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Abstract 
We consider one aspect of the implementation of algebraically specified ADTs: choosing data 

structures for an efficient implementation. The class of hierarchical ADTs which insert and access data 
without key is considered. The storage relations and storage graphs (relations with additional efficiency 
information) of an ADT are defined and we discuss how implementation decisions can be made 
according to their properties. 

1. Introduction 

The algebraic specification of abstract data types, ADTs, [ADJ] [EhM], encourages the construction 

of correct and efficient programs by separating the two concerns of specification and implementation. 

The specifier concentrates on problem solving and capturing the intended behaviour of the data objects. 

When the specifier is satisfied that the specification is in some sense good (perhaps consistent, 

complete and satisfies some required properties), then the specification may be implemented. 

The implementer concentrates on the problems of efficient representation and storage management 

in the implementing language whilst ensuring correctness. The degree of difficulty of implementation is 

inversely related to the similarity between the specification language and the implemententation 

language. 

There has been considerable research into methodologies and techniques for algebraic 

specification [Geh] [PeV], and into the implementation of ADTs by functional programs, [Moi] [Pro] [Sub]. 

Nthough students and programmers have been implementing ADTS in imperative languages for some 

time according to intuition and informal rules, there is little methodology and there are few software tools 

available to aid the implementation of ADTs correctly and efficiently. 

Here we consider some of the problems of implementing ADTs in a language such as Pascal.The aim 

of the paper is twofold. The first is to formalise some aspects of the problems of choosing the 

implementing data structures; we consider choosing linked data structures for the class of hierarchical 

ADTs which do not insert or access data by key. The second is to discuss how an efficient implementation 

can be constructed using the chosen data structures. 

1.1 Outline of Paper 

First, we shall formalise, for a class of ADTs, the notion of storage graphs. A storage graph is a graph 

representation of an element of an ADT. Each storage graph is a directed graph with some nodes 

designated as access nodes.The edges are labelled by a storage relation and the nodes are labelled by a 

contents set. Given an ADT, a class of storage relations is defined. They are derived from the 

specification and describe the order in which the data items held in an element of an ADT may be 

traversed, or reached. The class of contents sets is derived from the class of storage relations. The 

access nodes are deduced from the implementation of the operations of the ADT as operations on 

storage relations. 

Second, we discuss how to choose the implementing data structures according to the properties ef 
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the storage graphs of an ADT. As an example we show how to choose the data structures for a linked 

implementation of a Queue specification. Finally, we briefly discuss how to construct an implementation 

of the operators of an ADT using the chosen data structures. 

2. Related Work 

Most related work is concerned with either imperative implementations for model-based 

specifications [Kan] [Low] [Row] [Set], or functional implementations for equational specifications [Ape] 

[Moi] [Sub]. There is little related work on the problem of imperative implementations for equational 

specifications. The [Ape] project analyses equational specifications for a singly-linked list and 

doubly-linked list implementation; but'because the system is knowledge-based and without a formal 

methodology, there are problems with the integrity of the system. The idea of representing data 

structures by directed graphs was first suggested in the early seventies by both [Ear] and [Ros] (the latter 

with a restriction to connected digraphs). One aim of the present paper is to reconsider these digraph 

approaches within the lramework of algebraic specification and high level imperative programming 

languages with user defined data types. 

3. Keyless Abstract Data Types 

In this section we define some notation for the class of hierarchical ADTs without key and we discuss 

the reasons for restricting attention to this class. 

Some familiarity with equational algebraic specification is assumed; for example, see [EhM] and 

[ADJ]. A specification consists of a signature T_, and a set 5, of equations. Specifications are hierarchical 

[Bro] and include two designated sorts, the derived sort and the primitive sort. 

The figure below displays a taxonomy of ADTs: we shall consider the class of ADTs which we call 

keyiess ADTs. 

N)T 

. . .  Queue Stack Tree . . j S p l i c  i I m p l i c i t  

..~ Set Array Hash_Table . . . . . .  Priority_Queue... 

A keyless ADT imposes a structure on the elements of the primitive sort which is independent of 

any existing relationship between the elements. Storage and retrieval are specified by reference to some 

chronological ordering. 

A keyed ADT imposes a structure on the elements of the primitive sort which is dependent on some 

property of the elements. If the key is explicit, the storage and retrieval are specified by reference to some 

relation between indices and primitive elements. If the key is implicit, then storage and retrieval is 

specified by reference to some ordering relation between primitive elements. 

