u]-,r[q,/u,...q,/v]inR”canbe 

applied and, so, s + R’ t. 0 

Theorem 6.12 (Efficiency of rewriting). Zf s, t are terms in TX(X), and s rewrites to t by 
R” in n rewriting steps, then s rewrites to t by Q v R’ in n rewriting steps. 

Proof. Recall R” = Q u Q”. Since each rewrite rule in Q” is generalised by the rule in 

R’ (proof of Theorem 6.11 (=>)), the number of rewriting steps is preserved. q 

7. Examples 

In this section we give several examples. In the first example, we simply generalise 

a set of terms generated by a given regular tree grammar. In the following examples, 

we address the more complex case where the set of terms must be deduced from a set 

of rewrite rules and the rules replaced by a single generalising rule. 

We will give our working in each case; function arities and sorts which are introduced 

and later deleted are denoted by *. We shall also show at which stage (in the algorithm) 

each piece of information is added to Z and C’. In each case, unless the signature C is 

given, we assume a one-sorted signature with sort X and appropriate operator arities. 

Example 7.1. Consider the set of terms which form the language L(S), generated by 

the following (weakly simple) tree grammar: 

~(S)=fa(O),b(O),~(a(O)),b(b(O)),~(a(a(O))), . . . > 

s+@Wb(B) 

A -+O(a(A) 

B-+Olb(B) 
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Applying the algorithm to G gives: 

Step I 

Step 2 

< 

Y<X 

Operators 

0:d 

0:w 

a:d-+Y 

b:B+Y 

a:d+d 

b:S+B 

(*I) 

(*2) 

P3) 

(*4) 

(*5) 

(“6) 
Step 3 

Step 4 

0:x 

a:X+X 

b:X+X 

(*7) 

Step 5 

Step 6 

GLB(&,S?)<& GLB(d,g) (*ll) a:d-+GLB(&,Y) 

GLB(&,a) <g GLB(xZ,Y) b:a+GLB(g,,Y) 

GLB(&,Y)<& GLB(g,Y) O:GLB(JTJ,~) (*8) 
GLB(d,Y) <Y GLB(&,X) (*12) O:GLB(d,X) (*9) 
GLB(@, .V) <g GLB(g,X) (*13) O:GLB($,X) (*lo) 
GLB(%Y)<Y GLB( d, g’, X) O:GLB(&,g,X) 

GLB(&, X) <d 

GLB(d,X) <X 

GLB(&T,X) <X 

GLB(@, X) <@ 

GLB( &‘, 5?‘, X) <g 

GLB(&,@,X) <JZJ 

GLB(&‘,g,X) <X 

(delete(*l),...,(*lO)) 

(delete (*11),...,(*13)) 

Result: 

T.. 
GLB(&,Y) GLB( c@‘,Y) GLB( cal,@,X) 
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(%b = (~X’)GLB(.d..V’) ” (TZ’h3LB(.?B,.Y) 

= l43, a(40)), . > ” {b(O), b@(O)), . . f 

= L(S). 

We will now consider examples which arise from sets of rewrite rules. Note that we 

do not attempt to formalise the procedure of defining the grammar but we proceed 

“by inspection”. This part of the process will be considered in Section 9.1. We begin 

with the example discussed in Section 2. 

Example 7.2. (Ardis [a]). 

Sorts: T 

Operators: 

c:T 

f:T-tT 

g.T+T 

Rules (x is a variable of sort T): 

(R) f(s(f(x)))-s(f (4) 

Applying Knuth-Bendix to this rule gives 

(Q1) .f(df(x))) -+ df(x)) 

(Q2) f(s(s(f (x))) -+ s(s(f (x))) 

(Q3) .fMsMSW)))) + dddf(4))) 

etc 

Consider (Q 1), (Q2), . as Q X1 and let the varying positions be [ ( 1.1.1 ), (1.1 )]. The 

language of the varying parts, LVP(Q”), is {f(x), g( f(x)), g(g(f(x))), . . }. Since there 

is only one variable of sort T, if we choose the leading variable to be that variable then 

we have LVP(Q”)= LVP+(Q”) and a grammar is 

S+g(S)lf(x) 

The result of the algorithm is 

Step 1 

Step 2 

< Sorts F 

Y<T T, Y 
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Step 3 

c:T 
g: T-T 

f: T+ T(*l) 

Step 5 

(delete (* 1)). 

