
A SAT based algorithm for the matching

problem in bigraphs with sharing

Michele Sevegnani, Chris Unsworth, and Muffy Calder

Department of Computing Science, University of Glasgow, UK
{michele,chrisu,muffy}@dcs.gla.ac.uk

Abstract. Bigraphical reactive systems are a formalism for modelling
mobile computation. A bigraph consists of a place graph and a link
graph; reaction rules define how place and link graphs evolve. Bigraphs
originally supported only tree structures as place graphs, we have ex-
tended the formalism to bigraphs with sharing, which allow directed
acyclic graphs as place graphs. A major challenge for bigraph tool sup-
port (with or without sharing) is defining bigraph matching and provid-
ing an efficient algorithm. In the case of bigraphs with sharing, place
graph matching is a special case of the NP-complete, sub-graph isomor-
phism problem. We present the details of place graph matching and give
a sound and complete, efficient algorithm in SAT.

1 Introduction

Bigraphical reactive systems (BRSs) are an emerging formalism for modelling
mobile computation and pervasive systems. They were initially introduced by
Milner [1] to provide an intuitive fully graphical model capable of representing
both connectivity and locality. A BRS consists of a set of bigraphs, representing
the state of the system, and a set of reaction rules, defining how the system can
evolve.

F

A

G

C

D B

B

x y

z

b
b

b

b

b

b

b

E

Fig. 1: A bigraph.



An example bigraph is shown in Figure 1. The two dashed rectangles, called
regions, represent an association between the contained components such as a
common location, organisation or network. The ovals and circles are nodes, which
can represent physical or logical components within the system. Each node has a
type, denoted here by the labels A to G. Nodes can be arbitrarily nested and may
be situated in the intersection of one or more nodes. Each node can have zero,
one or many ports, indicated by bullets, which represent possible connections.
Actual connections are represented as links, depicted by green lines, which may
connect two or more ports. The grey squares are sites, these represent parts
of the model that have been abstracted away. The contents of a site can be
depicted as another bigraph, where the region of the bigraph is inserted into the
site. Outer and inner names can be used to indicate links (or potential links)
to other bigraphs. In Figure 1 for instance, x and y are outer names and z is an
inner name.

0 1

F A G B

D B E C

0 1 2

(a) Place graph

D

B

AC

EF

BG

yx

z

(b) Link graph

Fig. 2: Place graph (a) and link graph (b)

A peculiarity of bigraphs is the complete independence of the linking and
the placing of nodes, as suggested by the way that links cross boundaries in the
diagram in Figure 1. This characteristic is formalized by defining bigraphs in
terms of the constituent notions of place graph and link graph. Figure 2 shows
the place and link graphs for the bigraph from Figure 1.

In [2] we have extended bigraphs to include place graphs with intersecting
nodes, called bigraphs with sharing. This extension allows natural modelling of
overlapping topologies such as signal ranges in wireless networks, offices belong-
ing to more than one department, and overlapping biological zones and com-
partments. In bigraphs with sharing, a place graph is a directed acyclic graph
(DAG), which may be disconnected, whose roots are the regions of the corre-
sponding bigraph and leaves are its sites and atomic nodes. A node n0 is a parent
of a node n1 only if n0 contains n1 in the original bigraph.

A link graph consists of a hyper-graph whose vertices are the names and
nodes of the corresponding bigraph and hyper-edges are its links.

Reaction rules are used to model the dynamic properties of the system. Reac-
tions define how a system reconfigures place and link graphs. A reaction consists
of a pair (R,R′), where the redex R and the reactum R′ are bigraphs that can
be inserted into the same host bigraph. An example of a reaction rule for a BRS



BD B

x

b

b

D

B

x

b

b

Fig. 3: An example of a reaction rule.

is represented in Figure 3. This rule states that if there are two nodes, of types
D and B respectively, that share a link, then the node of type B can be moved
inside the node of type D. For example, it can be seen that the redex in Figure 3
is a match for the nodes of type D and B in the node of type F in the bigraph
in Figure 1. Therefore, the reaction can be applied. The resultant bigraph after
performing this reaction is shown in Figure 4.

F

A

G

C

D

B

B

x y

z

b
b

b

b

b

b

b

E

Fig. 4: The resultant bigraph after applying the reaction rule from Figure 3 to
the bigraph shown in Figure 1.

For an automatic computation of the full transition system generated by a
given BRS, it is of crucial importance to develop algorithms that detect effi-
ciently whether a redex is a sub-part of a bigraph. This problem is known in the
literature as the bigraph matching problem [3] and a prototypical implementation
has been presented in [4].

To this end, we propose a sound and complete algorithm that, given a target
and pattern place graph, will return a matching if one exists. It is then shown how
an instance of the bigraph matching problem can be expressed in conjunctive



normal form, which will allow it to be solved by any standard SAT solver such
as MiniSat [5].

– a definition of the bigraph matching problem for bigraphs with sharing,
– sound and complete algorithm for matching place graphs in bigraphs with

sharing,
– a SAT encoding of the matching algorithm and empirical tests.

In the next section we give an overview of bigraphs with sharing and in Sec-
tion 3 we define the bigraph matching problem. In Section 4 we discuss current
matching algorithms (for the non-sharing case). Our algorithm is given in Sec-
tion 5, with some examples, and in Section 6 we give the mapping to SAT and
some empirical results. Conclusions are given Section 7, followed by our plans
for future work.

2 Bigraphs with sharing

We now formally introduce bigraphs with sharing1. Let us fix some notational
conventions (see [1, p. 14]). We write S ] T for the union of two sets S and T

known or assumed to be disjoint. If a function f has domain S and S′ ⊆ S, then
f � S′ denotes the restriction of f to S′. Similarly, if f has codomain 2T and
T ′ ⊆ T , we write f �T ′ to indicate {t ∈ 2T

′

| ∃s ∈ S. t = (f(s) ∩ T ′)}. For two
functions f and g with disjoint domains S and T we write f ] g for the function
with domain S ] T such that (f ] g) � S = f and (f ] g) � T = g. By abuse of
notation, for a function f : S → T we sometimes write f(S′) to indicate the set
{f(i) | i ∈ S′}, where S′ ⊆ S. Hence, in this case f has domain 2S and codomain
2T . In the following we assume that names, node-identifiers and edge-identifiers
are drawn from three infinite sets, X , V and E , disjoint from each other. We
denote the interfaces of bigraphs by I, J,K.

A bigraph (with sharing) is said to be concrete if nodes and edges have unique
identifiers. It is abstract otherwise. When two concrete bigraphs differ only in
the naming, they are said to be support equivalent.

The standard definition of place graphs (see [1, p. 15]) has to be extended
in order to include sharing among places. This is achieved by representing place
graphs as DAGs, instead of forests. Observe that links and names are unaffected
by the introduction of overlapping places. Hence, the definition of link graphs
remains unchanged.

Definition 1 ([1, Def. 2.1] concrete place graph with sharing). A con-
crete place graph with sharing

F = (VF , ctrlF , prntF ) : m → n

is a triple, having an inner face m and an outer face n, both finite ordinals.

