
Implementing Algebraically Specified Abstract Data Types

in an knperative Programming Language

Muffy Thomas,
Dept. of Computing Science,

University of Stiding,
Stirling, Scotland.

Abstract
We consider one aspect of the implementation of algebraically specified ADTs: choosing data

structures for an efficient implementation. The class of hierarchical ADTs which insert and access data
without key is considered. The storage relations and storage graphs (relations with additional efficiency
information) of an ADT are defined and we discuss how implementation decisions can be made
according to their properties.

1. Introduction

The algebraic specification of abstract data types, ADTs, [ADJ] [EhM], encourages the construction

of correct and efficient programs by separating the two concerns of specification and implementation.

The specifier concentrates on problem solving and capturing the intended behaviour of the data objects.

When the specifier is satisfied that the specification is in some sense good (perhaps consistent,

complete and satisfies some required properties), then the specification may be implemented.

The implementer concentrates on the problems of efficient representation and storage management

in the implementing language whilst ensuring correctness. The degree of difficulty of implementation is

inversely related to the similarity between the specification language and the implemententation

language.

There has been considerable research into methodologies and techniques for algebraic

specification [Geh] [PeV], and into the implementation of ADTs by functional programs, [Moi] [Pro] [Sub].

Nthough students and programmers have been implementing ADTS in imperative languages for some

time according to intuition and informal rules, there is little methodology and there are few software tools

available to aid the implementation of ADTs correctly and efficiently.

Here we consider some of the problems of implementing ADTs in a language such as Pascal.The aim

of the paper is twofold. The first is to formalise some aspects of the problems of choosing the

implementing data structures; we consider choosing linked data structures for the class of hierarchical

ADTs which do not insert or access data by key. The second is to discuss how an efficient implementation

can be constructed using the chosen data structures.

1.1 Outline of Paper

First, we shall formalise, for a class of ADTs, the notion of storage graphs. A storage graph is a graph

representation of an element of an ADT. Each storage graph is a directed graph with some nodes

designated as access nodes.The edges are labelled by a storage relation and the nodes are labelled by a

contents set. Given an ADT, a class of storage relations is defined. They are derived from the

specification and describe the order in which the data items held in an element of an ADT may be

traversed, or reached. The class of contents sets is derived from the class of storage relations. The

access nodes are deduced from the implementation of the operations of the ADT as operations on

storage relations.

Second, we discuss how to choose the implementing data structures according to the properties ef

198

the storage graphs of an ADT. As an example we show how to choose the data structures for a linked

implementation of a Queue specification. Finally, we briefly discuss how to construct an implementation

of the operators of an ADT using the chosen data structures.

2. Related Work

Most related work is concerned with either imperative implementations for model-based

specifications [Kan] [Low] [Row] [Set], or functional implementations for equational specifications [Ape]

[Moi] [Sub]. There is little related work on the problem of imperative implementations for equational

specifications. The [Ape] project analyses equational specifications for a singly-linked list and

doubly-linked list implementation; but'because the system is knowledge-based and without a formal

methodology, there are problems with the integrity of the system. The idea of representing data

structures by directed graphs was first suggested in the early seventies by both [Ear] and [Ros] (the latter

with a restriction to connected digraphs). One aim of the present paper is to reconsider these digraph

approaches within the lramework of algebraic specification and high level imperative programming

languages with user defined data types.

3. Keyless Abstract Data Types

In this section we define some notation for the class of hierarchical ADTs without key and we discuss

the reasons for restricting attention to this class.

Some familiarity with equational algebraic specification is assumed; for example, see [EhM] and

[ADJ]. A specification consists of a signature T_, and a set 5, of equations. Specifications are hierarchical

[Bro] and include two designated sorts, the derived sort and the primitive sort.

The figure below displays a taxonomy of ADTs: we shall consider the class of ADTs which we call

keyiess ADTs.

N)T

. . . Queue Stack Tree . . j S p l i c i I m p l i c i t

..~ Set Array Hash_Table Priority_Queue...

A keyless ADT imposes a structure on the elements of the primitive sort which is independent of

any existing relationship between the elements. Storage and retrieval are specified by reference to some

chronological ordering.

A keyed ADT imposes a structure on the elements of the primitive sort which is dependent on some

property of the elements. If the key is explicit, the storage and retrieval are specified by reference to some

relation between indices and primitive elements. If the key is implicit, then storage and retrieval is

specified by reference to some ordering relation between primitive elements.

Clearly, the way in which an ADT is implemented depends on whether and how the ADT uses keys.