Clearly, the way in which an ADT is implemented depends on whether and how the ADT uses keys. 

Moreover, whereas the implementation of keyless ADTs may, in general, be constructed without 

reference to an algorithm or program using the ADT, the implementation of keyed ADTs is much more 
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dependent upon the dynamic use of the ADT. In the following, we shall consider only keyless ADTs. 

Definition: A hierarchical ADT is a specification (:5,E) containing at least two 

distinguished sorts, a derived sort -~ and a primit ive sort 8. The primit ive 

specification [Bro] is denoted (Z;p,Ep). 

Definition: Let (:£,E) be a hierarchical specification. (T,,E) is keyless 

i f f  

i) V Y-,w ,~: if 7.,w, ~ is inhabited then w ¢ { 8,'¢ }*, 

ii) V .T,w,8: if T.w, ~ is inhabited then w = ~, 

iii) the equations in E~p, where \ is set difference, do not contain operators 

from Z,p. 

3.1 Partitioned Specifications 

In order to discuss arbitrary specifications, an operator classification is necessary. Our classification 

extends the [KaS] classification of generators and defined functions. 

The set of generators of a signature Z, is denoted ~g. We make a further subdivision of the defined 

operators. For example, some operators, such as pop in the usual Stack specification can be defined as 

"eliminators", and some, such as top, as "selectors". We formalise this distinction by designating disjoint 

sets of operators in a hierarchical specification. 

Definition: A part i t ioned specification (T,,E)is a hierarchical, keyless 

specification in whicl~ the operators of Z, are partitioned into 6 classes: ~:gd, :~gp, 

T. e, T. r, Z, s, and 7, o. The arities of the operators in each class are constrained as 

follows: 

Z;g d C 7_.,w,, ~ where w ~{8,~} Z;gp = generators of T.p 

7~s = :E~:,8 ~e _C 7_,I:,i: 

Z, r C_ 2"c,'c 7_,g = :Eg d LJ 2gp. 

The partition classes denote the generator (derived), generator (primitive), eliminator, rearranging, 

selector and any other operators resp. The partition is given by the user; we now explain the ideas behind 

the definition. Generators define all the values of the specification, terms containing only generators and 

variables are called generator terms. A selector is an operator which returns elements of the primitive 

type. An eliminator is an operator which eliminates, or removes, elements of the primitive type contained 

in a generator term of the derived type. For example, the operator tail is an eliminator in the usual 

specification of lists; the result of an application of tail to a list generator term is always another list which 

contains fewer terms of the primitive sort. A rearranging operator is an operator which preserves the 

primitive type elements contained in a generator term of the derived type. For example, the operator 

reverse is a rearranging operator in the usual specification of lists; the result of an application of reverse to 

a list generator term is always another list containing exactly the same primitive terms.The remaining 

operators are in the "others" partition. This may include predicates and any operators which add primitive 

type elements to derived type elements but which are not designated as generators. 
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3.2 Semantic Requirements 

In order to prove the classifications given in later sections, it will be necessary to ensure that there is 

at least one ground generator term in each equivalence class induced by the equations. Therefore 

specifications should be consistent and complete [KaS]. Completeness means that every term that is 

the application of a defined function to a ground generator term can be shown to be equivalent to a 

ground generator term. Errors are allowed, but do not propogate. The constant err is included in all 

primitive signatures, it is an improper element; all other elements are proper. In the following, 

specifications are partitioned, keyless, consistent and complete. 

The following specification of Queue will be used to illustrate the subsequent definitions. 

We omit mention of the primitive operations on Nat. 

spec Queue 
basedon Nat 
sorts queue 
opns eqns V q:queue, d,d':nat. 
eq: queue front(eq) = err 
add: queue,nat-> queue dequeue(eq) = eq 
front: queue -> nat dequeue(add(eq,d)) = eq 
dequeue: queue -> queue dequeue(add(add(q,d),d '))= add(dequeue(add(q,d)),d')  
isempty: queue -> bool front(add(eq,d)) = d 

front(add(add(q,d),d '))  = f ron t (add(q ,d) )  
isempty(eq) = t rue 
isempty(add(q,d)) = false 

partition ,T_,g d = {eq,add} T_, e = {dequeue} T. s = {front} .T_, r = {} .T_, o = {isempty} 