These index respectively the sites and roots of the place graph. F has a finite

1 For further details refer to [2].



set VF ⊂ V of nodes, a control map ctrlF : VF → K and a parent map prntF :
m ] VF → 2VF]n which is acyclic. Parent map prntF is said to be acyclic if

v ∈ αi
F ({v}) for some v ∈ VF then i = 0, where αF : 2VF → 2VF is a function

defined as follows:

αF (W )
def

=
⋃

v∈W

prntF �VF �VF (v) .

Then, according to the new definition, it is possible to have prntF (v) = ∅ for
some v ∈ m ] VF . It is useful to define a function mapping nodes and roots to
their children2:

prnt−1
F : VF ] n → 2m]VF ,

where prnt−1
F (v) = {u ∈ m]VF | prntF (u) = v}. We also indicate the transitive

closure of αF as α+
F . Any node or site having more than one parent is said to be

shared.
A bigraph with sharing is simply the pair of its constituents, a place graph

with sharing and a link graph.

Definition 2 (concrete bigraph). A concrete bigraph

F = (VF , EF , ctrlF , prntF , linkF ) : 〈k,X〉 → 〈m,Y 〉

consists of a concrete place graph with sharing FP = (VF , ctrlF , prntF ) : k → m

and a concrete link graph F L = (VF , EF , ctrlF , linkF ) : X → Y . We write the

concrete bigraph with sharing as F = 〈FP, F L〉.

Some slight modifications have to be made to the definition of composition.

Definition 3 ([1, Def. 2.5] composition of place graphs with sharing).
If F : k → m and G : m → n are two place graphs with disjoint sets of node

identifiers, their composite

G ◦ F = (V, ctrl, prnt) : k → n

has nodes V = VF ] VG and control map ctrl = ctrlF ] ctrlG. Its parent map

prnt : k ] VF ] VG → 2VF]VG]n is defined as follows:

prnt(w)
def

=





prntF (w) if w ∈ (k ] VF ) and prntF (w) ⊆ VF ,⋃
j∈J prntG(j) if w ∈ (k ] VF ) and prntF (w) = J ⊆ m,

prntF �VF (w) ∪
⋃

j∈J prntG(j) if w ∈ (k ] VF ), prntF �m(w) = J and

prntF �VF (w) 6= ∅,

prntG(w) if w ∈ VG.

Example 1. Let concrete place graphs F : 2 → 2, G : 2 → 1 and their composi-
tion G◦F be defined as in Figure 5. To show how the composition is performed,
consider node v2 in F . Its parent set is prntF (v2) = {0, v1}. The parent set of

2 Despite the use of the −1 notation, prnt−1

F is not the inverse of prntF .



site 0 in G is prntG(0) = {v′0}. Then, according to Definition 3, v2’s parent set
in the composite G ◦ F is computed as

prntG◦F (v2) = prntF �VF (v2) ∪
⋃

j∈J

prntG(j)

= {v1} ∪ prntG(0) = {v1} ∪ {v′0} ,

where J = prntF (v2) ∩ {0, 1} = {0}.

G 0

v′0 v′1

v′2

0 1

F 0 1

v0 v1

v2

0 1

G ◦ F 0

v′0 v′1

v′2

v0 v1

v2

0 1

Fig. 5: Concrete place graphs with sharing F : 2 → 2, G : 2 → 1 and their
composition G ◦ F : 2 → 1.

As expected, the composition of two bigraphs with sharing A and B is obtained
by separately composing their place graphs and link graphs. Formally, A ◦B =
〈AP ◦BP, AL ◦BL〉. The same holds for the definition of tensor product, i.e.
A⊗B = 〈AP ⊗BP, AL ⊗BL〉.

So far, only concrete bigraphical structures have been considered. Informally,
a procedure to turn a concrete bigraph into an abstract one, consists in discarding
all its identifiers and idle edges (refer to [1] for a more detailed account). The
inverse transformation is also possible.

Definition 4 (Concretion). If G is an abstract bigraph, then a concrete bi-

graph ˆG, called a concretion of G, is obtained by assigning to each node a unique

identifier v ∈ V and to each edge a unique identifier e ∈ E. The support of ˆG

is given by |̂ G|
def

= V ] E, where V ⊂ V and E ⊂ E are the identifiers used.

Observe that any two concretions A,B of the same bigraph are always sup-
port equivalent, written A l B. Moreover, there is a bijection ρ : |A| → |B| over
identifiers, called support translation, that transforms A into B. This is expressed
with the notation B = ρ�A.

Finally, subcomponents of a bigraph can be specified as follows.



Definition 5 (occurrence). A bigraph F occurs in a bigraph G if the equation

G = C1 ◦ (F ⊗ idI) ◦ C0 holds for some interface I and bigraphs C0 and C1.

When considering concrete bigraphs, node renaming has to be taken into ac-
count.

Definition 6 (concrete occurrence). A concrete bigraph F occurs in a con-

crete bigraph G if the equation G = C1 ◦(F
′⊗ idI)◦C0 holds for some interface I

and for some concrete bigraphs F ′, C0 and C1. Moreover, F l F ′, i.e. F ′ = ρ�F

for some support translation ρ.

An important property is that it is possible to determine an abstract occur-
rence starting from a concrete one. In other words, a bigraph F occurs in G

only if an arbitrary concretion of F occurs in an arbitrary concretion of G. Since
composition and tensor product are defined independently over the constituents
of a bigraphs, the previous two definitions can be reformulated by using place
graphs and link graphs only, i.e. F occurs in G only if FP occurs in GP and F L

occurs in GL.
In the remainder of this document it is assumed that bigraphs allow sharing,

unless stated otherwise.

3 The bigraph matching problem

The bigraph matching problem is a computational task in which a bigraph P ,
called pattern, and a bigraph T , called target, are given as input, and one must
determine whether P occurs in T , as stated in Definition 5. Before presenting a
general description of our algorithm we introduce useful notation and establish
some propositions about the relationship between properties for place graphs
and well-known graph theoretic properties.

One difference between place graphs and DAGs is the presence of roots and
sites. As a consequence, the definition of degree of a vertex has to be extended.

Definition 7 (Degree). Given a concrete place graph B = (VB , ctrlB, prntB) :
m → n, two functions indeg : m ] VB → N × {∗, •} and outdeg : VB ] n →
N× {∗, •} may be defined as follows:

indeg(v)
def

=

{
(|Pv|, ∗) if |P ∗

v | > 0

(|Pv|, •) otherwise,

outdeg(v)
def

=

{
(|Cv|, ∗) if |C∗

v | > 0

(|Cv|, •) otherwise.

Sets Pv
def

= {p | p ∈ (prntB � VB(v))} and P ∗
v

def

= {p | p ∈ (prntB � n(v))}
indicate the parents of v which are nodes and roots, respectively. Similarly, sets

Cv
def

= {c | c ∈ (prnt−1
B � VB(v))} and C∗

v

def

= {c | c ∈ (prnt−1
B �m(v))} are the

children of v which are nodes and sites, respectively. We write indeg(v) and

outdeg(v) to denote the indegree and outdegree of a vertex v, respectively.



Note that, by definition 1, roots have no parents and sites have no children.
This can be expressed as follows:

indeg(v) = outdeg(u) = (0, •) for all v ∈ n and u ∈ m.

A first step toward an algorithm for matching is to introduce the notion of
degree matching.