Moreover, whereas the implementation of keyless ADTs may, in general, be constructed without

reference to an algorithm or program using the ADT, the implementation of keyed ADTs is much more

199

dependent upon the dynamic use of the ADT. In the following, we shall consider only keyless ADTs.

Definition: A hierarchical ADT is a specification (:5,E) containing at least two

distinguished sorts, a derived sort -~ and a primit ive sort 8. The primit ive

specification [Bro] is denoted (Z;p,Ep).

Definition: Let (:£,E) be a hierarchical specification. (T,,E) is keyless

i f f

i) V Y-,w ,~: if 7.,w, ~ is inhabited then w ¢ { 8,'¢ }*,

ii) V .T,w,8: if T.w, ~ is inhabited then w = ~,

iii) the equations in E~p, where \ is set difference, do not contain operators

from Z,p.

3.1 Partitioned Specifications

In order to discuss arbitrary specifications, an operator classification is necessary. Our classification

extends the [KaS] classification of generators and defined functions.

The set of generators of a signature Z, is denoted ~g. We make a further subdivision of the defined

operators. For example, some operators, such as pop in the usual Stack specification can be defined as

"eliminators", and some, such as top, as "selectors". We formalise this distinction by designating disjoint

sets of operators in a hierarchical specification.

Definition: A part i t ioned specification (T,,E)is a hierarchical, keyless

specification in whicl~ the operators of Z, are partitioned into 6 classes: ~:gd, :~gp,

T. e, T. r, Z, s, and 7, o. The arities of the operators in each class are constrained as

follows:

Z;g d C 7_.,w,, ~ where w ~{8,~} Z;gp = generators of T.p

7~s = :E~:,8 ~e _C 7_,I:,i:

Z, r C_ 2"c,'c 7_,g = :Eg d LJ 2gp.

The partition classes denote the generator (derived), generator (primitive), eliminator, rearranging,

selector and any other operators resp. The partition is given by the user; we now explain the ideas behind

the definition. Generators define all the values of the specification, terms containing only generators and

variables are called generator terms. A selector is an operator which returns elements of the primitive

type. An eliminator is an operator which eliminates, or removes, elements of the primitive type contained

in a generator term of the derived type. For example, the operator tail is an eliminator in the usual

specification of lists; the result of an application of tail to a list generator term is always another list which

contains fewer terms of the primitive sort. A rearranging operator is an operator which preserves the

primitive type elements contained in a generator term of the derived type. For example, the operator

reverse is a rearranging operator in the usual specification of lists; the result of an application of reverse to

a list generator term is always another list containing exactly the same primitive terms.The remaining

operators are in the "others" partition. This may include predicates and any operators which add primitive

type elements to derived type elements but which are not designated as generators.

200

3.2 Semantic Requirements

In order to prove the classifications given in later sections, it will be necessary to ensure that there is

at least one ground generator term in each equivalence class induced by the equations. Therefore

specifications should be consistent and complete [KaS]. Completeness means that every term that is

the application of a defined function to a ground generator term can be shown to be equivalent to a

ground generator term. Errors are allowed, but do not propogate. The constant err is included in all

primitive signatures, it is an improper element; all other elements are proper. In the following,

specifications are partitioned, keyless, consistent and complete.

The following specification of Queue will be used to illustrate the subsequent definitions.

We omit mention of the primitive operations on Nat.

spec Queue
basedon Nat
sorts queue
opns eqns V q:queue, d,d':nat.
eq: queue front(eq) = err
add: queue,nat-> queue dequeue(eq) = eq
front: queue -> nat dequeue(add(eq,d)) = eq
dequeue: queue -> queue dequeue(add(add(q,d),d '))= add(dequeue(add(q,d)),d')
isempty: queue -> bool front(add(eq,d)) = d

front(add(add(q,d),d ')) = f ron t (add(q ,d))
isempty(eq) = t rue
isempty(add(q,d)) = false

partition ,T_,g d = {eq,add} T_, e = {dequeue} T. s = {front} .T_, r = {} .T_, o = {isempty}

4. Linked Data Structures

Data structures in languages such as Pascal are classified by storage allocation mechanism, namely

static or dynamic. Implementation methods are classified accordingly. Array based implementation, or

sequential allocation, exploits the fact that the index type is ordered. If arithmetic operations are also

available in the index type, then related items may be stored at positions whose difference is defined by

an arithmetic expression. In contrast, direct implementation, or linked allocation, links cells together

explicitly. Because the positions of free cells are not related, (they are removed one at a time from the

heap at runtime), cells containing related items must be explicitly linked together. Linked implementations

use only as much space as is needed (apart from the overhead of links) whereas sequential

implementations may waste space. However, sequential allocation may be preferable when specifications

are bounded, or when keyed (random) access to stored items is required. Because our specifications are

not bounded and specify keyless ADTs, only linked implementations are considered.