Result: 

T 

Y 

( TYL = (M(x)), 4s(f(x)))> 4sWW))X . . . }, 

where g is any substitution. 

US) = {f(x),g(f(x)),g(g(f(x))), .‘. >. 

The generalising rule given by Step 7 is 

where y is a variable of sort 9. 

Example 7.3. Consider again the rewriting system from the previous example, but 

now let the description of the varying positions be [(l.l), (I)]. The language of 

varying parts is (g(f(x)), g(g(f(x))), . . . } and a grammar is 

S+g(S)lg(F) 

F +f (x) 

The result of the algorithm is 

< 

Step I 

Y-CT 
Step 2 

Step 3 

Sorts F 

T, Y, .F 

g:Y+Y 

g:P+Y 

f:T+F (*l) 

g:T+T 

f: T+ T (*2) 

c:T 



168 M. Thomas. P. Watson 

step 4 

Step 5 

GLB(T,S)< T 

GLB(T,9)<9 

(delete (*l) and (*2)) 

Result: 

GLB(T, 9) j”: T+GLB(T,Y) 

T 9 

I\/ 
9 GLB( T,Y) 

(TdX)), = C~(g(f‘(x))),a(g(g(f(x)))), ‘.. 1, 

where o is any substitution. 

US) = W(x)), ddf(.4)), “. I. 

The generalising rule is 

.f(L’)+y, 

where y is a variable of sort 9. 

Note that the sort 9 does not contain any terms other than those in T, i.e. we can 

deduce that GLB( T, 9)=9 in the initial model. Indeed, a more efficient signature 

(i.e. no redundant sorts) is possible if at Step 2 of the algorithm we order sorts S and S’ 

as S < S’ whenever we can prove inductively that S is below S’. The resulting signature 

and generalising rule for this example are very similar to the example given in 

Section 2: the sort V in Section 2 corresponds to the sort Y here, and the sort U in 

Section 2 corresponds to the union of the sorts GLB( T, 9) and 9. See also the note 

to Step 6 in the Algorithm. 

Example 7.4. This example concerns lists and it comes from [13]. It demonstrates an 

important feature of our approach: the sequence to be generalised may contain an 

infinite number of variables. For example, each rule in the sequence contains one more 

variable than its predecessor. 

Sorts: list 

Operators: 

nil: list, 

[-I : list--f list, 

_(a; ~ : list list + list, 

flatten : list 4 list. 
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Rules (x, y, z are variables of sort list): 

(RI) nil @ x + x 

(R2) x @ nil + x 

(R3) (x (@ y) @ z --f x @ (y @ z) 

(R4) flatten(ni1) -+ nil 

(R5) flatten( [xl) --f flatten(x) 

(R6) flatten( [x] B/y) --, flatten(x) a! flatten(y) 

(R7) flatten(flatten(x)) -+ flatten(x) 

The first 6 rules are complete, but applying Knuth-Bendix to rules (Rl)-(R7) gives: 

(Ql) flatten(flatten(x)) --f flatten(x) 

(Q2) flatten(flatten(x) @ flatten(x1)) + flatten(x) @ flatten(x1) 

(43) flatten(flatten(x) (4 (tTatten(x1) eflatten(x2))) 

*flatten(x) @ (flatten(x1) @ flatten(x2)) 

(Q4) flatten(flatten(x) @ (flatten(x1) (4 (flatten(x2) @ flatten(x3)))) 

+ flatten(x) (@ (flatten(x1) (4 (flatten(x2) @ flatten(x3))) 

etc. 