Definition 8 (Degree matching). Given two nodes u and v, we say that u

matches (the degree of) v if the following conditions hold:

1. if outdeg(u) = (o, •) then outdeg(v) = (o, •);
2. if outdeg(u) = (o, ∗) then outdeg(v) = (o′, ) with o′ ≥ o;

3. if indeg(u) = (i, •) then indeg(v) = (i, •);
4. if indeg(u) = (i, ∗) then indeg(v) = (i′, ) with i′ ≥ i.

The previous definition states that a node with outdegree (indegree) (x, •) matches
nodes with exactly x children (parents), while a node with outdegree (indegree)
(x, ∗) matches nodes with at least x children (parents). Note that nodes u and
b may belong to different bigraphs. The following example gives an idea of how
the procedure works on two example place graphs.

Example 2. Consider the concrete place graphs below:

0 1

v0

v1 0

0

u0

u1 u2

u3 0

Nodes u0 and u2 do not match node v0, while v0 matches both u0 and u1. This
is shown by

indeg(v0) = indeg(u0) = (0, ∗) indeg(u2) = (1, •)

outdeg(v0) = outdeg(u2) = (1, ∗) outdeg(u0) = (2, •) .

It is helpful for the definition of the matching algorithm to have an explicit trans-
formation from concrete place graphs to DAGs. Such a procedure is straightfor-
ward and it can be defined as below. It consists of a map from nodes to vertices
and a map from the parent map to the set of edges. Sites and roots are dropped.

Definition 9 (underlying graph). Let F = (VF , ctrlF , prntF ) : m → n be a

concrete place graph. Directed graph GF = (VF , EF ) with

EF
def

= {(u, v) | u ∈ prntF (v) ∧ u, v ∈ VF }

is called the underlying graph of F .



Note that the absence of cycles in parent map prntF assures that GF is a DAG.
A crucial property for the definition of a matching algorithm in graph theoretic
terms is that any control preserving graph isomorphism between two underlying
graphs can trivially be extended to a support translation between two concrete
place graphs. Informally, the extension is carried out by properly attaching sites
and roots to the underlying graph obtained by applying the isomorphism.

Proposition 1. Let FP, GP : m → n be two concrete place graphs and GF ,

GG their corresponding underlying graphs. If there exists a graph isomorphism

ι : VF → VG such that

1. the controls are preserved, i.e. ctrlF = ctrlG ◦ ι,
2. the parent map for sites is preserved, i.e. prntG �m = (idn ] ι) ◦ (prntF �m),
3. the parent map for roots is preserved, i.e. prntF �n = (prntG �n) ◦ (idm ] ι),

then ι is a support translation from FP to GP, i.e. GP = ι�FP.

Proof. In order to prove that ι is a support translation from FP to GP, we have
to prove that

1. ι preserves controls;
2. ι commutes with the structural maps as follows:

prntG ◦ (idm ] ι) = (idn ] ι) ◦ prntF . (1)

The proof of (1) is immediate from the definition of ι. To prove (2), assume
Equation (1) does not hold. This means that there exist a place v in FP such
that

prntG(idm(v)) 6= (idn ] ι)(prntF (v)) if v ∈ m (2)

prntG(ι(v)) 6= (idn ] ι)(prntF (v)) otherwise. (3)

In Equation (2) the domains on both sides are restricted only to the set of sites.
Therefore, it can be rewritten as prntG �m 6= (idn ] ι) ◦ (prntF �m). However,
this contradicts the hypothesis. Analogously, Equation (3) becomes

prntG �VG ◦ ι 6= (idn ] ι) ◦ prntF �VF . (4)

By definition of of graph isomorphism, we know that

(ι(u), ι(v)) ∈ EG ⇔ (u, v) ∈ EF .

By construction of GF and GG, the following hold

ι(u) ∈ prntG(ι(v)) ι(u), ι(v) ∈ VG (5)

u ∈ prntF (v) u, v ∈ VF (6)

From (5) and (6), it follows that

prntG �VG �VG ◦ ι = ι ◦ prntF �VF �VF (7)



By hypothesis, the parent map for roots is preserved. In particular, it is also
preserved when restricting over nodes. Therefore, by merging this requirement
with (7), we obtain

(prntG �VG �VG ◦ ι) ] ((prntG �VG �n) ◦ ι) = (ι ◦ prntF �VF �VF ) ] (prntF �VF �n)

prntG �VG �(VG ] n) ◦ ι = (idn ] ι) ◦ prntF �VF �(VF ] n)

prntG �VG ◦ ι = (idn ] ι) ◦ prntF �VF (8)

But Equation (8) contradicts Equation (4). This concludes the proof.

We now give an outline of our matching algorithm. Since the novelty of
sharing bigraphs resides in the definition of place graphs, we only present a
procedure for the matching of place graphs. However, a similar approach can be
used to implement a matching algorithm for link graphs.

The algorithm takes as input two concrete place graphs: one is the pattern
and the other is the target. The output is YES when the pattern occurs in the
target, NO otherwise. Recall from the previous section that this is also enough
to determine whether there is a match between two abstract place graphs. The
procedure consists of four different phases performed one after the other.

The first phase is an instance of the subgraph isomorphism problem, where
the inputs are the underlying graphs of the pattern and the target. Intuitively, a
candidate match is a subgraph of the target which is isomorphic with the pattern
and respects the controls. If there are no subgraphs satisfying this condition,
then the algorithm returns NO. The second phase is performed, otherwise. The
degrees of the nodes in the isomorphic subgraphs obtained by the first phase of
the algorithm are checked in the second phase. This takes care of sites and roots,
as required by Definitions 6 and 3. For the same reason, shared sites and roots
are checked in the third phase. Finally, in the fourth phase we check that the
candidate match can be composed with a context to obtain exactly the target
place graph. Informally, this consists of checking that once we leave a candidate
match we never go back to it. This means that any node which is a children of
a node in a candidate match P ′ and is outside P ′ does not have descendants in
P ′ itself. The final output is YES when all the phases are executed correctly. It
is NO otherwise.

4 Related work

The earliest formalisation of a matching algorithm was introduced in [3]. In this
paper, the authors provide a matching system based on inference rules. These
are defined formally starting from an inductive characterisation of occurrence,
i.e. a pattern P can be proven to occur in a target T by induction on P and
T . Proofs of soundness and completeness are also presented. The input to their
matching algorithm is an abstract target and an abstract pattern. This solution
does not support Bigraphs with sharing. A similar approach has been taken for
the implementation of DBtk, a tool-kit for directed bigraphs [6].



We have chosen not to extend the inference approach of [3], from trees to
DAGs for the following reason. Intuitively, such an approach would significantly
increase the amount of unnecessary blind search in the inference process, which
would adversely affect the performance of the algorithm. The additional blind
search is a consequence of the complexity added by allowing sharing. This com-
plexity is highlighted by the fact that the matching problem for bigraphs with
sharing is a special case of the subgraph isomorphism problem, which is NP-
complete and traditionally solved using some type of backtracking search [7].
Whereas, the matching problem without sharing is an instance of the sub-tree
isomorphism problem, which can be efficiently solved in polynomial time.