A linked implementation requires the definition of a data cell data structure and a head cell data

structure.

Data cells contain the "data", ie. elements of the primitive sort; together they form an implementation

structure (for example, a singly-linked list). The implementer must be able to deduce from the axioms

which data cells should be linked together; namely, which primitive type elements should be related. For

example, we must decide, for a binary tree, whether we should be able to retrieve the child of a node, or

the parent of a node, or both, efficiently. A methodology for deriving implementation structures is

201

required.

Data cells are only accessed through a head cell. The head cell represents the element of the

derived type by holding the address, or index, of one or more positions in the implementation structure.

The nature and number of positions held in a head cell can affect program efficiency; an additional

location in the head cell can reduce the time complexity of several procedures. There are no fixed rules

for determining which positions the head cell must refer to and we just rely on experience and reasoning.

[Mar] calls such positions "naturally designated positions". For example, we would include the top

position in a stack head cell, orthe root, and possibly the leaves, in a tree head cell. Clearly the choice of

designated, or access, positions depends on both the underlying implementation structure and the

operations of the ADT; a methodology for deriving access positions from implementation structures and

operations is required.

5. Storage Relations

In this section we define the storage relations of an ADT. A storage relation describes the way in

which primitive sorted terms, the "data", are removed and selected from a term of the derived sort, the

"data structure". The relation incorporates some implementation decisions because, in general, there are

several ways of deriving a particular term of the primitive sort from a term of the derived sort. We define

some properties of storage relations which are useful from an implementation point of view and show how

an ADT can be classified according to its storage relations.

Given a term t, of the derived sort, a particular term d, of the primitive sort, may be retrieved by

applying various permutations of rearrangers, eliminators, and a selector. Rearrangers and eliminators

may be arbitrarily interleaved; the application of the selector must of course be last. In general, d may be

described (if possible) by a term of the form: Cs(On(...(o 1 (t)..)) where Vi: 0..<J_<n: ~i ~ (T'r U E,e), ~s ~ E's' h

many specifications there will be several possible choices for Ol,...,o n. We will restrict our attention to the

following possibilities: o t ~(]~r U T.e) and Vi: l<i<n: oi OF"e"

The motivation for this restriction is as follows. The storage relations reflect a view of how data is

stored and retrieved in an element of the ADT; we look for the simplest structure which allows efficient

retrieval of the stored data. We therefore consider~ for every t of the derived sort, how the data it contains

may be retrieved (by elimination and selection), and how, after the rearrangement of t, the data is

retrieved (by elimination and selection). For each term of the primitive sort there may be one, many, or no

terms describing its retrieval from a term of the derived sort. The storage relation defines the order in

which primitive terms are retrieved given these restrictions. The relation ensures that the efficiency of

selection, (repeated) elimination and rearrangement are taken into account; the efficiency of repeated

rearrangement is not ensured, if it is intended then the user should define a new operator.

5.1 Terms with Variables

We are not concerned with the values of the terms of the primitive sort as such, but with their

posffions in ground generator terms of the derived sort. We define a new signature for each

specification; the signature contains 8-sorted variables in place of the primitive signature.

202

Definition: Let (T_.,E) be a specification with primitive signature T.:,p. Let X be an

infinite set of ~-soded variables distinct from those occurring in E. Let E*

denote (Y_.\ Y.p U X U err); the elements of X are now considered as constants

of sort 5. The partition of ::£ is given by taking (T_.*)g to be (:~gp U X U err); the

other partition classes are as before.

The equations in E. may be regarded as E*-equations, since no operators from Ep occur in E [section 3].

We may therefore consider the quotient term algebra T(T_.*)/-=E as a (Y_.,E)-algebra.

Because we want the 8-sorted constants to denote positions in -c-sorted ground generator terms, we

will consider only those congruence classes which contain ground generator terms with at most one

occurrence of each ~-sorted constant.

Definit ion: Let (~,E) be a specification.

T*(.T_.,E) =def{ C s T(Z:*)/-_- E I if t ~ C and t E T((E~)g) then t contains at most one

occurrence of each ~-sorted constant}

Some examples will i l lustrate this definition. If (~,E) is the Q u e u e specif ication and X={x l , x2 , . . . } ,

thenT*(;~,E) conta ins classes such as: [a d d (e q , x l)] and [d e q u e u e (a d d (a d d (e q , x 2) , x 2))] .