4. Linked Data Structures 

Data structures in languages such as Pascal are classified by storage allocation mechanism, namely 

static or dynamic. Implementation methods are classified accordingly. Array based implementation, or 

sequential allocation, exploits the fact that the index type is ordered. If arithmetic operations are also 

available in the index type, then related items may be stored at positions whose difference is defined by 

an arithmetic expression. In contrast, direct implementation, or linked allocation, links cells together 

explicitly. Because the positions of free cells are not related, (they are removed one at a time from the 

heap at runtime), cells containing related items must be explicitly linked together. Linked implementations 

use only as much space as is needed (apart from the overhead of links) whereas sequential 

implementations may waste space. However, sequential allocation may be preferable when specifications 

are bounded, or when keyed (random) access to stored items is required. Because our specifications are 

not bounded and specify keyless ADTs, only linked implementations are considered. 

A linked implementation requires the definition of a data cell data structure and a head cell data 

structure. 

Data cells contain the "data", ie. elements of the primitive sort; together they form an implementation 

structure (for example, a singly-linked list). The implementer must be able to deduce from the axioms 

which data cells should be linked together; namely, which primitive type elements should be related. For 

example, we must decide, for a binary tree, whether we should be able to retrieve the child of a node, or 

the parent of a node, or both, efficiently. A methodology for deriving implementation structures is 
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required. 

Data cells are only accessed through a head cell. The head cell represents the element of the 

derived type by holding the address, or index, of one or more positions in the implementation structure. 

The nature and number of positions held in a head cell can affect program efficiency; an additional 

location in the head cell can reduce the time complexity of several procedures. There are no fixed rules 

for determining which positions the head cell must refer to and we just rely on experience and reasoning. 

[Mar] calls such positions "naturally designated positions". For example, we would include the top 

position in a stack head cell, orthe root, and possibly the leaves, in a tree head cell. Clearly the choice of 

designated, or access, positions depends on both the underlying implementation structure and the 

operations of the ADT; a methodology for deriving access positions from implementation structures and 

operations is required. 

5. Storage Relations 

In this section we define the storage relations of an ADT. A storage relation describes the way in 

which primitive sorted terms, the "data", are removed and selected from a term of the derived sort, the 

"data structure". The relation incorporates some implementation decisions because, in general, there are 

several ways of deriving a particular term of the primitive sort from a term of the derived sort. We define 

some properties of storage relations which are useful from an implementation point of view and show how 

an ADT can be classified according to its storage relations. 

Given a term t, of the derived sort, a particular term d, of the primitive sort, may be retrieved by 

applying various permutations of rearrangers, eliminators, and a selector. Rearrangers and eliminators 

may be arbitrarily interleaved; the application of the selector must of course be last. In general, d may be 

described (if possible) by a term of the form: Cs(On(...(o 1 (t)..)) where Vi: 0..<J_<n: ~i ~ (T'r U E,e), ~s ~ E's' h 

many specifications there will be several possible choices for Ol,...,o n. We will restrict our attention to the 

following possibilities: o t ~(]~r U T.e) and Vi: l<i<n: oi OF"e" 

The motivation for this restriction is as follows. The storage relations reflect a view of how data is 

stored and retrieved in an element of the ADT; we look for the simplest structure which allows efficient 

retrieval of the stored data. We therefore consider~ for every t of the derived sort, how the data it contains 

may be retrieved (by elimination and selection), and how, after the rearrangement of t, the data is 

retrieved (by elimination and selection). For each term of the primitive sort there may be one, many, or no 

terms describing its retrieval from a term of the derived sort. The storage relation defines the order in 

which primitive terms are retrieved given these restrictions. The relation ensures that the efficiency of 

selection, (repeated) elimination and rearrangement are taken into account; the efficiency of repeated 

rearrangement is not ensured, if it is intended then the user should define a new operator. 

5.1 Terms with Variables 

We are not concerned with the values of the terms of the primitive sort as such, but with their 

posffions in ground generator terms of the derived sort. We define a new signature for each 

specification; the signature contains 8-sorted variables in place of the primitive signature. 
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Definition: Let (T_.,E) be a specification with primitive signature T.:,p. Let X be an 

infinite set of ~-soded variables distinct from those occurring in E. Let E* 

denote ( Y_.\ Y.p U X U err); the elements of X are now considered as constants 

of sort 5. The partition of ::£ is given by taking (T_.*)g to be ( :~gp U X U err); the 

other partition classes are as before. 