Our approach relies heavily upon the extensive research and development ef-
forts spent developing highly efficient SAT solvers. Similar approaches have been
proven effective for solving several NP-complete problems by encoding them
into efficient SAT models (e.g. graph colouring problem, bounded model check-
ing,. . . ). Since bigraphs are a special case of bigraphs with sharing, our algorithm
can also be applied to solve the matching problem without sharing.

Another characteristic of our approach is that the algorithm is defined for
concrete bigraphs. This allows the enumeration of all occurrences of the pattern
in the target graph. This property is desirable because enumeration is required
for any complete implementation of stochastic reactive systems [8]. A further
benefit of our approach is that a normalisation step prior to the execution of the
algorithm is not necessary.

Summarising, the two main reasons for adopting our approach are:

– the need for an efficient matching algorithm supporting bigraphs with shar-
ing,

– the ability to count different occurrences of a match.

5 The algorithm

Following the outline we presented in the previous section, we give a formal def-
inition of an algorithm for the matching of concrete place graphs. The algorithm
takes the form of a function Match( , ). Its definition is described below.

Input: Concrete place graphs T = (VT , ctrlT , prntT ) : m → n and P =
(VP , ctrlP , prntP ) : m′ → n′. T acts as target while P is the pattern we
want to match in T . The algorithm is invoked by Match(T, P ).

Subgraph isomorphism: The underlying graphs of P and T are computed.
We call them GP = (VP , EP ) and GT = (VT , ET ), respectively. If there

exists a graph isomorphism ι : GP → G̃T such that G̃T = (ṼT , ẼT ) is a
subgraph of GT and ctrlP = ctrlT ◦ ι, then go to the next step. Answer NO
otherwise.

Degree check: Check whether all the nodes in VP match the corresponding
nodes in VT . Namely, if v matches ι(v), for all v ∈ VP , then go to the next
step. Answer NO otherwise.



Shared roots and sites: Check that shared sites (roots) are matched prop-
erly, i.e. a shared site (root) can be matched only to nodes with a compatible
parent set (set of children). To formally define this procedure, we need some
definitions first. Set M ′ ⊆ m′ defined as

M ′ = {i ∈ m′ | |prntP �VP (i)| > 1} ,

is the set of shared sites in P . Function f : M ′ → 2VT maps the parent
set of each i ∈ M ′ to T . It is obtained by composing a parent map and an
isomorphism ι : GP → G̃T as follows:

f
def

= ι ◦ prntP �M ′ �VP .

We indicate by Ci ⊆ VT the set of nodes in T having a parent in common
with a shared site i ∈ M ′. It is constructed as

Ci
def

=
⋃

j∈f(i)

prnt−1
T �VT �VT (j) .

Observe that Ci can contain elements belonging to ι(VP ). Finally, Ĉi is the
subset of Ci which members cannot be matched to shared site i:

Ĉi
def

= {j ∈ Ci | prntT �VT (j) 6= ι(prntP �VP (i))} .

The procedure is:
Input: set Ĉi.
Procedure: If for all j ∈ Ĉi there exist a set of sites M ′′ ⊆ m′ such that

ι

( ⋃

h∈M ′′

prntP �M ′′ �VP (h)

)
= prntT �VT � ι(VP )(j)

holds, then return YES. Return NO otherwise.
If the procedure returns YES for all Ĉi with i ∈ M ′, then go to the next
step. Return NO otherwise. The case for shared roots is symmetric.

Transitive closure: Compute set C ⊆ VT , defined as follows:

C = {v 6∈ ι(VP ) | (u, v) ∈ ET ∧ u ∈ ι(VP )} .

Compute the transitive closure G+
T = (VT , E

+
T ) of GT . If all the nodes in C

are not connected (via relation E+
T ) to a node belonging to ι(VP ), namely

{(u, v) ∈ E+
T | u ∈ C ∧ v ∈ ι(VP )} = ∅,

then answer YES. Answer NO otherwise.

We now prove that the algorithm is sound and complete.

Proposition 2 (completeness). Let S : m → n and R : m′ → n′ be two

concrete place graphs. If R occurs in S, then Match(S,R) = YES.



Proof. By Definition 6, there are concrete bigraphs C1, C0, R
′, an interface p

and a support translation ρ such that

S = C1 ◦ (R
′ ⊗ idp) ◦ C0 (9)

R′ = ρ�R (10)

Assume (9) and (10) hold; we prove that Match(S,R) = YES. By construction,
Algorithm Match returns YES only if all its four constituent phases do not
return NO. Hence, we prove individually that each phase does not return NO.

1. Assume the hypothesis holds and the output of the first phase of the algo-
rithm isNO. By construction, this means that one of the following conditions
is not satisfied:
(a) There exists an isomorphism ι : GR → G̃S .

(b) G̃S = (ṼS , ẼS) is a subgraph of GS .
(c) ctrlR(v) = ctrlS(ι(v)) for all v ∈ VR.
By hypothesis, we know there exists a place graph R′ : m′ → n′ such that

prntR′ ◦ (idm′ ] ρ) = (idn′ ] ρ) ◦ prntR (11)

ctrlR′ ◦ ρ = ctrlR . (12)

Equation (11) can be restricted when considering only nodes as shown below:

prntR′ �VR′ �VR′ ◦ ρ = ρ ◦ prntR �VR �VR . (13)

By Definition 9 and Equation (13), ρ is an isomorphism from GR to GR′ .
Moreover, by Definitions 3, 9 and Equation (9), GR′ is a subgraph of GS .
From this and Equation (12) it also follows that ρ preserves the controls.

Therefore, if we pick ι and G̃S such that

G̃S = GR′ and ι = ρ ,

then all the three conditions are satisfied and the first phase of the algorithm
does not return NO. This is a contradiction.

2. Assume the hypothesis holds, and the second phase returns NO. This means
that there exits a node v in R such that the degree of ρ(v) in S is not matched
by v. In the following we assume the indegree is not matched. The case for
outdegree is symmetric. By Definition 8 we have two cases:
(a) indeg(v) = (o, •) and indeg(ρ(v)) 6= (o, •) and
(b) indeg(v) = (o, ∗) and indeg(ρ(v)) = (o′, ) with o′ < o.
We prove them separately.
(2a)
In the first case, for any v ∈ VR such that indeg(v) = (o, •), it holds that

|prntR(v)| = o and prntR(v) ⊂ VR . (14)

By Equation (10), it also holds that

|prntR′ (ρ(v))| = o and prntR′(ρ(v)) ⊂ VR′ . (15)



By Definition 3 and by Equations (9), (15) we have that

prntS �VR′ �VR′ = prntR′ �VR

However, this implies that

|prntS(ρ(v))| = o and prntS(ρ(v)) ⊂ VS . (16)

Therefore, indeg(ρ(v)) = (o, •). This is a contradiction.
(2b)
Similarly, in the second case by hypothesis and Equation (10), the following
hold

|prntR′ �VR′(ρ(v))| = o and prntR′ �n′(ρ(v)) 6= ∅ , (17)

for any v ∈ VR such that indeg(v) = (o, ∗). By Definition 3 and Equation (9)
we have that

prntS(ρ(v)) = prntS0
�VS0

(ρ(v)) ∪
⋃

j∈J

prntC1
(j) , (18)

where S0 = (R′ ⊗ idp) ◦ C0 and J = prntS0
�(n′ + p)(ρ(v)). By Definition 3,

we know that none of the parents of a node in R′ can be in C0. Therefore,
Equation (18) becomes

prntS(ρ(v)) = prntR′ �VR′(ρ(v)) ∪
⋃

j∈J′

prntC1
(j) , (19)

with J ′ = prntR′ �n′(ρ(v)). By Equations (17) and (19), we can write

|prntS(ρ(v))| = |prntR′ �VR′(ρ(v))| +

∣∣∣∣∣∣
⋃

j∈J′

prntC1
(j)

∣∣∣∣∣∣

= o+

∣∣∣∣∣∣
⋃

j∈J′

prntC1
(j)

∣∣∣∣∣∣
= o′ ≥ o .