Consider (Ql), (Q2), . . as QQ, and let the varying positions be [( l.l), (l)]. The 

language of the varying parts, LVP(Q”) is 

{flatten(x), flatten(x) @ flatten( 

flatten(x) @ (flatten(x1) @ flatten(x2)), . . . ) 

and a grammar for LVP+ (Q-) (with x as leading variable) is 

T-flatten(x) 

The result of the algorithm is: 

Step I: 

Step 2: 

< 

9 <list 

F<Y 

Sorts F 

list, F-,Y 

-63-I FY+Y 

flatten : list + F 
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Step 3: 
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nil : list 

_(li ~ : list list --f list 

[_]:list+list 

flatten : list -+list (* 1) 

Step 5: (delete (“1)) 

Result: 

list 

Y 

( TY)Y = ja(fatten(x)), o(flatten(x) (4 flatten(x 

a(flatten(x) (ul (flatten(x1) (a\ flatten(x2))), . . . 1, 

LVP+(Q”)= {flatten(x), flatten(x) (a’ flatten(x), 

flatten(x) (I(: (flatten(x) (in flatten(x)), }, 

LVP*(Q”)= {a(Aatten(x)), a(Aatten(x) (a; flatten(x 

o(flatten(x) (a, (flatten(x1) (M: flatten(x2))), . . }, 

where D is any substitution. 

The generalising rule given by Step 7 is 

flatten(y) +J 

where 2’ is a variable of sort 9’. 

Example 7.5. This example comes from the inductive synthesis of programs, as 

described in [7,8]. Completion and generalisation are two important techniques used 

in synthesis, where often the problem is one of searching for an appropriate inductive 

theorem. This involves both the synthesis of a hypothesis and an inductive proof of 

that hypothesis. Alternatively. our approach can be used, in some cases, to effectively 

synthesise the theorem. For example, consider the following problem from [S] 

concerning the synthesis of the double function (the operation named d) from the 

following “specification”. 



SolCny divergence in Knuth-Bendix completion 171 

Sorts: nat 

Operators: 

0:nat 

s:nat+nat 

_+_:natnat-tnat 

d:nat+nat 

Rules (x,y are variables of sort nat): 

(Rl) 0+x-+x 

(R2) x+s(y)+s(x+Y) 

(R3) s(x)+Y+s(x+y) 

(R4) x + x -+ d(x) 

In the process of synthesis, which involves deleting rules, inverting rules, and applying 

the completion algorithm, several infinite sequences are generated. Consider one such 

sequence: 

(Ql) 4G9)+W40))) 

(42) ~(s(s(O)))-ts(s(~(s(O)))) 

(Q3) 4s (s(s(O))))-,s(s(d(s(s(O))))) 

etc. 

Considering (Ql), (Q2), . . as Qm, let the varying positions be [ (1.1 .I), (l.l.l.l)]. The 

language of the varying parts, LVP(Q”) is (0, s(O),s(s(O)), . . . > and a grammar for 

LVP+(Q”) (there are no variables) is 

S-+0/s(S). 

The result of our approach is to introduce a sort Y<nat, to change the arity of 0 to 

0:Y and to add the arity s:Y+Y. Then the rules Q” can be generalised by the 

equational theorem 

MY))+s(s(d(Y))), 

where y is a variable of sort 9’. 

Example 7.6. This example is taken from string rewriting and it comes from [25]. To 

treat this as a term rewriting system we must regard string concatenation as an 

“invisible” operator, with arities like any other. We take C to contain a universal sort 

X, and string concatenation is an infix operator with the arity: 

__:xx ->x. 

Rewriting is then modulo the associativity of this operator. 
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This example is of particular interest because it shows that our algorithm may be 

applied more than once in the case where Q” contains two or more infinite sequences 

of rules to be generalised. In this case, a different choice of where to begin the infinite 

rule set and careful choice of varying parts would have enabled us to solve the 

problem with just one application of the algorithm, but this is not always the case, and 

the example is instructive for this reason. 

When the algorithm is applied more than once, combinatorial explosion of the 

number of sorts becomes a danger. To avoid this, we will modify our algorithm by 

adding some tricks designed to keep the number of introduced sorts to a minimum, 

and to add as much structure to the signature as possible by using sort inclusion. 

Consider a grammar which includes productions of the form 

M+g( . ..f...) 