The equations in E. may be regarded as E*-equations, since no operators from Ep occur in E [section 3]. 

We may therefore consider the quotient term algebra T(T_.*)/-=E as a (Y_.,E)-algebra. 

Because we want the 8-sorted constants to denote positions in -c-sorted ground generator terms, we 

will consider only those congruence classes which contain ground generator terms with at most one 

occurrence of each ~-sorted constant. 

Definit ion: Let (~,E) be a specification. 

T*(.T_.,E) =def{ C s T(Z:*)/-_- E I if t ~ C and t E T((E~)g) then t contains at most one 

occurrence of each ~-sorted constant} 

Some examples will i l lustrate this definition. If (~,E) is the Q u e u e  specif ication and X={x l , x2 , . . . } ,  

thenT*(;~,E) conta ins classes such as: [ a d d ( e q , x l ) ]  and [ d e q u e u e ( a d d ( a d d ( e q , x 2 ) , x 2 ) ) ] .  

It does not contain the class [ a d d ( a d d ( e q , x l ) , x l ) ] .  If (~,,E) is the sequence specif ication Seq 

given in [Bro], then T*(%,E) contains classes such as: 

[conc(m(xl),m(x2))], [conc(m(x3),m(x4))], and [conc(conc(m(xl),m(x2)),conc(m(x3),m(x4)))]. 

it does not contain the class [conc(conc(m(xl ) ,m(x2)) ,conc(m(xl ) ,m(x2))) ] ;  the function defined by conc 

is partially defined on T*(~,E). 

5.2 Relations 

Given a term t, we def ine the storage relation at t; we begin by defining ~t, a subset of 

T*(Z,E)~. 

Definition: Let (:S,£) be a specif ication and let t ~ T(Z;*)'c. 

$t =def { C ~ T*(T.,E)'C I 3n_>0 : 3~ 1 ..... G n t: T_. e : 3t' ~. T(~:*).~ : 

( ( [ t ] = [ t ' ] )  v ( 3~ r~E r : [ t ' ] = [G r ( t ) ] ) )  A ( Gn(. . .GI( t ' )_. )EC)} .  

In the Queue example, given t = [add(add(eq,xl) ,x2)] ,  St = { [add(add(eq,xl) ,x2)] ,  [add(eq,x2)], [eq] } ; St 

consists of the classes containing the subqueues of t. 

Definition: Let (&E) be a specif ication, and let t ~ T(~*). c . The e l im ina t i on  

relation --> on St is defined by 

C -> C' =def 3° '~:Te: o'(C) = C', for C,C' ¢ St . 

It is important to note that --> does not denote the (syntactic) sub-term relation, although it may 
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coincide with it in some specifications such as Stack. In the Queue example, 

[add(add(eq,xl),x2)] --> [add(eq,x2)] 

because dequeue ( [(add(add(eq,xl),x2))] ) = [add(eq,x2)]. 

We now use the selectors and --> to construct a family of relations onT* (T.:,,E) ,3. 

Definition: Let (Z,E) be a specification, and let t ~ T*(~). c. The storage relation at 

t ,  ~ t ,  is the following binary relation: 

D =>t D' =de f3~T.s :  3C,C'~ J,t: 

((C-->C') A (a(C) = D) A (cr(C') = D')) for D, D' E T*(Z,F_.)& 

The interpretation of ~ t  depends on the specification. For example, in the usual S tack  

specif ication ~ t  denotes "after"; x = t  Y means that x was put on the stack after y and is 

therefore more accessible. In the Queue specification, ~ t  denotes the converse, ie. "before"; x 

~ t  Y means that x was put on the queue before y and is therefore more accessible. In the Queue 

example, given t = a d d ( a d d ( e q , x l ) , x 2 ) ,  there is only one proper pair in s t, namely 

[ x l ]  ~ t  [ x 2 ] .  

We will restrict the domain of ~ t  to the proper "contents" of It]. Recall the notation f->(S) for the 

image of S under f. 

Definition: Let (T-,,E) be a specification and t ~ T(T_,*)¢. The contents set of t, ~t,  

is defined as follows: 

~t =def U { ~->(~t) I G ~ ~:s A Vc ~ C. c is proper}. 