This implies, indeg(ρ(v)) = (o′, ) with o′ ≥ o. This contradicts the hypoth-
esis.

3. Assume the hypothesis holds, and the third phase returns NO. This means
that there exists no set of sites M ′′ in R such that

prntS �VS � ι(VR)(j) = ι

( ⋃

h∈M ′′

prntR �M ′′ �VR(h)

)
,

for some node j in S and some isomorphism ι from R to S. The case with
shared roots is treated symmetrically, therefore we prove only the case for



sites. By definitions of composition, and Equation (9), we know that for any
w ∈ (VC0

]m) such that prntS(w) 6⊆ VC0
, the following holds

prntS(w) = prntC0
�VC0

(w) ∪
⋃

i∈J

prntS1
(i)

where S1 = C1 ◦ (R′ ⊗ idp) and J = prntC0
�(m′ + p)(w). By restricting the

domain, we obtain

prntS �VS(w) = prntC0
�VC0

�VC0
(w) ∪

⋃

i∈J′

prntS1
(i) , (20)

where J ′ = prntC0
�VC0

� (m′ + p)(w). By further restricting the codomain,
Equation (20) can be rewritten as

prntS �VS �VR′(w) =
⋃

i∈J′′

prntS1
�VR′(i)

=
⋃

i∈J′′

prntR′ �J ′′ �VR′(i) , (21)

where J ′′ = prntC0
� VC0

�m′(w) is a set of sites in R′. Finally, by Equa-
tion (10), Equation (21) becomes

prntS �VS �ρ(VR)(w) = ρ

( ⋃

i∈J′′

prntR �J ′′ �VR(i)

)
.

By choosing j = w, ι = ρ and M ′′ = J ′′ we obtain a contradiction.
4. Assume the hypothesis holds, and the last phase of the algorithm returns

NO. Then,
{(u, v) ∈ E+

S | u ∈ C ∧ v ∈ ι(VR)} 6= ∅ (22)

must hold, with C as in Equation (9) and E+
S the transitive closure of the

edge relation of GS . By Equations (9), (10) and Definition 9, each element u
belonging to set C is a node in C0, i.e. u ∈ VC0

. We know that any descendant
v of u is also an element of VC0

and not of VR′ = ρ(VR). This implies

{(u, v) ∈ E+
S | u ∈ C ∧ v ∈ ρ(VR)} = ∅

where ρ = ι. This is a contradiction.

This concludes the proof.

Proposition 3 (soundness). Let S : m → n and R : m′ → n′ be two concrete

place graphs. If Match(S,R) = YES, then R occurs in S.

Proof. In the following we prove that, whenever Match(S,R) = YES, with S :
m → n and R : m′ → n′, then it is possible to construct bigraphs C1, C0, R

′, idp
and a support translation ρ such that Equations (9), (10) hold. Let us begin
with the construction of ρ and R′.



In the first phase of the algorithm a graph ismorphism ι : GR → G̃S is
computed. By Definition 9, G̃S can be the underlying graph of any place graph
having ṼS = ι(VR) as node set. In particular, it is the underlying graph of place
graph R′ : m′ → n′ constructed as follows:

VR′

def

= ι(VR)

ctrlR′

def

= ctrlR ◦ ι−1

prntR′ �VR′ �VR′

def

= prntR �VR �VR

prntR′ �m′ def

= (idn′ ] ι) ◦ prntR �m′

prnt−1
R′ �n

′ def

= (idm′ ] ι) ◦ prnt−1
R �n′ .

(23)

Then, by Proposition 1, ι = ρ is a support translation and R′ is support equiv-
alent to the input place graph R.

We now describe the construction of C0, C1 and idp. By definition of identity,
and by construction of R′, we know that VC0

∪VC1
= VS \VR′ . We also know that

there exists a set of nodes VX ⊆ VS \ VR′ whose elements can be either nodes in
C0 and C1. In this construction we arbitrarily choose to have VX ⊆ VC1

, i.e. the
construction specifies the decomposition of S with the maximum context C1.
Therefore, set VC0

contains all and only the nodes being descendant of a node
in R′. It is defined as

VC0

def

= {v ∈ VS | prnt
+
S ({v}) = U ∧ U ∩ VR′ 6= ∅} .

This implies that VC1

def

= VS \ (VR′ ∪VC0
). Interface d is computed as the number

of different parents (in C1) of places in C0. It can be computed as

d
def

= |P0| with P0 = {v ∈ (VC1
] n) | v ∈ prntS(u) ∧ u ∈ (VC0

]m)} .

Note that a bijection f between elements of P0 and d (i.e. sites of C1) can be
constructed. Moreover, it is possible to specify a function h : 2VR′ → 2m

′

that
associates a set of sites M to a set of nodes of W ⊆ VR′ , where M is the smallest
subset of m′ such that

W =
⋃

i∈M

prntR′(i) .

Informally, h(W ) indicates a set of non-redundant sites such that its parent set
in bigraph R′ is the same as the parent set of W in bigraph S. Observe that the
previous definition is sound with respect to phases 2 and 3 of the algorithm. At
this point we have all the elements to define place graph C0 : m → m′ + p:

ctrlC0

def

= ctrlS �VC0

prntC0
(w)

def

= prntS �VC0
(w) ∪ f(prntS �P0(w))

∪ h(prntS �VR′(w)) .

(24)



The construction of place graph C1 : n′ + d → m is dual to the procedure
described above. However, some additional definitions are required. Set PR of
places in C1 having a child in R′ is given by

PR = {v ∈ (VC1
] n) | v ∈ prntS(u) ∧ u ∈ VR′} ,

while function k : PR → 2VR′ is just a shorthand for

k = prnt−1
S �PR �VR′ .

For each w ∈ PR, we then define set M ′
w as the smallest subset of n′ such that

the following holds

M ′
w =

⋃

i∈k(w)

prntR′ �n′(i) . (25)

Finally, place graph C1 is specified as follows:

ctrlC1

def

= ctrlS �VC1

prntC1
�VC1

def

= prntS �VC1

prnt−1
C1

�n′(w)
def

= M ′
w w ∈ PR

prntC1
�d

def

= f−1 .

(26)

Note that the existence of sets M and M ′
w is assured by phases 2 and 3 in the

algorithm. This completes the proof.

5.1 Examples

The various phases of algorithm Match are illustrated with some examples.

Example 3. Consider place graphs T and P0 drawn in Figure 6. The matching
instance is given by Match(T, P0). The first operation performed by the al-
gorithm is the computation of the underlying graphs GP0

and GT . In the first
phase five possible control preserving isomorphisms are detected:

ι0 = {(v0, u0), (v1, u1)} ι1 = {(v0, u0), (v1, u2)}

ι2 = {(v0, u3), (v1, u6)} ι3 = {(v0, u4), (v1, u7)}

ι4 = {(v0, u5), (v1, u7)} .