It does not contain the class [a d d (a d d (e q , x l) , x l)] . If (~,,E) is the sequence specif ication Seq

given in [Bro], then T*(%,E) contains classes such as:

[conc(m(xl),m(x2))], [conc(m(x3),m(x4))], and [conc(conc(m(xl),m(x2)),conc(m(x3),m(x4)))].

it does not contain the class [conc(conc(m(xl) ,m(x2)) ,conc(m(xl) ,m(x2)))] ; the function defined by conc

is partially defined on T*(~,E).

5.2 Relations

Given a term t, we def ine the storage relation at t; we begin by defining ~t, a subset of

T*(Z,E)~.

Definition: Let (:S,£) be a specif ication and let t ~ T(Z;*)'c.

$t =def { C ~ T*(T.,E)'C I 3n_>0 : 3~ 1 G n t: T_. e : 3t' ~. T(~:*).~ :

(([t] = [t ']) v (3~ r~E r : [t '] = [G r (t)])) A (Gn(. . .GI(t ')_.)EC)} .

In the Queue example, given t = [add(add(eq,xl) ,x2)] , St = { [add(add(eq,xl) ,x2)] , [add(eq,x2)], [eq] } ; St

consists of the classes containing the subqueues of t.

Definition: Let (&E) be a specif ication, and let t ~ T(~*). c . The e l im ina t i on

relation --> on St is defined by

C -> C' =def 3° '~:Te: o'(C) = C', for C,C' ¢ St .

It is important to note that --> does not denote the (syntactic) sub-term relation, although it may

203

coincide with it in some specifications such as Stack. In the Queue example,

[add(add(eq,xl),x2)] --> [add(eq,x2)]

because dequeue ([(add(add(eq,xl),x2))]) = [add(eq,x2)].

We now use the selectors and --> to construct a family of relations onT* (T.:,,E) ,3.

Definition: Let (Z,E) be a specification, and let t ~ T*(~). c. The storage relation at

t , ~ t , is the following binary relation:

D =>t D' =de f3~T.s : 3C,C'~ J,t:

((C-->C') A (a(C) = D) A (cr(C') = D')) for D, D' E T*(Z,F_.)&

The interpretation of ~ t depends on the specification. For example, in the usual S tack

specif ication ~ t denotes "after"; x = t Y means that x was put on the stack after y and is

therefore more accessible. In the Queue specification, ~ t denotes the converse, ie. "before"; x

~ t Y means that x was put on the queue before y and is therefore more accessible. In the Queue

example, given t = a d d (a d d (e q , x l) , x 2) , there is only one proper pair in s t, namely

[x l] ~ t [x 2] .

We will restrict the domain of ~ t to the proper "contents" of It]. Recall the notation f->(S) for the

image of S under f.

Definition: Let (T-,,E) be a specification and t ~ T(T_,*)¢. The contents set of t, ~t,

is defined as follows:

~t =def U { ~->(~t) I G ~ ~:s A Vc ~ C. c is proper}.

As an example, consider the specification of Stack with pop2, an operator which removes two items

at a time. Given t = push(push(push(push(create,xl),x2),x3),x4), then U. t = { Ix4], [x2] }.

5.3 Properties of Relations

We will, in the following sections, make implementation decisions based on properties of the

structures defined by storage relations on contents sets. The implementer must use his or her

imagination to decide which properties might be useful for the implementation; we define some such

properties below.

Various conditions may be imposed on a relation on a set and its elements; the following conditions

from [End] are standard: reflexive, transitive, symmetric, antisymmetdc, comparable, minimal, and maximal

We define some further conditions.

D~finition:

1. R* is the reflexive, transitive closure of R.

2. A relation R on set S is down-directed iff Vx,y: 3w: (x R* w A y R* w).

3. A relation R on set S is upwards-directed iff Vx,y: 3w: (w R* x A w R* y).

4. A relation R on set S is n-regular iff every element is related to no elements,

or to exactly n distinct elements.

204

5. A relation R on set S is (n:m)-regular iff it is not p-regular, for some p,

n<_p<m, and every element is related to no elements, or to no more than m

elements and no less than n elements.

6. A relation R on set S is singly-l inked linear iff R* on S is antisymmetric, all

pairs in R* are comparable and when S is non-empty, minimal and maximal

elements exist.

7. A relation R on set S is singly-linked circular iff R on S is antisymmetric and

1-regular, and R* on S is symmetric.

8. A relation R on set S is doubly-l inked linear iff R on S is symmetric, R* on S

is symmetric, all pairs in R* are comparable, and R on S i s (1:2)- regular.

9. A relation R on set S is s ingly- l inked down-d i rected iff R* on S is

antisymmetrio and R on S is down-directed.

10. A relation R on set S is doubly-linked circular iff R on S is symmetric, all pairs

in R* are comparable, and R on S is 2-regular.