As an example, consider the specification of Stack with pop2,  an operator which removes two items 

at a time. Given t = push(push(push(push(create,xl),x2),x3),x4), then U. t = { Ix4], [x2] }. 

5.3 Properties of Relations 

We will, in the following sections, make implementation decisions based on properties of the 

structures defined by storage relations on contents sets. The implementer must use his or her 

imagination to decide which properties might be useful for the implementation; we define some such 

properties below. 

Various conditions may be imposed on a relation on a set and its elements; the following conditions 

from [End] are standard: reflexive, transitive, symmetric, antisymmetdc, comparable, minimal, and maximal 

We define some further conditions. 

D~finition: 

1. R* is the reflexive, transitive closure of R. 

2. A relation R on set S is down-directed iff Vx,y: 3w: (x R* w A y R* w). 

3. A relation R on set S is upwards-directed iff Vx,y: 3w: (w R* x A w R* y). 

4. A relation R on set S is n-regular iff every element is related to no elements, 

or to exactly n distinct elements. 
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5. A relation R on set S is (n:m)-regular iff it is not p-regular, for some p, 

n<_p<m, and every element is related to no elements, or to no more than m 

elements and no less than n elements. 

6. A relation R on set S is singly-l inked linear iff R* on S is antisymmetric, all 

pairs in R* are comparable and when S is non-empty, minimal and maximal 

elements exist. 

7. A relation R on set S is singly-linked circular iff R on S is antisymmetric and 

1-regular, and R* on S is symmetric. 

8. A relation R on set S is doubly-l inked linear iff R on S is symmetric, R* on S 

is symmetric, all pairs in R* are comparable, and R on S i s (1:2)- regular. 

9. A relation R on set S is s ingly- l inked down-d i rected iff R* on S is 

antisymmetrio and R on S is down-directed. 

10. A relation R on set S is doubly-linked circular iff R on S is symmetric, all pairs 

in R* are comparable, and R on S is 2-regular. 

We use the properties of storage relations to classify ADTs: 

Definition: Let (T,,E) be a specification. When for every t ~ T(Y_,*).~, ( ~t ,~t) has 

the property X (of being singly-linked linear etc.), we say that (.T_,,F_.) has storage 

type X. 

For example, we can show that Queue has a singly-linked linear storage type; the usual 

specification of Stack also has this storage type. As further examples, consider the sequence 

specification Seq, the usual specification for B inaryTree  and the usual specification for List; these types 

have doubly-linked linear, 2-regular singly-linked down-directed and singly-linked linear storage types 

resp. If we add a circular shift operator to List ,the storage type becomes singly-linked circular ; if we add a 

reverse operator (either using an append operator or using an auxiliary binary operator) then we have a 

doubly-linked linear storage type. These results are not suprising; we would expect to implement stacks 

and ordinary lists by similar data structures but we would not expect to implement reversible lists efficiently 

with the same data structure. The proofs of these classifications have been done manually; 

mechanisation of these proofs is planned [Sti]. 

6. Storage Graphs 

In this section the storage graphs of an ADT are defined. A storage graph is a representation of an 

element of an ADT; it is a directed graph with some additional information about which nodes should be 

accessed efficiently at any time. 

Definition: A storage graph is a tripZe (N,E,A) where (N,E) is a directed graph 

with nodes N and edges E, and A is a non-empty subset of N whose elements 

are calles access nodes. 
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Storage graphs will be defined for all classes [t] e T*(~,E). c. The nodes and edges are given by the 

storage relations and contents sets; it remains for us to define the access nodes. 

6.1 Access Nodes 

The function of the set of access nodes is twofold. First, it defines the access to nodes in the digraph 

by indicating which nodes are immediately accessible at all times. Clearly all nodes should be reachable; 

namely, for each node in a storage graph, there should be an access node such that there is a path from 

the access node to that node. (This is similar to the notion of a root ,or countable basis [Har] except that 

the set is not required to be minimal.) Second, the set defines the space-time trade-off; namely, 

membership of this set may be allocated to a position which is not necessary to ensure reachability but 

would enable (time) efficient implementations of certain operations. We proceed to define the access 

nodes according to these two principles. 

6.1.1 Accessibility 

The most "natural" access to the nodes of the digraph is that which is defined by the selectors. 