Therefore, it is possible to continue with the degree check in the second phase
of the algorithm. The degrees of the nodes involved in the isomorphisms are:

indeg(a) = (0, ∗) outdeg(b) = (0, ∗)

indeg(c) = (1, •) outdeg(d) = (1, •)

indeg(u7) = (2, •) outdeg(u0) = (3, •) ,



where a ranges over nodes v0, u0, b = v1, u6, u7, c = v1, u1, . . . , u6 and d =
v0, u1, . . . , u5. Since node v0 cannot match the outer degree of u0, isomorphisms
ι0 and ι1 have to be discarded. Similarly, ι3 and ι4 are not accepted because
v1 does not match the inner degree of u7. Thus, it follows that ι2 is the only
isomorphism in which all the degrees are matched. Since there are no shared roots
and sites in the pattern P0, the third phase of the algorithm is skipped and the
last phase is executed instead. The subgraph of GT induced by isomorphism ι2
is G̃T = ({u3, u6}, {(u3, u6)}). Since both its vertices do not have children not in

G̃T , set C computed in the fourth phase is empty. Therefore, the computation
of the transitive closure is not necessary. Finally, the output of Match(T, P0) is
YES, and the matching is given by ι2.

T 0

u0 : A

u1 : B u2 : B u3 : A

u4 : A u5 : A u6 : B

u7 : B

0 1

P0 0

v0 : A

v1 : B

0

Fig. 6: Example 3: Match(T, P0) = YES, i.e. P0 occurs in T . The match is
given by {(v0, u3), (v1, u6)}.

Example 4. Consider concrete place graphs T and P1 depicted in Figure 8. When
Match(T, P1) is invoked, the following steps can be described. In the first phase
of the algorithm two control preserving isomorphisms are found:

ι0 = {(v0, u0), (v1, u1), (v2, u4)}

ι1 = {(v0, u0), (v1, u2), (v2, u5)} .

In the second phase the degrees are checked. The degrees of the nodes belonging
to T are reported in Example 3. For the nodes in P1 the degrees are:

indeg(v0) = outdeg(v2) = (0, ∗) outdeg(v0) = (1, ∗)

indeg(v1) = indeg(v2) = (1, •) outdeg(v1) = (1, •) .

Since all the degrees are matched, with both the isomorphisms, the algorithm
proceeds to the next step of the algorithm. As in the previous example, the third



phase is not executed because there are neither shared roots nor sites in P1. The
fourth phase checks that all paths leaving the matched pattern G̃T are not going
back into it. In order to do that, the algorithm computes the set C of children of
nodes in G̃T that are not in G̃T . In this case, there are two sets C0 = {u2, u3, u7}
and C1 = {u1, u3, u7}, obtained by considering the match given by isomorphisms
ι0 and ι1, respectively. Analogously, we have two different matched patterns:

G̃0
T = (

Ṽ 0

T︷ ︸︸ ︷
{u0, u1, u4}, {(u0, u1), (u1, u4)})

G̃1
T = ({u0, u2, u5}︸ ︷︷ ︸

˜V 1

T

, {(u0, u2), (u2, u5)}).

Then, the transitive closure of GT is computed as in Figure 7. As can be seen,

u0

u1 u2 u3

u4 u5 u6

u7

Fig. 7: Example 4: Transitive closure of underlying graph GT .

there are no edges connecting elements of C0 with vertices belonging to set Ṽ 0
T .

This means that isomorphism ι0 gives a valid match. The same holds for ι1 when

considering sets C1 and Ṽ 1
T . Therefore, the final output of the algorithm is YES.

Note that to perform the check in the fourth phase, the computation of the full
transitive closure is not always necessary. In this case for instance, edges starting
from node u0 are not required to be added since u0 cannot be reached by any
path starting with an element in C0 or C1. However, in the worst case all vertices
in the target are reachable starting from set C and the entire transitive closure
has to be computed.

Example 5. Take place graphs T and P2 as in Figure 9. We now describe the
execution of Match(T, P2). During the first phase of the algorithm two control
preserving isomorphisms are found:

ι0 = {(v0, u0), (v1, u1), (v2, u4), (v3, u7)}

ι1 = {(v0, u0), (v1, u2), (v2, u5), (v3, u7)} .



T 0

u0 : A

u1 : B u2 : B u3 : A

u4 : A u5 : A u6 : B

u7 : B

0 1

P1 0

v0 : A

v1 : B

v2 : A

0 1

Fig. 8: Example 4: Match(T, P1) = YES. There are two matches:
{(v0, u0), (v1, u1), (v2, u4)} and {(v0, u0), (v1, u2), (v2, u5)}.

These give rise to the corresponding candidate matches:

G̃0
T = ({u0, u1, u4, u7}, {(u0, u1), (u1, u4), (u4, u7)})

G̃1
T = ({u0, u2, u5, u7}, {(u0, u2), (u2, u5), (u5, u7)}) .

In the second phase the degrees are checked. Degrees of vertices in GT are listed
in Example 3, while the degrees of nodes belonging to GP2

are:

indeg(v0) = outdeg(v3) = (0, ∗)

outdeg(v0) = indeg(v3) = (1, ∗)

indeg(vi) = outdeg(vi) = (1, •) i = 1, 2.

Since all the nodes in GT are matched by the correspondent nodes in GP2
, the

algorithm moves to the fourth phase (third phase is skipped because there are
neither shared roots nor shared sites in the pattern). In the fourth phase the
transitive closure of graph GT is computed as reported in Figure 7. Moreover,
the sets of children are C0 = {u2, u3} and C1 = {u1, u3}. At this point, the
algorithm discards isomorphism ι0 because edge (u2, u7) connects C0 to the a

vertex in candidate match G̃0
T . Similarly, ι1 is not accepted because edges (u1, u7)

connects C1 to G̃1
T . Therefore, the algorithm returns NO.

Example 6. Take as input for the matching algorithm place graphs T ′ and P3.
They are the target and the pattern, respectively. A graphical representation is
given in Figure 10. When invoking Match(T ′, P3), the first phase of the match-
ing algorithm is performed. As a result, isomorphism ι : {(v0, u0), (v1, u1), (v2, u2)}
is computed. In the second phase the degree matching is performed. The degrees



T 0

u0 : A

u1 : B u2 : B u3 : A

u4 : A u5 : A u6 : B

u7 : B

0 1

P2 0 1

v0 : A

v1 : B

v2 : A

v3 : B

0 1

Fig. 9: Example 5: Match(T, P2) = NO.

are:

indeg(a) = outdeg(b) = (0, ∗) a = v0, u0 b = v1, v2

indeg(c) = (1, •) c = v1, v2, u1, u2

outdeg(d) = (2, •) d = v0, u0, u1, u2 .