N&f 
wherefis a constant-terminal (i.e. a constant in C). Then, our algorithm will introduce 

a sort / at Step 1, with f:/ and the arity f:3‘ will then be added at Step 2. The 

regularity requirement will add a sort GLB( fi ,V’ ) at Step 4 and by monotonicity the 

arity f:+will be deleted at Step 5. The sort /is now redundant and will be deleted at 

Step 6. This is a great deal of extra work when we can recognise from the grammar 

that ever)! term of sortfis a term of sort .1’ and so we may order+< ~ 1” at Step 1. This is 

a key idea, and a variation on this theme concerns X (the greatest sort in C); every sort 

we introduce contains only terms of sort X, and as we introduce no new operators, 

X will be the greatest sort in C’ also. 

Another idea we will use is to reuse sorts from one application of the algorithm to 

the next. This applies particularly to sorts of the formjwherefis a constant-terminal 

in the language of varying parts for both rule sequences and/is introduced at Step 1. 

No term other thanf is of sort /after the first application of the algorithm, so if the 

second application of the algorithm requires the introduction of a sort specifically to 

ho1d.f; then one is already in existence. 

Note that these ideas are effective, and so do not affect the effectiveness of our 

algorithm, one of its major strengths. 

Sorts: X 

Operutors: 

K:X 

D:X 

b:X 

d:X 

A:X 

Z:X 

:xX-+x 
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Rules: 

(Al) Kb+dK 

(A2) Ad+bA 

(A3) bAZ -+ AZD 

Applying Knuth-Bendix completion to this rule set gives 

(Bl) bAKAZ + AKAZD 

(Cl) dKAZ+ KAZD 

(B2) bAKAKAZ+ AKAKAZD 

(C2) dKAKAZ-+ KAKAZD 

(B3) bAKAKAKAZ+ AKAKAKAZD 

(C3) dKAKAKAZ+ KAKAKAZD 

etc. 

For generalisation, the sequence is partitioned into two subsequences. Let Qm be the 

sequence 

(Bl) bAKAZ -+ AKAZD 

(B2) bAKAKAZ-+ AKAKAZD 

(B3) bAKAKAKAZ+AKAKAKAZD 

etc. 

Varying positions are difficult to describe in string rewriting; so, we describe the 

nonvarying and varying parts instead. 

Nonvarying parts: 

b . . . AZ --) . . AZD. 

Language of varying parts: 

L(S)=((AK)“, n>O} 

Note. There are no variables in this example and, so, LVP+(Q”)= LVP(Q”). 

Grammar: 

S-AT 

T+KIKS 



174 M. Thomas, P. Watson 

Applying the algorithm gives: 

step I 

Step 2 

Stey 3 

P_:xx-+x 

A:X (*I) 
K:X (*2) 

Step 5 

Result: 

(delete (“1 and (“2)) 

Now if y is a variable of sort 9’. the rule sequence (BI),(B2), . . is generalised by the 

rule 

(Dl) hyAZ+yAZD 

Now let Q= {Al,A2,A3,Dl}. Q” is the sequence: 

(Cl) dKAZ-, KAZD 

(C2) dKAKAZ-tKAKAZD 

(Cl) dKAKAKAZ+KAKAKAZD 

etc. 

Nonvarying parts: 

d . . Z -+ . ZD. 

Language of vurying purts: 

L(P)==((KA)“, n>O). 

Grummur: 

P-,KR 

R-+AIAP 

Note that we cannot use S as our sort symbol. We use P instead. However, we can 

reuse the sorts .d,X from before. Applying the algorithm gives the following: 



Step I: 

Step 2: 

Step 3: 

Result: 

Solving divergence in Knuth-Bendix completion 175 

Now if x is a variable of sort 9, the sequence (Cl),(C2), . . is generalised by the rule 

(D2) dxZ -+ xZD 

The final rule set is: 

(Al) Kb+dK, 

(A2) Ad + bA, 

(A3) bAZ-r AZd, 

(Dl) byAZ - yAZD, 

(D2) dxZ + xZD. 

The initial rule set is terminating; so, our final rule set is complete. 

Example 7.7. The final example comes from the area of reasoning about concurrent 

systems and is similar to examples in [21], where rewriting systems for weak bisimula- 

tion equivalence are considered. The following infinite set of rules is derived using the 

Knuth-Bendix completion algorithm; the operators have been renamed for simplicity 

of presentation. 