We use the properties of storage relations to classify ADTs:

Definition: Let (T,,E) be a specification. When for every t ~ T(Y_,*).~, (~t ,~t) has

the property X (of being singly-linked linear etc.), we say that (.T_,,F_.) has storage

type X.

For example, we can show that Queue has a singly-linked linear storage type; the usual

specification of Stack also has this storage type. As further examples, consider the sequence

specification Seq, the usual specification for B inaryTree and the usual specification for List; these types

have doubly-linked linear, 2-regular singly-linked down-directed and singly-linked linear storage types

resp. If we add a circular shift operator to List ,the storage type becomes singly-linked circular ; if we add a

reverse operator (either using an append operator or using an auxiliary binary operator) then we have a

doubly-linked linear storage type. These results are not suprising; we would expect to implement stacks

and ordinary lists by similar data structures but we would not expect to implement reversible lists efficiently

with the same data structure. The proofs of these classifications have been done manually;

mechanisation of these proofs is planned [Sti].

6. Storage Graphs

In this section the storage graphs of an ADT are defined. A storage graph is a representation of an

element of an ADT; it is a directed graph with some additional information about which nodes should be

accessed efficiently at any time.

Definition: A storage graph is a tripZe (N,E,A) where (N,E) is a directed graph

with nodes N and edges E, and A is a non-empty subset of N whose elements

are calles access nodes.

205

Storage graphs will be defined for all classes [t] e T*(~,E). c. The nodes and edges are given by the

storage relations and contents sets; it remains for us to define the access nodes.

6.1 Access Nodes

The function of the set of access nodes is twofold. First, it defines the access to nodes in the digraph

by indicating which nodes are immediately accessible at all times. Clearly all nodes should be reachable;

namely, for each node in a storage graph, there should be an access node such that there is a path from

the access node to that node. (This is similar to the notion of a root ,or countable basis [Har] except that

the set is not required to be minimal.) Second, the set defines the space-time trade-off; namely,

membership of this set may be allocated to a position which is not necessary to ensure reachability but

would enable (time) efficient implementations of certain operations. We proceed to define the access

nodes according to these two principles.

6.1.1 Accessibility

The most "natural" access to the nodes of the digraph is that which is defined by the selectors.

Clearly designating selected nodes as access nodes ensures that selectors can be implemented in

constant time. However, these nodes alone do not ensure that all nodes are reachable, the nodes

selected after one application of rearrangement must be included. Together, these nodes are referred to

as the selected positions, or SP(t) given t ~ T(T.,*).~.

Definition: Let (I:,E) be a specification with selectors s 1 s n and rearrangers

r 1 r m. Let t e T(T-,*), c, the selected positions of t, SP(t), are defined by

SP(t) =def { Sl (t) Sn(t), s 1 (r 1 (t)) Sn(r 1 (t)) s 1 (rm(t)) Sn(rm(t)) }.

The selected positions ensure that all nodes are reachable.

Lemma: Let (T~E) be a specification. V t e T (Z;*)I;: Vx e ~t : 3 p e SP(t): (p ~ t x).

Proof: By defn. of ~t, there is a ~s in T., s and C in St st. ~s(C)=x. By defn. of St, there is an n_>0, ~1 ,'"'~n in

T-, e, and t' in St st. O'n(...c 1 (t')...) is in C. Either [t] = [t'], or there is a o" r in .T_, r st. [t']=[Crr(t)]. By defn. of

--> on St, [On. 1 ('"~1 (t')...)] --> C, [an.2(...cr 1 (t')...)] --> [On. 1 ('"~1 (t')...)] [t'] --> [~1 (t')]; by transitivity,

[t'] -=-> C. By the (transitive) defn. of ~t , [°'s(t')] ~ t ~s (c)" ~s (C)=x, and so [~s(t')] =%t x.

SP(t)={ [~s(t)], [~s(~r(t))] }; if [t']=[t] then p= [~s(t)] other~vise p= [~s(~r(t'))].

6.1.2 Space-Time Tradeoff

The selected positions define the nodes which can be designated as access nodes; which other

positions, in general, should be added for efficient implementations? The answer depends on the

structure of the storage relation and the operations of the ADT. For example, both Stack and Queue

have singly-linked linear storage type. The selected positions, in both cases, are the maximal positions,

given by top(t) and front(t) resp., for some t. After inspecting the operations of these ADTs, we would

expect, in the Queue example, to include the minimal position as an additional access node; we would

not expect to include this position among the access nodes of Stack, Additional access nodes will be

206

defined by the (additional) selectors which must be synthesised in order to implement the specification

by storage relations. The set of such selectors will called ST(t), for some t s T(:£*),~

A hierarchical, algebraic notion of implementat ion is adopted [Gog] [Nou]. Implementat ion is

essentially the process of imposing the structure of the (initial) algebra of the implemented ADT onto the

(initial) algebra of the implementing ADT. The operators of the implemented ADT may be implemented by

derived operators in the implementing ADT; techniques such as those in [KaS] al low us, under certain

circumstances, to synthesise derived operators automatically.