Since all the degrees are matched (in particular v1 matches u1 and v2 matches
u2), the third phase can be executed. In this example, site 0 in the pattern is
shared between nodes v1 and v2. Therefore, the algorithm computes the set of
nodes in T ′ that cannot be assigned to site 0 as follows: Ĉ0 = {u3, u5}. Then,
the procedure defined in the third phase is executed using u3 and u5 as inputs.
In the first case, the procedure fails to find a set of sites in the pattern being
children only of node v1. In the second case, the procedure again returns NO
because there are no sites which parent set is {v2}. Note that site 0 do not satisfy
the requirement in both cases because its parent set is {v1, v2}. At this point
the algorithm interrupts its computation and returns NO. This means that P3

does not occur in T ′.

6 A SAT encoding

In this section we show how the place graph matching problem can be modelled
and solved efficiently with a specialised SAT solver [5]. SAT solvers check satis-
fiability of propositional formulae (usually written in conjunctive normal form).
Though in general NP-complete, SAT solvers are highly efficient for many prac-
tical applications.



T
′

0

u0 : A

u1 : B u2 : B

u3 : A u4 : A u5 : B

P3 0

v0 : A

v1 : B v2 : B

0

Fig. 10: Example 6: Match(T ′, P3) = NO.

6.1 Representing place graph matching as SAT

The problem of place graph matching (ignoring roots and sites for now) can be
expressed as a sub-graph isomorphism problem with the additional constraints of
vertex labels and degree matching. We now show how the sub-graph isomorphism
problem can be expressed as a SAT problem and show how additional clauses
can be added to handle vertex labels and degree matching. It is then shown how
this model can be extended to include roots and sites.

The problem is assumed to be expressed as two directed acyclic graphs
(DAGs), the pattern graph P and a target graph T . Pv is the set of n ver-
tices associated with P . Pa is an n× n adjacency matrix, which holds data on
the edges between the n vertices in P , where Paij = 1 iff there is an edge start-
ing at vertex i and ending at vertex j. Pl is an array of length n that holds the
vertex labels, where Pli is the label for vertex i.

6.2 Sub-graph isomorphism

Given a pattern graph P and a target graph T , where P and T are directed
acyclic graphs, find a matching M = {(Pv1, T vk), (Pv2, T vl), . . . , (Pvn, T vp)}.
Such that, for all (Pvi, T vk) ∈ M and (Pvj , T vl) ∈ M the appropriate edges in
P and T match, meaning, Paij = T akl

To represent this as a SAT instance, a literal Lij is used to represent each
possible (Pvi, T vj) pair in M. If there are n vertices in P and m vertices in T
then there will be n×m literals in the model. A summary of the clauses is shown
in Figure 11. To ensure that each Pvi is matched to at least one T v, the clause
Li1 ∨ Li2 ∨ · · · ∨ Lim (Clause 1) is added. The clause ¬Lik ∨ ¬Lil (Clause 2) is
then added for each Pvi and each pair (T vk, T vi) to ensure that Pvi is matched
to at most one T v. For all T vk the clause ¬Lik ∨ ¬Ljk (Clause 3) is added for
each pair (Pvk,Pvi), so T vk is matched to at most one vertex in P . Finally, for
each potential pair of assignments (Pvi, T vk) ∈ M and (Pvj , T vl) ∈ M, such
that Paij 6= T akl, the clause ¬Lik ∨ ¬Ljl is added.



1. for all Pvi Li1 ∨ Li2 ∨ · · · ∨ Lim

2. for all Pvi, T vk, T vl s.t. k < l ¬Lik ∨ ¬Lil

3. for all Pvi, Pvj , T vk s.t. i 6= j ¬Lik ∨ ¬Ljk

4.
for all Pvi,Pvj , T vk, T vl

s.t. Paij 6= T akl

¬Lik ∨ ¬Ljl

Fig. 11: Summary of clauses for a SAT model for sub-graph isomorphism.

6.3 Vertex labels and degree matching

In a matching M a vertex Pvi can only be matched to sum vertex T vk if the
labels and the degrees match. The labels match if Pli = T lk and the degrees
match if both:

In degree
n∑

j=1

Paij =
m∑

l=1

T akl

and

Out degree

n∑

j=1

Paji =

m∑

l=1

T alk

If a pair of vertices (Pvi, T vk) do not match then a single literal clause ¬Lik is
added. Both roots and sites can be matched to 0, 1 or many vertices. Therefore,
if a vertex Pvi has a parent which is a root, Pvi can be matched to a vertex
in T that does not have a matching in degree. Similarly, if a vertex Pvi has a
child which is a site, Pvi can be matched to a vertex in T that does not have a
matching out degree. The degree matching of such vertices will be enforced by
clauses detailed in the following section.

6.4 Roots and sites

A root is modelled as a specialised vertex, which is allowed to be matched to 0
or more vertices. A vertex Pvi is a root if its associated label Pli = “root”. A
root Pvi is represented by m literals in the same way as normal vertices, where
Lik = 1 indicates that the vertex T vk is matched to the root Pvi. A summary of
the clauses for roots is shown in Figure 12. If a vertex T vk is matched to a root
then all its ancestors must also be matched to the same root. This is enforced by
the clause Lik ∨ ¬Lil (Clause 1), which is posted for each pair (T vk, T vl) such
that there is an edge T akl.

If a vertex Pvi is a root, vertex Pvj is a child of Pvi, Pvj is matched to a
vertex T vk and T vl is a parent of T vk then T vl must be matched to a parent
of Pvj . This relationship is enforced by the clause ¬Ljk ∨Pv

i′
∈P Li′l (Clause 2),

where P is the set of all parents of Pvj . This clause will be posted for all Pvj ,
such that Paij = 1 and Pli = “root”, for all T vk and for all T vl, such that



Palk = 1. Note that is relation is the same if Pvi were not a root. However, in
the none root case the relationship is enforced by the degree matching clauses
and Clause 4 from Figure 11.

If a vertex is matched to a root then it must not be matched to any other
vertex3. This is enforced by the clause ¬Lik ∨ ¬Ljk (Clause 3), which will be
posted for all Pli = “root”, for all Plj 6= “root” and for all T vk.

If a root in the pattern graph has 2 children, then any vertex matched to that
root must either have children that are matched to the children of the root or be
an ancestor of such a vertex. This is enforced by the clause ¬Lj1k1∨¬Lj2k2∨¬Lil

(Clause 4), which is posted for all roots Pvi with 2 children Pvj1 and Pvj2 and
for all vertex T vl with a child T vk1 and all vertices T vk2 which are not children
of T vl. Note that a similar relation needs to be enforced for roots with more
than 2 children.

1.
for all Pli = “root”, T vk, T vl

s.t. T akl = 1
Lik ∨ ¬Lil

2.

for all Pli = “root”, T vk

s.t. T akl = 1,Paij = 1,

P = {Pai′j |Pvi′}

¬Ljk ∨Pv
i′
∈P Li′l

3.
for all Pli = “root”,

Plj 6= “root”, T vk

¬Lik ∨ ¬Ljk

4.
for all Pli = “root”,Paij1 = 1,

Paij2 = 1, T alk1 = 1, T alk2 = 0

¬Lj1k1 ∨ ¬Lj2k2

∨¬Lil

Fig. 12: Summary of clauses for adding roots to the sub-graph isomorphism SAT
problem.