Sorts: T 

Operators: 

c:T 

f:TT+T 

g: TT-, T 

h: TT-, T 
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Rules (x1,.x2,x3, . . . . y are variables of sort T): 

(Ql) 

(Q2) 

(Q3) 

(44) 

(Q5) 

(46) 

(47) 

(Q8) 

(Q9) 

g(c,y) + c 

df(x, > CL Y) -s.f(x, 9 4 

dW,,4Y) -+ h(.Ul,(.) 

s(f(xlJl%~c)XY) -f.f(X-lAX2,C)) 

g(f(x,,h(x,,C)),Y)-tf(x1,~~(xz,c)) 

s(~(Xl>.f(-u2,C))>Y) -+ W,,f’(x,,c)) 

dk(x,,k(xz,c)),y)+ kbl,k(.xz,4) 

g(f(.~l,.f(x,,f(X~,C))),Y)--tf(X1,J’(XZ,f(~~~,C))) 

g(S(x,,,f(x,,h(x,,c))),:) +f(x~J’(xz>k(x~,c))) 
etc. 

Considering (Ql), (Q2), . as Q”, let the varying positions be [ (l.l), (l)]. A gram- 

mar for LVP+(Q” ) is 

S-+clf(~,S)lNx,S). 

The result of applying our algorithm is the enriched signature: 

Sorts: T, 9’. 

Ordering: Y -c T 

Operators: 

ClY 

.f: T:/ + 9 

1‘:TT+T 

k: TcF+.sP 

k.TT+T 

g:TT+T 

with the generalising rule 

g(z~Y)+~ 

where z is a variable of sort .Y and 4’ is a variable of sort T. 
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8. Related work 

Several authors have worked or are working on the problems of collecting terms as 

a grammar or language, characterising critical pairs, and solving divergence in 

Knuth-Bendix completion. We will survey these, but first we mention some of the 

known methods of removing the sort-decreasingness (compatibility) requirement 

from order-sorted term rewriting, which we require for general application of our 

algorithm. At the end of this section we will prove that our approach complements 

three of those approaches listed in Section 8.4. 

8.1. Order-sorted term rewriting without sort-decreasingness 

Our preferred approach here is the idea of dynamically sorted term rewriting 

([32,9,33]) in which equations also carry sort information and the (syntactic) least 

sort of a term is only an upper bound on its semantic sort. The idea of this is to allow 

equational reasoning in which replacement of “equals for equals” is always allowed, 

without sort constraints. Knuth-Bendix completion in this framework has been 

shown [32] to differ little from the ordinary version. Full technical details of the 

method appear in [33] including the critical pairs lemma mentioned in Section 2. 

Chen and Hsiang [3] have discovered the same idea independently. 

Gallier and Isakowitz ([lo, 171) have worked on the semantics of equational 

reasoning without sort constraints. 

Recent work of Comon [6] gives an alternative approach. He investigates 

Knuth-Bendix completion in the framework of rewriting with membership con- 

straints [30] and gives deduction rules for completion and unification over a fragment 

of second-order logic in which a critical pairs lemma can be proved. This fragment of 

second-order logic is large enough to contain order-sorted equational logic. Powerful 

though this idea is, it lacks the conceptual clarity of dynamic sorting. 

8.2. Term sets regarded as a language 

Comon [IS] uses the idea of describing a collection of terms as a grammar and then 

transforming the grammar into a signature, but in a more restricted way than our 

algorithm (for example, Comon is concerned only with ground terms), and for a very 

different purpose. Namely, his aim is the proof of inductive theorems from the original 

signature, whereas we specifically avoid adding such theorems to our equational 

theory (cf. Theorem 6.11). 

8.3. Characterising critical pairs 

Hermann [13,14,15] characterises two sources of divergence, forward and back- 

ward crossed rewrite systems, by considering the structure of rewrite systems and 

critical pairs. He also suggests several “empirical” methods for avoiding divergence. 
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These include changing the orientation of rules or the termination ordering (back- 

tracking), dividing chains in crossed systems (splitting), or enriching systems with new 

rules which are inductive theorems. However, there is no method for deriving the 

appropriate theorems. 