Clearly designating selected nodes as access nodes ensures that selectors can be implemented in 

constant time. However, these nodes alone do not ensure that all nodes are reachable, the nodes 

selected after one application of rearrangement must be included. Together, these nodes are referred to 

as the selected positions, or SP(t) given t ~ T(T.,*).~. 

Definition: Let (I:,E) be a specification with selectors s 1 . . . . .  s n and rearrangers 

r 1 ..... r m. Let t e T(T-,*), c, the selected positions of t, SP(t), are defined by 

SP(t) =def { Sl (t) ..... Sn(t ), s 1 (r 1 (t)) ..... Sn(r 1 (t)) . . . .  s 1 (rm(t)) ..... Sn(rm(t)) }. 

The selected positions ensure that all nodes are reachable. 

Lemma: Let (T~E) be a specification. V t e T (Z;*)I;: Vx e ~t : 3 p e SP(t): ( p ~ t  x ).  

Proof: By defn. of ~t, there is a ~s in T., s and C in St st. ~s(C)=x. By defn. of St, there is an n_>0, ~1 ,'"'~n in 

T-, e, and t' in St st. O'n(...c 1 (t')...) is in C. Either [t] = [t'], or there is a o" r in .T_, r st. [t']=[Crr(t)]. By defn. of 

--> on St, [On. 1 ('"~1 (t')...)] --> C, [an.2(...cr 1 (t')...)] --> [On. 1 ('"~1 (t')...)] . . . . .  [t'] --> [~1 (t')]; by transitivity, 

[t'] -=-> C. By the (transitive) defn. of ~t ,  [°'s(t')] ~ t  ~s (c)" ~s (C)=x, and so [~s(t')] =%t x. 

SP(t)={ [~s(t)], [~s(~r(t))] }; if [t']=[t] then p= [~s(t)] other~vise p= [~s(~r(t'))]. 

6.1.2 Space-Time Tradeoff 

The selected positions define the nodes which can be designated as access nodes; which other 

positions, in general, should be added for efficient implementations? The answer depends on the 

structure of the storage relation and the operations of the ADT. For example, both Stack and Queue 

have singly-linked linear storage type. The selected positions, in both cases, are the maximal positions, 

given by top(t) and front(t) resp., for some t. After inspecting the operations of these ADTs, we would 

expect, in the Queue example, to include the minimal position as an additional access node; we would 

not expect to include this position among the access nodes of Stack, Additional access nodes will be 
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defined by the (additional) selectors which must be synthesised in order to implement the specification 

by storage relations. The set of such selectors will called ST(t), for some t s T(:£*),~ 

A hierarchical, algebraic notion of implementat ion is adopted [Gog] [Nou]. Implementat ion is 

essentially the process of imposing the structure of the (initial) algebra of the implemented ADT onto the 

(initial) algebra of the implementing ADT. The operators of the implemented ADT may be implemented by 

derived operators in the implementing ADT; techniques such as those in [KaS] al low us, under certain 

circumstances, to synthesise derived operators automatically. 

An algebraic specification of storage relations and an abstraction mapping between the storage 

relations and the "c-sorted elements is required. The specification depends on the specification of sets 

and relations, and also on the partition of the object specification. For the purposes of this paper we do 

not consider how to give a parameterised specification of storage relations, nor do we give the entire 

specif ication for the Q u e u e  example. Instead, the relevant signatures are given; the set theoretic 

equations are obvious and the others can be derived from the definitions in section 5.2. Specifications 

are parameterised using a notation like that of Clear [San]; comments follow after "!". 

meta U = sorts elem end 

meta Spec = sorts "¢, 8 end 

proc Set ( D:U ) = enrlch D + B o o l b y  
data sorts set 
opns 
0 
{_} 

U 
\ 
£ 

~ n s  
end 

set ! empty 
elem -> set ! singleton 
set,set -> set ! union 
set,set -> set ! difference 
elem,set -> bool ! membership 
elem,elem -> bool ! equality 
{omitted} 
! Set 

proc Pa i r (D :U)=enr i ch  Dby 
data sorts pair 
opns 
( _ , _ ) :  elem,elem -> pair 
s : pair -> elem 
t : pair -> elem 
eqns {omitted} 
end ! Pair 