An algebraic specification of storage relations and an abstraction mapping between the storage

relations and the "c-sorted elements is required. The specification depends on the specification of sets

and relations, and also on the partition of the object specification. For the purposes of this paper we do

not consider how to give a parameterised specification of storage relations, nor do we give the entire

specif ication for the Q u e u e example. Instead, the relevant signatures are given; the set theoretic

equations are obvious and the others can be derived from the definitions in section 5.2. Specifications

are parameterised using a notation like that of Clear [San]; comments follow after "!".

meta U = sorts elem end

meta Spec = sorts "¢, 8 end

proc Set (D:U) = enrlch D + B o o l b y
data sorts set
opns
0
{_}

U
\
£

~ n s
end

set ! empty
elem -> set ! singleton
set,set -> set ! union
set,set -> set ! difference
elem,set -> bool ! membership
elem,elem -> bool ! equality
{omitted}
! Set

proc Pa i r (D :U)=enr i ch Dby
data sorts pair
opns
(_ , _) : elem,elem -> pair
s : pair -> elem
t : pair -> elem
eqns {omitted}
end ! Pair

! mk pair
! source element
! target element

Proc Edges (D :U)=en r i ch derivefrom Set(D) by nsetisset,• n is ~ , [_] i s { _ } end
+ derivefrom Set (Pair(D) [elem is pair])

by esetisset, U i s U , \ \ i s \ , ~ e is ~end
by

o~ns
sce : eset ,e lem -> eset } only pairs with elem as source
tgt : eset,elem -> eset t only pairs with elem as target
maps: eset -> nset ! map s
inapt : eset -> nset ! map t
eqns
allS:eset, x:pair, y:elem, sce(S U {x}, y) = sce(S,y) U {x} if (s(x) == y)
all S:eset, x:pair, y:elem, sce(S U {x}, y) = sce(S,y) if (-,(s(x) == y))
allS:eset, y:elem, sce(•,y) =

{rest omitted}
end ! Edges

207

proc Graph (S:Spec) = enrich Edges (S [elem is 5])
+ derive from Set (S [elem is "~]) by tset is set end
by

data sorts graph
qpns

: '~ -> nset
: "~ -> eset

(_ , _) : nset,eset -> graph
"~ -> tset

== : ~,~ -> bool
_ I

== : 5,5 -> bool
{rest of signature omitted}

eqns {omitted, equations depend on partition of S}
end ! Graph

Note that storage relations are now defined on all elements of T(Z,E)/_=F_.. Because the Graph

specification contains the object specification, the generator terms of S are subterms of the generator

terms of Graph(S), and the abstraction mapping comes for "free":

abs: Graph(s) -> S abs (~t ,=~) =deft.

A small constraint is imposed on the form of the specification of the derived operators (the

implementations of the operators of the object specification). In every equation of the form:

F(~.t,~t)=r.h.s.

nh.s. may not contain an occurrence of a subterm of t. The motivation for this restriction is that ultimately,

c-sorted terms will be implemented by variables of type head cell (in a given environment and store);

therefore definitions should not depend of the syntactic form of termsof the given ADT.

Consider, as an example, the implementation of Queue by Graph(Queue). The abstraction mapping

abs is given by the two equations:

abs (~eq ,~eq) = eq, and abs(~add(q,d),~add(q,d)) = add(q,d).

The operators of Queue are implemented by the following derived operators (in bold upper case) in

Graph(Queue).

V~:queue,D:nat .

EQ = (O , ~)

ADD ((~t ,=~t), D) = (~t U{D},=~) if (isempty(t))

ADD ((~t ,=~t) ,D) = (Ut U { D }, =~t U { (last(t), D) }) if~(isempty(t))

DEQUEUE (~.t ,~ t) = (~t \ { front(t) }, ~ t \\ sce(~t, front(t)))

FRONT (~t ,~t) = front(t)

ISEMPTY (~t ,~t) = isempty

where last is a derived operator in Queue with equations last(eq) = err and last (add(q,d)) = d .

In this example, SP(t) = { front(t) } , and ST(t) = { last(t) }.

Definition: Let (~E) be a specification and let t ~ T(Z*).~. The storage graph at t is

defined by the tuple: (Ut, ~ t , A(t)), where A(t) = SP(t) U ST(t).