Sattler-Klein [ZS] also investigates the part played by critical pairs in divergence, 

but without specific reference to the problem of solving divergence. By coding 

primitive recursive functions into string rewriting systems, she produces some quite 

sophisticated divergence patterns. 

8.4. Methods qf solcing divergence qf Km&-Bendix completion 

The heuristics of backtracking and splitting were mentioned in the preceding 

section. These solve a very restricted class of problems, and have in any case not been 

thoroughly formalised. 

Schmidt-Schauss [26] solves our Example 7.3 using term declarations, which 

explicitly collect terms with some common property into a named sort. This is done by 

inspection. The method used could be applied to solve divergence in more general 

cases. This method allows generalisation of a wider class of languages than regular 

tree languages, and so solves a wider class of examples than we can handle. The 

drawback is that term declarations make a signature untidy and rewriting harder. No 

implementation of term rewriting with term declarations is mentioned by [16] or is 

known to the present authors. 

Kirchner [19] uses meta-rewriting with meta-variables and meta-rules to solve 

divergence. Kirchner and Hermann [20] provide a link between this approach and the 

work of Hermann on critical pairs, and proposes an automatic method for moving 

from a characterisation of the critical pairs in the divergent sequence to (in some cases) 

a solution using meta-rewriting. This is the only approach to the problem so far which 

covers the entire procedure from detection to solution of divergence. However, this 

approach suffers from the difficulties of meta-rewriting, not the least that implemen- 

tations are not readily available, and is restricted to the class of sequences formed by 

forward and backward crossed rewrite systems - [25] has shown that there are many 

other types of divergence. In addition, this method has difficulty handling examples of 

divergence arising from one rule systems. Chen et al. ([4], see later) state that use of 

meta-rewriting in this way merely transfers the problem of finitely representing an 

infinite set of terms from one level to another, without solving it. 

Thomas and Jantke [28,29] and Lange [23] and Lange and Jantke [24] also 

attempt to replace an infinite set of rules with a finite set that is a conservative 

extension of the infinite set. The key idea of their approach is to use inductive inference 

techniques [l] for synthesising generalisations of infinite sets of rules from a presenta- 

tion of only finite portions of the sets. Thomas and Jantke 1291 present several 

different definitions of generalisation and some algorithms for synthesising these 

generalisations of sets of rules. Often, however, generalisation is not possible and the 

underlying signature and theory must be enriched. An approach to introducing 
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auxiliary operators and sorts in order to allow generalisation is described in [23,28]. 

This is perhaps the most naturalistic approach, but is severely limited by being unable 

to solve examples where the number of different variables present in a rule is infinite in 

the limit. Also the method gives no guarantee of a complete system. 

A powerful improvement using the same basic idea (counting occurrences of 

operators using a separate copy of the natural numbers) is proposed by Chen et al. 

[4]. Their method, which they call recurrence-terms, explicitly codes up infinite sets of 

terms or rules inside a special operator. Unfolding of this recurrence-term (to recover 

the original set) is deterministic up to the naming of variables. (This idea is an 

improvement on [28] and [23] as it handles some sequences of rules in which (in the 

limit) rules contain infinitely many different variables.) Use of this method involves 

going beyond ordinary term rewriting into recurrence-rewriting. A matching algo- 

rithm is given so that rules including recurrence-terms can rewrite ordinary terms. The 

procedure given for deducing recurrence-terms is inadequate, although they claim 

that more elaborate methods have been designed. One problem with this method is 

that unification involving recurrence-terms may prove to be very difficult, so while 

a solution to an instance of divergence may be economically expressed its use in an 

ongoing Knuth-Bendix completion procedure may be limited. 

A further improvement of the recurrence-term approach is the addition of a choice 

operator [31]. This extends the solving power of recurrence-terms to include the class 

of problems solved by our algorithm. 

In none of the papers mentioned above (except [20]) is an algorithm married with 

a characterisation of the class of divergences which can be (partially or fully) solved. 

8.5. Comparison of methods 

We can prove by example that our approach is complementary to three of the 

major approaches outlined above (we say two methods are complementary if each 

method can solve examples which the other cannot solve). 