Similar to a root, a site is modelled as a specialised vertex, which is allowed
to be matched to 0 or more vertices. A site differs from a root by the fact that
a site is a leaf node. A vertex Pvi is a site if its associated label Pli = “site”. A
site Pvi is represented by m literals in the same way as vertices, where Lik = 1
indicates that the vertex T vk is matched to the site Pvi. A summary of the
clauses for sites is shown in Figure 13. If a vertex T vk is matched to a site then
all its descendants must also be matched to the same site. This is enforced by
the clause ¬Lik ∨ Lil (Clause 1), which is posted for each pair (T vk, T vl) such
that there is an edge T akl.

If a vertex Pvi is a site, vertex Pvj is a parent of Pvi, Pvj is matched to a
vertex T vk and T vl is a child of T vk then T vl must be matched to a child of

3 A vertex may be matched to more than one root.



Pvj . This relationship is enforced by the clause ¬Ljk ∨Pv
i′
∈C Li′l (Clause 2),

where C is the set of all children of Pvj . This clause will be posted for all Pvj ,
such that Paji = 1 and Pli = “site”, for all T vk and for all T vl, such that
Pakl = 1. Note that is relation is the same if Pvi were not a site. However, for
in the none site case the relationship is enforced by the degree matching clauses
and Clause 4 from Figure 11.

If a vertex is matched to a site then it must not be matched to any other
vertex4. This is enforced by the clause ¬Lik ∨ ¬Ljk (Clause 3), which will be
posted for all Pli = “site”, for all Plj 6= “site” and for all T vk.

If a site in the pattern graph has 2 parents, then any vertex matched to that
site must either have parents that are matched to the parents of the site or be a
descendant of such a vertex. This is enforced by the clause ¬Lj1k1∨¬Lj2k2∨¬Lil

(Clause 4), which is posted for all sites Pvi with 2 parents Pvj1 and Pvj2 and
for all vertex T vl with a parent T vk1 and all vertices T vk2 which are not parents
of T vl. Note that a similar relation needs to be enforced for sites with more than
2 parents.

1.
for all Pli = “site”, T vk, T vl

s.t. T akl = 1
¬Lik ∨ Lil

2.

for all Pli = “site”, T vk

s.t. Paji = 1, T akl = 1,

C = {Paji′ |Pvi′}

¬Ljk ∨Pv
i′
∈C Li′l

3.
for all Pli = “site”,

Plj 6= “site”, T vk

¬Lik ∨ ¬Ljk

4.
for all Pli = “site”,Paj1i = 1

Paj2i = 1, T ak1l = 1, T ak2l = 0

¬Lj1k1 ∨ ¬Lj2k2

∨¬Lil

Fig. 13: summary of clauses for adding sites to the sub-graph isomorphism SAT
problem.

6.5 Avoiding multiple matches

The clauses described in Section 6.4 to handle roots and sites enforce the re-
lationship Lik ⇒ Lil where Pli = “site” and T vl is an ancestor of T vk and
a similar version for sites. The relationship should be Lik ⇔ Lil. Fixing this
in the model will require potentially lengthy clauses. The result of the relax-
ation will be that some vertices may be erroneously matched to a site or root.

4 A vertex may be matched to more than one site.



However, the correct enforcement of all the other relationships means that the
resultant match will be sound. The potential problem with this is that the usual
technique for finding all solutions to a SAT problem5 may result in multiple
equivalent matches being returned, which will artificially increase the number of
matches and thus waste effort. To avoid this, when attempting to find additional
matches, instead of posting a clause which is a negation of the entire solution,
a clause will be posted which will force only the significant literals to be dif-
ferent. This clause would be a disjunction of the negated literals that represent
the matchings of the concrete vertices only. For example, if the solution was
{(Pv1, T v3), (Pv2, T v4), (Pv3, T v5), (Pv4, T v8),
(Pv5, T v9)}, where Pv1 and Pv5 are roots and sites respectively, then the clause
¬L2,4 ∨ ¬L3,5 ∨ ¬L4,8 would be posted.

This solution has been tested with all the examples in this paper. All the
correct matchings were returned in less than a millisecond. Larger place graphs
were then randomly generated. It was found that instances with 500 nodes in
the target graph and between 10 and 100 nodes in the pattern graph could be
solved in 20 to 30 seconds. The solution was also tested on the a pair of graphs
taken from a model of the 802.11 protocol [2] shown in Figure 14. A single match
was correctly returned in less than a millisecond. This is sufficient as a proof of
concept. However, a more efficient encoding should yield better performance.

T 0

S S S

M M M

RTS W

P 0

S S S

M M 2 3

0 RTS 1

Fig. 14: Example instance: 802.11 protocol [2]

7 Conclusions

We have proposed a sound and complete algorithm for finding matchings in
place graphs for bigraphs with sharing. It has been shown how the matching
problem can be mapped into a SAT instance. As a special case of the sub-graph
isomorphism problem, we strongly suspect that the bigraph matching problem
with sharing is NP-complete. Therefore, as with many other such problems, a

5 After a solution is found, the negation of that solution is posted as a clause and the
search is restarted.



SAT based solution is likely to provide an efficient solution. Initial empirical
results imply that this is the case.

8 Future work

The next step is to apply this approach, for place graphs, to link graphs. This
will allow the two solutions to be combined to form a matching algorithm for
a full bigraph. We are particularly interested in a recent generalisation of link
graphs called link graph with aliases which has been proposed in [9]. In this new
definition, a link can have any number of outer names. Examples of bigraphs
making use of aliases are given in Figures 1 and 4, where the port attached to
the node of control A is connected to both names x and y. We plan to use a similar
SAT based approach since the matching problem for link graphs is related to the
sub-hypergraph isomorphism problem, which is NP-complete. An algorithm for
binding bigraphs will also be considered. It would then be interesting to compare
empirically our solution with the inference rules based approach proposed for
non-sharing bigraphs.

Finally, we will develop an automated tool to perform simple reachability
analysis over BRSs.

References

1. Milner, R.: The Space and Motion of Communicating Agents. Cambridge University
Press (2009)

2. Sevegnani, M., Calder, M.: Bigraphs with sharing. Technical Report TR-2010-310,
University of Glasgow (2010)

3. Birkedal, L., Damgaard, T.C., Glenstrup, A.J., Milner, R.: Matching of bigraphs.
Electr. Notes Theor. Comput. Sci. 175(4) (2007) 3–19

4. Birkedal, L., Bundgaard, M., Damgaard, T.C., Debois, S., Elsborg, E., Glenstrup,
A.J., Hildebrandt, T.T., Milner, R., Niss, H.: Bigraphical programming languages
for pervasive computing. In: Proceedings of Pervasive 2006 International Workshop
on Combining Theory and Systems Building in Pervasive Computing. (May 2006)
653–658

5. Eén, N., Sörensson, N.: An extensible sat-solver. In: SAT. (2003) 502–518
6. Bacci, G., Grohmann, D., Miculan, M.: Dbtk: A toolkit for directed bigraphs. In:

CALCO. (2009) 413–422
7. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1) (1976)

31–42
8. Krivine, J., Milner, R., Troina, A.: Stochastic bigraphs. Electr. Notes Theor. Com-

put. Sci. 218 (2008) 73–96
9. R., M.: Seminar notes on development in bigraphs.

http://www.cl.cam.ac.uk/~rm135/Bigraphs-Seminars.pdf (17 March 2010)


	A SAT based algorithm for the matching problem in bigraphs with sharing