208

7. Implementing Abstract Data Types

In this section we discuss how the storage type and storage graphs of an ADT can determine the

choice of implementing data structures. We briefly discuss how implementations are constructed.

7.1 Choosing Data Structures

In the absence of further information concerning the dynamic use of the ADT, the motivation for the

choice of (linked) data structures is that each "c-sorted element is represented by a storage graph. The

nodes of the graph are represented by data cells, the edges by pointers between data cells, and the

access nodes by a head cell.

The data typeof head cells is chosen according to the storage graphs of the ADT. The data type is a

product, or Pascal recordof pointers of type data cell. The number of pointer fields is defined according

to the cardinality of the access node sets in the storage graphs. Namely, for each term t, there will be a

one-one correspondence between the elements of A(t) and the fields of the head cell. (Note that in

Pascal a record type containing exactly one field whose type is AT, where T is some data type, is

equivalent to the type AT.)

The data type of data cells is chosen according to the storage type of the ADT. The data type is a

record consisting of one field whose type is the (representation) of the primitive sort, and when the

storage type is m- or (n:m)-regular, it contains m pointers of type data cell, (If the storage type is not regular

then another record type is necessary in order to link together data cell pointers. We do not pursue this

as we believe that ADTs with non-regular storage types cannot be specified as keyless ADTs.)

Consider the data structures for Stack and Queue. Both specifications have the same storage type,

singly-linked linear; therefore for both the data cell is

datacel l = record contents: integer; next: ^data_cell; end

In Stack, the cardinality of the access node sets is at most I and in Queue it is at most 2.The head cell

for Stack is ̂ data_cell and for Queue it is record first:^data_cell; last:^data cell; end.

Consider the Seq example; it has doubly-linked linear storage type and the cardinality of the access

nodes sets is at most 2, (there are no synthesised selectors in the Graph implementation and for all t ,

ST(t) = { first(t), last(t) }. The implementing data structures are:

datace l l = record contents: integer; succ: "dataceil; pred: ̂ data cell; end;

head_cell = record first: ^data_cell; last: ^data_cell; end;

7.2 Constructing an Imperative Implementation

The details of implementation cannot be presented here and so only a brief outline follows.

It is not difficult to see that the data structures given in the previous section allow time-efficient

implementations to be constructed. Of course the data structures alone do not ensure correct

implementation, many properties of the storage relations, for example antisymmetry, are not ensured by

the pointer types of Pascal.

The programming language, with the appropriate definitions of head_cell and data_cell, must be

specified as an ADT; assume the specification is called ProgLang. For a given ADT S, the operations of

Graph(S) must be implemented (in the usual way) by derived operators in ProgLang. These operators

may be regarded as procedures. Elements of ProgLang are triples (v,p,c~) where v is a (head cell)

209

identifier, p is an environment, and e a store. Implementation can be summarised by the following

(commutative) diagram; assume [t] ~ T(~:)/-=F~ and t i t] =[t'J.

[t] c; ~ It1

(tLt, ~ t) 0 ") (lit', ~ t ') [o
(lit, ~ t , A(t)) p (lit', ~ t ' , A(r))

(v,p,c;) c; ' " ~ (v', p', c~')

In the Queue example, if a is add, then G' is the ADD given in section 6.1.2. ~", ADD", is defined

by ADD"((~t, =:4, A(t)), D) = (ADD(~t, ~ t), { front(t) } U { D }) if -~ (isempty(t))

ADD"((t~t, ~t, A(t)), D) = (ADD(lit, =~t), { D }) if (isempty(t))

The definition of abs" is not as straightforward as abs and abs'. The domain of abs" has to be defined

by giving a representation invariant [KaS] to ensure that head cells point to valid queues; the mapping

itself is quite complicated because of the nature of imperative languages with pointers.

Finally, a brief note on efficiency. First, transformations in the programming language may further

improve the efficiency of the implementation. For example, the head cell of a reversible list may also

contain information about how the storage relation is represented by the fields of the data cells. Second,

we may wish, in some circumstances, to "trade" back some space for time; namely, to make the access

node set a countable basis. In the implementation, there is a time overhead associated with each access

node; namely, the head cell has to be adjusted according to changes to the implementation structure. In

some cases this overhead may outweigh the benefits of constant time access to some position(s); then it

would be preferable to remove the position(s) from the access node set (thus making access to them

linear).

8. Conclusions and Future Work

We have formalised some aspects of the efficient implementation of ADTs using imperative data

structures. Our approach agrees with intuition; when it is applied to familiar examples it produces

expected results. The approach is influenced by two factors: the properties which the implementer uses

to classify ADTs, and the partitioning of signatures. The properties should be useful from the

implementation point of view and the partitioning must be sensible.