We describe the class of problems solved by a method by the initials of the method’s 

creators: 

l signature enrichment (this paper) TW, 

l auxiliary operators (Thomas/Jantke/Lange) TJL, 

l meta-rewriting (Kirchner/Hermann) KH, 

l recurrence-terms (Chen/Hsiang/Kong) CHK. 

We write A 1 B to show that two methods are complementary. 

Theorem 8.7. 

TW 1 TJL 

TWlKH 

TW 1 CHK 
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Proof. Proof in each case is by an example from Section 7. 

Example 7.4 is not included in TJL - the auxiliary operators method solves no 

examples in which rules have infinitely many different variables (in the limit). 

Example 7.6 is not included in KH - the meta-rewriting method solves only 

sequences arising from forward and backward crossed rewrite systems. It is shown in 

[25] that this is not such a system. 

Example 7.7 is not included in CHK - recurrence terms as originally defined have 

no built-in choice, i.e. the method cannot solve examples in which each rule has more 

than one “child”. We note that this defect is corrected in [31]. 

Examples of divergence which these methods can solve and our system cannot are 

easily constructed, in each case. q 

Advantages of our approach 

We will state once again the advantages of our algorithm, which in many cases are 

not shared by the methods we have mentioned above: 

l application of our algorithm allows us to remain within order-sorted term rewriting 
_ an implementation requires little extra work; 

l our algorithm is entirely effective, given the appropriate input; 

l our algorithm always produces a complete rewrite system on a well-defined class of 

examples ~ there are no more theorems to prove; 

l our algorithm preserves the term set of the original system; 

l our algorithm preserves the complexity of the original system; 

l our algorithm has applications in the field of program synthesis; 

l although this is subjective, we consider our algorithm to be conceptually clear and 

natural. 

9. Future research 

9.1. Applications of inductive inference 

In common with most of the methods mentioned in the previous section, a problem 

with our method is ensuring that the input to the algorithm is of the correct form: in 

our case, a weakly simple tree grammar deriving the leading instances of the language 

of varying parts (cf. Section 4.1). 

Inductive inference [l] was proposed by [23,28,29] as a means of processing the 

(infinite) set of rewrite rules derived by completion into a form suitable for input to an 

algorithm to solve divergence. In our case we would aim to learn a regular tree 

grammar. 

An immediate objection to the use of inductive inference is that we require 

a decision procedure for a given equational theory E (why else run Knuth-Bendix 

completion?), while inductive inference usually provides correct identification of 
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languages (grammars, patterns, etc.) only in the limit. However, this is not a real 

objection, as we can apply Knuth-Bendix completion (KBC) to any guess the 

inference procedure makes (to prevent under-generalisation - the guess is incorrect 

unless KBC converges) and check guesses in the equational theory (to prevent over- 

generalisation - the guess is incorrect if any consequence of the guess is not provable 

in E). Thus, we may be able to correctly identify the grammar after a finite number of 

steps. 

Our other requirements are that 

l our inference proceeds on positive data only, i.e. while all examples of rules in the 

divergent sequence are presented to the inference procedure at some point, no 

counter-examples are ever identified; 

l a grammar for the language is returned, and not some other representation of the 

language. 

It is known [ 121 that the full class of regular tree languages cannot be learned under 

such circumstances. However, special cases of regular tree languages have been shown 

to be learnable under some circumstances [34], and we believe that learning with the 

additional checking provided by the equational theory (as mentioned above) will 

prove to be more powerful than unassisted learning. 

The authors are working on an inductive inference algorithm to dovetail with the 

algorithm presented in this paper. 

9.2. E.utensions to other classes of languages 

Comon [S] has shown that an order-sorted signature is nothing but a regular 

tree automaton and, hence, that the term set of a signature (or of any given sort) 

must be a regular tree language. This would appear to suggest that our algorithm 

cannot possibly be extended to any wider class of languages, but this assumption is 

incorrect. There are some cases of nonregular tree languages which we may be able to 

deal with. 