! mk pair 
! source element 
! target element 

Proc Edges (D :U )=en r i ch  derivefrom Set(D) by nsetisset,• n is ~ , [ _ ] i s  { _ }  end 
+ derivefrom Set ( Pair( D ) [ elem is pair ]) 

by esetisset, U i s U , \ \ i s \ , ~  e is ~end  
by 

o~ns 
sce : eset ,e lem -> eset } only pairs with elem as source 
tgt : eset,elem -> eset t only pairs with elem as target 
maps: eset -> nset ! map s 
inapt : eset -> nset ! map t 
eqns 
allS:eset, x:pair, y:elem, sce(S U {x}, y) = sce(S,y) U {x} if (s(x) == y) 
all  S:eset, x:pair, y:elem, sce(S U {x}, y) = sce(S,y) if (-,(s(x) == y)) 
allS:eset, y:elem, sce(•,y) = 

{rest omitted} 
end ! Edges 
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proc Graph (S:Spec) = enrich Edges ( S [elem is 5] ) 
+ derive from Set ( S [elem is "~] ) by tset is set .... end 
by 

data sorts graph 
qpns 

: '~ ->  nset 
: "~ ->  eset 

( _ , _ )  : nset,eset -> graph 
"~ -> tset 

== : ~,~ -> bool 
_ I 

== : 5,5 -> bool 
{rest of signature omitted} 

eqns {omitted, equations depend on partition of S} 
end ! Graph 

Note that storage relations are now defined on all elements of T(Z,E)/_=F_.. Because the Graph 

specification contains the object specification, the generator terms of S are subterms of the generator 

terms of Graph(S), and the abstraction mapping comes for "free": 

abs: Graph(s) -> S abs ( ~t ,=~) =deft. 

A small constraint is imposed on the form of the specification of the derived operators (the 

implementations of the operators of the object specification). In every equation of the form: 

F(~.t,~t)=r.h.s. 

nh.s. may not contain an occurrence of a subterm of t. The motivation for this restriction is that ultimately, 

c-sorted terms will be implemented by variables of type head cell (in a given environment and store); 

therefore definitions should not depend of the syntactic form of termsof the given ADT. 

Consider, as an example, the implementation of Queue by Graph(Queue). The abstraction mapping 

abs is given by the two equations: 

abs ( ~eq ,~eq) = eq, and abs(~add(q,d),~add(q,d) ) = add(q,d). 

The operators of Queue are implemented by the following derived operators (in bold upper case) in 

Graph(Queue). 

V~:queue,D:nat .  

EQ = ( O , ~ )  

ADD ( (~t ,=~t), D) = (~t U{D},=~) if (isempty(t)) 

ADD ( ( ~t ,=~t) ,D ) = ( Ut U { D }, =~t U { (last(t), D ) } ) if~(isempty(t)) 

DEQUEUE ( ~.t ,~ t )  = ( ~t \ { front(t) }, ~ t  \\ sce( ~t,  front(t) ) ) 

FRONT ( ~t ,~t  ) = front(t) 

ISEMPTY ( ~t ,~t  ) = isempty 

where last is a derived operator in Queue with equations last(eq) = err  and last (add(q,d) ) = d .  

In this example, SP(t) = { front(t) } ,  and ST(t) = { last(t) }. 

Definition: Let (~E) be a specification and let t ~ T(Z*).~. The storage graph at t is 

defined by the tuple: ( Ut, ~ t ,  A(t) ), where A(t) = SP(t) U ST(t). 
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7. Implementing Abstract Data Types 

In this section we discuss how the storage type and storage graphs of an ADT can determine the 

choice of implementing data structures. We briefly discuss how implementations are constructed. 

7.1 Choosing Data Structures 

In the absence of further information concerning the dynamic use of the ADT, the motivation for the 

choice of (linked) data structures is that each "c-sorted element is represented by a storage graph. The 

nodes of the graph are represented by data cells, the edges by pointers between data cells, and the 

access nodes by a head cell. 

The data typeof head cells is chosen according to the storage graphs of the ADT. The data type is a 

product, or Pascal recordof pointers of type data cell. The number of pointer fields is defined according 

to the cardinality of the access node sets in the storage graphs. Namely, for each term t, there will be a 

one-one correspondence between the elements of A(t) and the fields of the head cell. (Note that in 

Pascal a record type containing exactly one field whose type is AT, where T is some data type, is 

equivalent to the type AT.) 