210

The investigation into a methodology for imperative implementations of ADTs has only begun and

much work remains to be done. Several topics require further formalisation and the application of the

definitions must be considered; it is hoped that the classificat}on of ADTs by storage type may be

proved/disproved with the help of an equational reasoning laboratory such as ERIL [D;c]. Some additional

properties of the eliminator and rearranging partition classes may be required in order to prove properties

such as the well-foundedness of storage relations. A large library of storage types would be useful, and

the approach should be extended to include other classes of ADTs.

Acknowledgements

I would like to thank Roy Dyckhoff, Alan Hamilton, Moira Norrie, Chic Rattray and Don Sannella for

many discussions and helpful comments on the topic of this paper.

References

[ADJ] Goguen J.A.,Thatcher J.W.,Wagner E.G., "ADJ: An Initial Approach to the Specification,
Correctness and Implementation of Abstract Data Types", Current Trends in Programming
Methodology, Chapter 5, 1978.

[Ape] Bartels U.,Olthoff W.,Raulefs P., "APE: An Expert System for Automatic Programming from
Abstract Specifications of Data Types and Algorithms." MEMO SEKI-BN-81-01, Institut fur
Informatik, Universitat Kaiserslautem, 1981.

[Bro] Broy M., "Algebraic Methods for Program Construction:The Project CIP", Ix:J. 199-222, Nato ASt
Series voL F8, Program Transformation and Programming Environments, Springer-Verlag 1984.

[Dic] Dick, A.J.J., "Equational Reasoning and Rewrite Sysytems on a Lattice of Types," PhD. Thesis,
Dept. of Computing, Imperial College, London,1986.

[Ear] Earley J., "Toward and Understanding of Data Structures",C.A.C.M. voL 14, no.10, 1971.

[EhM] Ehrig H.,Mahr B., Fundamentals of Algebraic Specification t, EATCS Monographs on
Theoretical Computer Science, Springer-Verlag 1985.

[End] Enderton H.B., Elements of Set Theory, Academic Press 1977.

[Geh] Gehani N., McGettdck A.D (Eds.), Software Specification Techniques, Addison-Wesley 1986.

[Har] Harary F., Graph Theory, Addison-Wesley, Reading, Mass.,1969.

[Kan] Kant E., Barstow D.R.,"The Refinement Paradigm:The Interaction of Coding and Efficiency
Knowledge in Program Synthesis", IEEE Trans. on Soft. Eng.,vol SE-7, no.5, Sept. 1981.

[KaS] Kapur D.,Srivas M., "A Rewrite Rule Based Approach for Synthesising Abstract Data Types,
CAAP'85", Lecture Notes in Computer Science ,vol. 185,Springer-Verlag.

[Low] Low J.R., "Automatic Data Structure Selection:An Example and Overview" ,CACM ,vol. 21 no. 5,
May 1978.

[Mar] Martin J., Data Types and Data Structures, Prentice Hall 1986.

[Mo~ Moitra A., "Direct Implementation of Algebraic Specification of Abstract Data Types", IEEE
Trans. on Soft. Eng., vol SE-8, no. 1, Jan, 1982.

211

[NOU]

[PeV]

[Pro]

[Ros]

[Row]

[San]

[Set]

[stq

[Sub]

Nourani C.F., "Abstract Implementations and Their Correctness Proofs", J.A.C.M., vol. 30, no.2,
1983.

Pequeno T.H.C., Veloso P.A.S., "Do Not Write More Axioms Than You Have To", Proceedings of
tntermational Computer Symposium, Vol 1., 1978.

Prospectra Project Summary, ESPRIT Project no. 390.

Rosenberg, A.L., "Symmetries in data graphs", SlAM J.Comput. 1,1972.

Rowe L.A., Tong F,M., "Automating the Selection of Implementation Structures", IEEE Trans.
onSoft. Eng., vol SE-4, no. 6, Nov 1978.

Sannella D., "A Set-Theoretic Semantics for Clear", Acta Informatica, No. 21, 1984.

Freudenberger S.M,Schwartz J.T., Sharir M., "Experience with the SETL Optimizer," ACM
ToPLaS, voL 5, No. 1, Jan. 1983.

AIvey Project No. 007, Dept. of Computing Stirling,Stiding University, Stirling Scotland.

Subrahmanyam P.A., "A Basis for a Theory of Program Synthesis", Phd. Thesis extract,
USC Information Sciences Inst. and Dept of Computer Science, Univ. of Utah, 1980.