We have already mentioned (Section 8) that the term declaration method solves a 

wider class of problems than the method in this paper. However, we have assumed 

the use of rewriting with dynamic sorting [32] throughout this paper and dynamic 

sorting effectively includes sort declarations [33] - as equations (rules) carry 

sort information, an equation which contributes nothing to the equational theory is 

exactly a sort declaration. For example, an equation between a term t and a 

“junk” term of sort S, say (a term introduced to the signature in order to appear 

only in this equation), is just a sort declaration t:S. Thus, we may without difficulty 

extend our method to that class of tree languages accepted by signatures with sort 

declarations. 

Another of the limitations of our method is that it can handle no examples in which 

the varying parts contain repeated instances of the same variable. We can overcome 

this in some cases if we relax our requirement that our new signature has the same 
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term set as the old and introduce operators in order to rename terms. Consider the 

following example. 

Sorts: A 

Operators: 

CIA 

,f: AAA-A 

Rules (x1,x2,x3, . . . ,are variables of sort A): 

.f’(c, x2, f(xl, x, x)) + c 

.f’(c, x2,.0x3, x4,f(xl, x, x))) -+ c 

.f(c, -G,f (x3, x4,f(x5, x6,f(x1, x, 4)) + c 

etc. 

This sequence cannot be generalised in its present form by our method because of 

the repeated occurrence of the variable x in every varying part. If we introduce the 

new sort S< A, the new operator h : AA +S, and the new rulef(xl,x,x)-+ h(xl,x), 

which remains within a conservative extension of the original equational theory, the 

sequence becomes 

f(e,x2,h(xl,x))+c 

f(c, x2,f(x3, x4, h(x1, x))) + c 

f’(c, x2,,f(x3,x4,f(x5,x6, k(x1, x))) ---f c 

etc. 

The language of varying parts LVP(Q”) is 

jh(xl, x), j-(x3,x4, k(xl,x)), f(x3,x4,f(x5,x6, h(xl,x))), . . . 1. 

LVPc (Q”) is a regular tree language and a generalising solution is given by 

Sorts: A, S 

Ordering: S < A 

Operators: 

c:A 

f: A A A + A 

f:AAS+S 

k: AA-+S 

with the generalising rule 

.f (G 4 Y) --f c 
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This rule, when added to the following two rules, where x,x1 are variables of sort 

A and y is a variable of sort S, gives a complete system: 

The set of cases in which techniques like this are applicable to expand the class of 

examples we can solve is under investigation. 

9.3. Combination of methods 

An interesting approach is to use a combination of methods, for example, signature 

enrichment and auxiliary operators [23,28,29-j. Since these two methods are com- 

plementary (each solves some examples the other cannot solve, Theorem 8.7) it is 

reasonable to expect that a combination of the two methods will be more powerful 

than either method alone. For example, a combined approach could be used to solve 

a problem with infinitely many variables and one or more occurrences in which 

a “counting” context is required. 

Exactly which of the methods mentioned in Section 8 are suitable for combination 

in this way requires investigation. 

10. Conclusions 

Term rewriting is a powerful proof tool for reasoning about algebraic specifications. 

In practice, many algebraic specifications give rise to infinite complete sets of rules. 

We present an effective algorithm which solves some cases of divergence in the 

Knuth-Bendix completion algorithm, starting from a grammar characterising the 

infinite rule set. We replace the infinite set of rewrite rules by a finite complete set by 

enriching the original (order-sorted) signature with new sorts and new operator 

arities, while remaining within a conservative extension of the original system, and 

within the original term set. The complexity of the new rewriting system is no worse 

than that of the original system. We characterise the class of examples to which this 

approach is applicable by regular tree languages. Our algorithm effectively constructs 

tree automata which recognise these languages. Our approach is distinguished from 

others by this characterisation and the fact that we preserve the original term set. We 

prove that our approach is complementary to some others in the literature. 

The algorithm which we have given is, as we have seen, only a part of the full 

process of transforming an infinite set of rewrite rules R (or more accurately a diver- 

gent case of Knuth-Bendix completion) into a finite complete set of rules. We have 

shown that if we enrich the original signature C in an appropriate way then at least in 

some cases we arrive at a signature C’ in which there exists a complete set of rules, with 

respect to the original equational theory, which may not be true in C. We find this rule 
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set effectively. Obviously, this approach, or any other, is possible only if the word 

problem under consideration is decidable and, therefore, it is only applicable in an 

enumerable number of cases. 
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