The data type of data cells is chosen according to the storage type of the ADT. The data type is a 

record consisting of one field whose type is the (representation) of the primitive sort, and when the 

storage type is m- or (n:m)-regular, it contains m pointers of type data cell, (If the storage type is not regular 

then another record type is necessary in order to link together data cell pointers. We do not pursue this 

as we believe that ADTs with non-regular storage types cannot be specified as keyless ADTs.) 

Consider the data structures for Stack and Queue. Both specifications have the same storage type, 

singly-linked linear; therefore for both the data cell is 

datacel l  = record contents: integer; next: ^data_cell; end 

In Stack, the cardinality of the access node sets is at most I and in Queue it is at most 2.The head cell 

for Stack is ̂ data_cell and for Queue it is record first:^data_cell; last:^data cell; end. 

Consider the Seq example; it has doubly-linked linear storage type and the cardinality of the access 

nodes sets is at most 2, (there are no synthesised selectors in the Graph implementation and for all t ,  

ST(t) = { first(t), last(t) }. The implementing data structures are: 

datace l l  = record contents: integer; succ: "dataceil; pred: ̂ data cell; end; 

head_cell = record first: ^data_cell; last: ^data_cell; end; 

7.2 Constructing an Imperative Implementation 

The details of implementation cannot be presented here and so only a brief outline follows. 

It is not difficult to see that the data structures given in the previous section allow time-efficient 

implementations to be constructed. Of course the data structures alone do not ensure correct 

implementation, many properties of the storage relations, for example antisymmetry, are not ensured by 

the pointer types of Pascal. 

The programming language, with the appropriate definitions of head_cell and data_cell, must be 

specified as an ADT; assume the specification is called ProgLang. For a given ADT S, the operations of 

Graph(S) must be implemented (in the usual way) by derived operators in ProgLang. These operators 

may be regarded as procedures. Elements of ProgLang are triples (v,p,c~) where v is a (head cell ) 
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identifier, p is an environment, and e a store. Implementation can be summarised by the following 

(commutative) diagram; assume [t] ~ T(~:)/-=F~ and t i t ]  =[t'J. 

[t] c; ~ It1 

(tLt, ~ t  ) 0 "  ) (lit', ~ t ' )  [o 
(lit, ~ t ,  A(t) ) p (lit', ~ t ' ,  A(r) ) 

(v,p,c;) c; ' "  ~ (v', p', c~') 

In the Queue example, if a is add, then G' is the ADD given in section 6.1.2. ~", ADD", is defined 

by ADD"( (~t, =:4, A(t) ), D) = ( ADD( ~t, ~ t  ), { front(t) } U { D } ) if -~ (isempty(t)) 

ADD"( (t~t, ~t, A(t) ), D) = ( ADD( lit, =~t ), { D } ) if (isempty(t)) 

The definition of abs" is not as straightforward as abs and abs'. The domain of abs" has to be defined 

by giving a representation invariant [KaS] to ensure that head cells point to valid queues; the mapping 

itself is quite complicated because of the nature of imperative languages with pointers. 

Finally, a brief note on efficiency. First, transformations in the programming language may further 

improve the efficiency of the implementation. For example, the head cell of a reversible list may also 

contain information about how the storage relation is represented by the fields of the data cells. Second, 

we may wish, in some circumstances, to "trade" back some space for time; namely, to make the access 

node set a countable basis. In the implementation, there is a time overhead associated with each access 

node; namely, the head cell has to be adjusted according to changes to the implementation structure. In 

some cases this overhead may outweigh the benefits of constant time access to some position(s); then it 

would be preferable to remove the position(s) from the access node set (thus making access to them 

linear). 

8. Conclusions and Future Work 

We have formalised some aspects of the efficient implementation of ADTs using imperative data 

structures. Our approach agrees with intuition; when it is applied to familiar examples it produces 

expected results. The approach is influenced by two factors: the properties which the implementer uses 

to classify ADTs, and the partitioning of signatures. The properties should be useful from the 

implementation point of view and the partitioning must be sensible. 
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The investigation into a methodology for imperative implementations of ADTs has only begun and 

much work remains to be done. Several topics require further formalisation and the application of the 

definitions must be considered; it is hoped that the classificat}on of ADTs by storage type may be 

proved/disproved with the help of an equational reasoning laboratory such as ERIL [D;c]. Some additional 

properties of the eliminator and rearranging partition classes may be required in order to prove properties 

such as the well-foundedness of storage relations. A large library of storage types would be useful, and 

the approach should be extended to include other classes of ADTs. 
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